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Abstract—Edge computing technologies have improved delays
and privacy of several applications, including in medical imaging
and eHealth. In this paper, we consider ultrasound technology
and echocardiology (echo) and empower it with edge computing.
Despite the many advances that ultrasound technology has
seen recently, e.g., it is possible to perform echo scans using
wireless ultrasound probes, the use of Artificial Intelligence
(AI) techniques is becoming a necessity, for faster and more
accurate echo diagnosis (not limited to heart diseases). While
a few proprietary solutions exist that embed AI within echo
devices, none of them uses resource-intensive tasks on handheld
devices, and none of them is open-source. To this end, we
propose EdgeEcho, an architecture that captures ultrasound data
originated from handheld ultrasound probes and tags it using
semantic segmentation performed on edge cloud. Our prototype
focuses on optimizing the management of edge resources to
address the specific requirements of echocardiology and the
challenges of serving AI algorithms responsively. As a use case,
we focus on a ventricular volume detection operation. Our
performance evaluation results show that EdgeEcho can support
multiple parallel medical video processing streaming sessions for
continuing medical education, demonstrating a promising edge
computing application with life-saving potential.

I. INTRODUCTION

Computational offloading and hardware virtualization tech-
niques have empowered several resource-intensive medical ap-
plications [1] that require heterogeneous resources for specific
tasks. Distributed systems have to provide latency-sensitive
tasks at the network edge and compute-intensive tasks that
have the option to be offloaded to the cloud if necessary.
On the one hand, recent advances in virtualization techniques,
such as edge computing, have made practical the use of virtual
machines to build such systems, accounting for the dynamic
nature of these applications. On the other hand, applications
of Deep Learning to Echocardiography (echo) have improved
significantly [2]. Aside from such improvements, one area of
research that has been so far largely unexplored is the use
of edge computing to process echocardiography imagery in
real-time. Image processing in a remote cloud needs to be
reinforced to address delays, security, and privacy concerns.

Generating ultrasound images is a latency-sensitive opera-
tion that requires converting the ultrasound waves gathered
from a test subject to an electrical signal, parsing it, and
converting the then generated echo-pulse to image data. A
sequence of such images forms the ultrasound video. While
several progress has been made on other diagnoses, e.g., using
artificial intelligence, the vast majority of echo diagnoses still
rely on human expertise and their data collection operations
remain buggy and a time bottleneck, leading to an incorrect
diagnosis. Advancements in medical imaging have made it

possible to advance state of the art, e.g., by broadcasting raw
ultrasound feeds to a display using wireless probes for pre or
post processing [3]. These solutions are often expensive and
not open-source. In this paper, we design and provide a proof-
of-concept implementation of EdgeEcho, a deep learning-
based system able to perform echo image processing, e.g.,
heart video segmentation, in real-time using edge computing
resources, minimizing network latency but still having access
to the high-performance computing of a Cloud.

Thanks to the edge capabilities and recent advances in deep
learning [4], such processing can be achieved in real-time
using virtualized hardware with GPUs. Keeping track of the
dynamic resources at the edge-cloud interface poses, however,
several challenges. Among those, the need to maintain optimal
performance despite constant updates in the global state of
the system. It is sub-optimal, e.g., to use predefined values to
initialize the internal data structures that keep track of different
aspects of our system like: content caching, load-balancing,
and resource discovery. Our system offers a live service that
can serve such imagery session requests continuously with no
manual intervention. To cope with this challenge, we employ
memory-efficient (probabilistic) data structures that result into
acceptable performance despite the demand spikes in the data
flow to reliably process such a medical imagery stream.
Our contribution. In summary, we design EdgeEcho, an
edge computing-based system able to analyze the echo feeds
originating from a set of wireless ultrasound systems, with
the goal of enabling robust and performant tele-echocardiology
sessions. EdgeEcho uses use Optimized Cuckoo Filters (OCF),
a congestion-aware membership testing data structure that
we recently published [5]. We implemented our EdgeEcho
architecture using open-source echo and cloud solutions, and
we tested it over a use case of human heart ventricular volume
detection.

The rest of the paper is structured as follows. In Section II
we present the related work on edge computing orchestra-
tion and echocardiology image processing. In Section III we
present the design of our EdgeEcho system design while in
Section IV we describe with more details the implemented
components. Then, we present a specific echocardiology use
case in Section V and our performance evaluation results in
Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

In this section we discuss the present work on edge comput-
ing and echocardiography. We start focusing on the specific
requirements of the edge network management and existing



approaches, and then we describe applications related to our
echocardiography use case. The edge cloud is particularly
important for processing information close to the source,
leading to reduced latencies. Examples of its usability have
been shown in [6]–[8]. Among them, Clipper [9] is a low-
latency online prediction serving system, which simplifies
the deployment of a Machine Learning (ML) model across
various frameworks and applications. Other projects similar
to Clipper are LASER [10] and Velox [11], where the latter
is considered as the solution providing the best performance.
However, these deployments perform poorly when scaling over
more complex ML models or larger datasets. A first attempt to
address these scalability issues has been carried by Ray [12],
a distributed framework for AI applications. It upgrades over
the existing systems such as CIEL [13] by providing an option
for distributed training and serving.

Alongside, ML has recently been applied to process
echocardiographic to make cardiac imaging easier, faster, and
more accurate. Some of these examples already validated are
automated measurement features, including left ventricular
ejection fraction, chamber dimensions, wall thickness, and
Doppler measurements [14]. Avasalcai et al. [2] extends
previous analysis on deep learning applicability to show that
an improved CNN model can reliably identify local cardiac
structures and anatomy, estimate volumetric measurements
and metrics of cardiac function, and predict systemic human
phenotypes that modify cardiovascular risk.

What makes our implementation different from the afore-
mentioned technologies or their combination is the highly
tailed nature of our system to support echocardiology. The
sensitive nature of our use case required us to optimize at
every step of the image generation. Moreover, the generalized
solutions mentioned above do not address the requirement to
manage or provision GPUs in real-time to perform semantic
segmentation.

III. ARCHITECTURE OVERVIEW AND WORKFLOW

The prime objective of EdgeEcho is to enable remote
echocardiography to efficiently respond to medical requests
from multiple users. Having this in mind, we build our EdgeE-
cho as a distributed system, as shown in Figure 1. Our solution
comprises four main components: probes, stream processor,
orchestrator, and analyzer node(s). Probes are wireless medical
devices that emit an array of ultrasound data that is used to
generate the video. The logic of digital beam-forming and
image generation is offloaded to the stream processor module,
which is located at the edge of the network for faster data
transfer. This operation is offloaded for two reasons - to
make handheld probes lightweight, and to retain the ability
to spawn them at a location closest to the probe. Next are
the analyzer nodes which are responsible for transforming
raw ultrasound images into segmented video streams. Finally,
the orchestrator is the core component of our architecture
as it is responsible for several operations essential in the
workflow, e.g., scaling up and down network resources, GPU
provisioning, and service discovery.

Fig. 1: EdgeEcho data flow overview, which depicts interac-
tions when a new request is served

Echo live-stream workflow. At the arrival of a new user
request, (1) the handheld probe sends a request to the nearest
edge stream processor to start the image streaming. The probes
can start communicating with the first idle Stream Processor
(SP) that they discover. (2) Once the connection is established,
the orchestrator component is notified, and the list of live
sessions to multicast is updated. The (3) orchestrator itself
exposes REST APIs that can be used by mobile applications or
websites so that the user can select and view the type of session
from a web interface. When a user selects a segmented stream
operation, (4) the orchestrator component checks if a node is
currently active and serves that request by forwarding it to one
active node. In the case of no nodes available, the orchestrator
creates a new node with enough resources to satisfy the session
request, sends the quest, and publishes its IP address to the
edge network so echo clients can subscribe to it.

IV. EDGEECHO COMPONENTS DESIGN AND OFFERED
FUNCTIONALITIES

Our EdgeEcho architecture is built using a Docker environ-
ment, which supports the four key components. In this section
we discusses the details of each of these components and how
they are organized.

A. Ultrasound Probe

The ultrasound probe is used to conduct the medical exami-
nation by placing it directly on the body of the patient. In this
paper, we simulate a handheld probe with networking capabil-
ities that imitate the state-of-the-art pulse-echo sequence. The
probe acts as both the emitter and receiver of the ultrasound
signal, and generates a bit array of pre-recorded ultrasound
data.

B. Stream Processor

We design our EdgeEcho so that each probe is associated
with a stream processor, a compute node that continuously
listens to an incoming stream of bits originating from the
probe. It runs the tasks offloaded by the probe, which is a
reliable technique for offloading tasks at the edge [15]. The
Stream Processor applies specified filters to the raw image



Fig. 2: Active tasks during stream processing. Our objective is
to offload some computational intensive stream analysis tasks
to the network edge.

data. The image is initially in the form of 8-bit intensity pixels.
The final value of each pixel is calculated based on the offset
of the RGB table and the filter being used,. Out of the various
processes in Figure 2 only the ones in green and yellow can
be offloaded. For this paper we re-implemented the processes
marked in yellow. They collect information sent by wireless
probes and form a raw ultrasound video, and apply some post-
processing effects.

C. Image Analyzer

Image Analysis is performed by the Analyzer Nodes (ANs),
which are containerized compute nodes requiring more re-
sources than Stream Processor nodes and preferably a GPU
for better performance, since serving the machine learning
algorithm. We compared some real-time image processing
algorithms that suited the requirements while considering the
following constraints – sparse data availability, the requirement
for high accuracy from a quite small training set. One example
of image operation regards the mark of the ventricles of
the human heart, which requires relatively low computing
resources. In particular, we use a two-stage framework [16]
that scans the images provided and generates proposals, and
secondly classifies the proposals and generates bounding boxes
and masks. This specific task requires manual annotation
because the automatically generated proposals cant detect
heart ventricles and instead detect the entire heart.

D. The Orchestrator

The orchestrator of our EdgeEcho is central to all operations
within the system. It has the collective state of the entire
system’s resources, such as available CPU/GPUs, prepackaged
segmentation applications, current and past sessions. Follow-
ing is an overview of the logical components of the operator
and how their interactions enable the desired features. The
session object stores all the necessary information about
serving a request, including information of nodes involved.
Moreover, the orchestrator stores the list of available wireless
probes in a probeList array. When a request for a session
arrives at the orchestrator, it sets up a stream processor to start
the ultrasound feed. One of the two operations is performed

depending on the type of the request - if a raw feed is
requested, it is sent to the client immediately; otherwise, it
starts collecting the necessary information for segmentation.
In the second case, the orchestrator checks the resources
required to start the prepackaged segmentation applications
corresponding to the request. Specifically, the orchestrator
gathers the currentSystemState object, which contains de-
tails regarding the available compute resources, and compares
it to the quantities requested by the current request. If adequate
resources are found, the orchestrator issues the command to
start a new Analyser Node (AN) by calling a construction
method. This method accepts two parameters: a reference to
the stream processor that must be connected to the AN, and
the ID image that can serve that request. While the Analyzer
Node starts up, the orchestrator blocks the resources. Finally,
the orchestrator shares the details of the live AN with the
client.

Along with these tasks, our orchestrator performs operations
that are not directly responsible for serving a user’s request,
but aim to provide resources that enable them. In particular,
three backend operations are run: resource discovery, content
caching, packet routing.
Resource discovery. This module is used to track the avail-
able resources. The orchestrator component of our EdgeEcho
system tracks the available resources in the system using
our Optimized Cuckoo Filter (OCF) [5]. This module of
the orchestrator serves two purposes. First, it creates virtual
machine or containerized images and ensures that the num-
ber of machine images does not exceed a predefined value.
Additionally, it tracks the maximum amount of resources by
maintaining a separate OCF, which throws an error when
capacity is reached.
Content Caching. Our system also enables serving segmented
media streams in real-time. The content of the video can
change depending on the type of segmentation algorithm being
used during a stream. The streams are stored temporarily in
a Least Recently Used (LRU) cache that can scale out even
on a different machine. In such a way, it can be extended or
flushed as the size of the OCF shrinks or expands.
Packet Routing. The last operation entails the routing of
packets. One or more nodes serve a user’s request in our
system. This subset of nodes is assigned to a network bridge
that (i) enables the communication between these nodes by
routing the packets appropriately, and (ii) connects the nodes
to the internet. Using packet sniffing, we monitor the packets
entering and leaving these virtual network bridges, saving the
metric in our OCF.

E. Optimized Cuckoo Filters for fast look-ups

Fast lookup is a primary requirement for our system and
is needed for all three backend functions of EdgeEcho. Tra-
ditional linear search algorithms are not optimal for querying
large key-stores in a dynamic distributed setting. They occupy
a considerable amount of space as the internal key-store
grows large and does not have a constant lookup time. For
this reason, we implemented Membership Testing (MT) [17]



via Optimized Cuckoo Filters (OCF) [5], which has constant
lookup time and has specific merits. For example, MT allows
us to check the existence of a key in a datastore very rapidly.
This data structure stores the hashes of keys currently present
in the datastore, which makes it lightweight. Every hashed
value is mapped to a key using a hash function, which is the
reason why lookup time is constant.

V. USE CASE: VENTRICULAR VOLUME DETECTION AT
THE EDGE

We use a convolutional deep learning model [18] that can
perform real-time instance segmentation. This model delivers
a decent framerate with an average of 30 fps. This method
of segmentation divides its tasks into two parallel subtasks -
(1) generating a set of prototype masks and (2) predicting
per-instance mask coefficients. Splitting a more complex task
into smaller individual tasks helps us towards our aim of
optimizing resource usage. We trained the aforementioned
model using the EchoNet-Dynamic dataset [19]: a dataset of
echocardiography videos and has labeled measurements of
features necessary for ventricular volume detection.

VI. EVALUATION

In this section we report the results of experiments to
evaluate the benefits brought by our system to enhance med-
ical ultrasound using edge computing. We first test how the
throughput for individual nodes of our EdgeEcho system is
affected when the number of concurrent nodes in the system
is increased. We consider two different options in the system:
a segmented version, where the segmentation processing is
applied over the collected images, and unsegmented version,
which does not enforce the image processing. Figure 3a de-
picts the average throughput of the system as increases number
of concurrent nodes. We can observe that, for more users, the
average throughput is cut down for the segmented version,
thus reducing the availability of bandwidth per node. Similar
conclusions can also be observed by considering the latency,
as shown in Figure 3b. The latency rises significantly for
nodes serving a segmented session, while in the unsegmented
session, the latency of the system is not affected by the number
of concurrent users in the system. This is due to the fact that,
for the additional processing as in segmentation algorithms,
the data to transmit among services is much higher than
compared to nodes running plain stream. These results are
extremely important to us to determine the set of resources
that are required to run our EdgeEcho without incurring in a
considerable downgrade of performance. We can thus conclude
that our current deployment supports around 20/25 nodes and
that, for more nodes, we need to increase also the available
bandwidth capacity.

Aside from system side metrics, to observe metrics from the
user’s perspective, we evaluate the time it takes for EdgeEcho
to serve an incoming request. We define the service time as the
time taken to serve the first byte since the request arrives. We
report this serve time in Figure 3c, studying its evolution for an
increasing number of requests. A session is considered served

(a) Effect of concurrency on
throughput of individual nodes.

(b) Effect of concurrency on la-
tency of individual nodes.

(c) Time to serve a user session
remains consistent for both ses-
sion types.

(d) FPS at the network edge vs.
single server

Fig. 3: (a) Throughput, (b) latency, and (c) service time
evolution when more nodes join the system. These results
suggest the minimum set of resources required to smoothly
run our EdgeEcho, i.e., 20/25 nodes in segmented sessions.
(d) Frames per second obtained by running the same model at
edge vs. on a single server. Edge computing clearly exhibits
advantages in real-time video streaming.

when the broadcast node is live. It must be noted that for a
segmented request, the system has to create both a streaming
and a segmentation server, and connect them to an output.
As observed in the graph, the service time remains constant
for the first few requests for both types of requests. When the
number of requests increases, the service time of unsegmented
is constant, while it increases for the segmented because the
resources are occupied by previous requests. Hence, similar
conclusions to the previous pair of graphs hold and we can
confirm our previous findings.

To assess the benefits brought by edge computing, we then
run the same semantic segmentation algorithm on a traditional
client-server application and on EdgeEcho. In Figure 3d we
compare the frames per second (FPS) of the segmented feed
in the scenarios, and we can clearly observe how running
the application at the edge leads to an increased FPS. This
is due to the location of the processing, which is closer to
the source of the streaming process, along with our optimized
edge management.

Additionally, EdgeEcho uses a smart cleanup mechanism
to remove idle nodes that have served their purpose, to
save resources for future requests. Once all the users have



(a) System nodes creation-
disruption evolution over time

(b) Throughput vs. Goodput dur-
ing a test run

Fig. 4: (a) Nodes are created and destroyed to release re-
sources. Orchestrator maintains optimal resource utilization by
retiring nodes whose session has been terminated. (b) Data
efficiency in terms of goodput/throughput ratio of the system
for a period of 40 hours with consistent requests of both types.

disconnected from a session, the nodes responsible for that
session become idle, and the orchestrator removes those nodes
to free up system resources. We record the lifespan of nodes in
our system for a 40-hour session, and we report the results in
Figure 4a. As it can be observed, the number of created nodes
follows the number of incoming requests and grows over time.
However, since the system cleans up idle resources, we can
also observe how the nodes are destroyed when the request
is satisfied. This leads to a number of active nodes that is
constantly limited, demonstrating that the system assures that
only necessary nodes are kept alive.

Lastly, we evaluate the number of errors encountered by
our EdgeEcho throughout our experiments which can occur
due either to the unavailability of GPU resources or applica-
tion malfunctions. Whenever a request is unsuccessful during
operation, data is wasted, and nodes need to be restarted. Our
engine takes care to monitor the status of the requests and,
when necessary, restart the process, always assuring that the
request is performed. In Figure 4b we summarize the amount
of data wasted (in megabytes) through a 40-hour operation of
our system. We can observe how the wasted data is a very
small portion compared to the goodput and that the additional
control traffic is negligible.

VII. CONCLUSION

This paper presented EdgeEcho, a system that enables
remote echocardiology, with segmentation capabilities and the
ability to serve parallel requests. We discussed our implemen-
tation and optimizations that enable us to serve segmented
ultrasound streams at a decent time to serve. We demonstrated
the gain in FPS by running the same semantic segmentation
algorithm on our system vs. a monolithic client-server setup.
Finally, we described other performance aspects of our system
like downscaling, throughput, and latency. In the future, we
plan to evaluate some static aspects of our system, e.g., the
exact amount of resources needed for a particular session type.
Further, we will improve EdgeEcho by making the system

more fault-tolerant by decentralizing the backend operations
of the orchestrator.
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