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A Multivariate Adaptive Sampling Scheme

for Passivity Characterization

of Parameterized Macromodels

Marco De Stefano, Stefano Grivet-Talocia

Dept. Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract—We introduce a multivariate adaptive sampling
algorithm for the passivity characterization of parameterized
macromodels. The proposed approach builds on existing sam-
pling methods based on adaptive frequency warping for tracking
pole-induced variability of passivity metrics, which however are
available only for univariate (non-parameterized) models. Here,
we extend this approach to the more challenging parameterized
setting, where model poles hence passivity violations depend on
possibly several external parameters embedded in the macro-
model. Numerical examples show excellent performance and
speedup with respect to competing approaches.

I. INTRODUCTION

Behavioral models of complex interconnects are now a

commodity in modern Signal and Power Integrity design veri-

fication flows. Numerical simulation of complex large-scale

interconnects with their terminations greatly benefits from

reduced-complexity macromodels of devices of subsystems,

whose extraction is performed through dedicated tools from

CAD vendors. These tools are now mature and robust [1].

A different scenario applies to early stages of the design,

where different solutions, layouts, component choices are

tested in order to choose the optimal configuration. In this

situation, different and independent macromodels must be

extracted anytime the system under modeling is modified. It is

thus beneficial to construct scalable multivariate macromodels

that embed not only frequency dependence, but also one or

more design parameters in a compact closed form. Once ex-

tracted from field solver data, such models can be instantiated

for any arbitrary value of these parameters directly through

a parameterized SPICE netlist, allowing significant savings in

computing and human time resources.

Multivariate macromodeling has been revitalized in recent

years, and several major improvements have been documented.

These include an appropriate model structure for representing

parameter-induced variability in the model poles [2], [3],

efficient uniform stability constraints [4], multivariate passivity

verification and enforcement [5], and good scalability to large

port counts [6]. One aspect that still deserves attention is

the passivity verification, which is essential for setting up

a passivity enforcement loop that corrects model violations

to ensure time stability in system-level transient simulations.

Although advanced solutions exist for multivariate passivity

verification, they are characterized by large computational

complexity and poor scalability with model size and especially

number of independent parameters. This is essentially due to

the need of resorting to repeated eigensolutions of suitably-

defined Hamiltonian matrices/pencils.

In this work, we propose a novel multivariate adaptive

sampling scheme, which generalizes the method of [6] to

the multivariate case. The main idea is to completely avoid

Hamiltonian matrices in order to reduce runtime. Passivity

violations are detected by a two-step adaptive sampling that: i)

tracks fast variations through a pole-based initial subdivision

of the frequency axis into nonuniformly-distributed subbands,

where local variations are predictably smooth; ii) processes

each independent subband through a mesh refinement based

on hierarchical tree subdivision. The results of [6] show that

with a proper implementation, this scheme is at least as

accurate as Hamiltonian-based verification methods, providing

much improved scalability for large-scale models. Here, we

extend this approach to the parameterized setting, where fast

variations need to be tracked not only along frequency, but

throughout a possibily high-dimensional parameter space.

II. TWO-STEP MULTIVARIATE ADAPTIVE SAMPLING

Let us consider a parameterized macromodel with transfer

function H(s,ϑ) ∈ C
P×P , where s is the Laplace variable and

ϑ = [ϑ1, ϑ2, ..., ϑρ]T collects a set of ρ independent parame-

ters such as geometrical dimensions, material characteristics,

temperature, etc. defined within a parameter space

Θ = [ϑ1
min, ϑ

1
max]× [ϑ2

min, ϑ
2
max]× · · · × [ϑρ

min, ϑ
ρ
max]. (1)

It is assumed that this model is available from one of the

many available multivariate model extraction methods, such

as [2], [3], [4]. The proposed approach does not assume a

particular model structure and is thus of general applicability

as a post-processing tool for passivity verification. The only

two requirements are: i) evaluation of H(s,ϑ) for any given

(s,ϑ) is fast, and ii) once ϑ is fixed, the (parameter-dependent)

poles pn(ϑ) of the model in a standard pole-residue expansion

H(s,ϑ) =

n̄
∑

n=1

Rn(ϑ)

s− pn(ϑ)
+R0(ϑ) (2)

are easily extracted. Note that (2) with the explicit param-

eterization of the poles is not appropriate, and usual model

structures embed pole variability in implicit form through

a parameterized Sanathanan-Koerner or state-space/descriptor



form [5]. Assuming a model with uniformly stable poles

Re {pn(ϑ)} < 0, ∀ϑ, passivity holds if the passivity metric

φ(ω,ϑ) ≥ 0 ∀ω ∈ R ∀ϑ ∈ Θ (3)

where, depending on the model representation,

φ(ω,ϑ) =

{

1− σmax{H(jω;ϑ)} scattering

λmin{H(jω;ϑ) +H(jω;ϑ)H} immittance

(4)

where σmax and λmin are the largest singular value and the

smallest eigenvalue, respectively. The proposed approach aims

at detecting all negative local minima of φ(ω,ϑ), i.e. the

worst-case local passivity violations.

A. Tracking pole-induced variability along frequency

Let us start by freezing the parameters as ϑ = ϑα, and

let us denote the poles of the univariate model H(s,ϑα) as

pαn = σα
n ± jωα

n . Following [6], we define the control points

{ω̂α
ν } = C

(

n̄
⋃

n=1

R
⋃

r=−R

{

ωα
n + σα

n tan
rπ

2(R+ 1)

}

)

, (5)

where operator C removes negative samples and sorts in

ascending order, and where R is a small integer. We split the

frequency axis into disjoint subbands

Ω = [0,+∞) =

ν̄(α)−1
⋃

ν=0

Ωα
ν , Ωα

ν = [ω̂α
ν , ω̂

α
ν+1) (6)

where ω̂α
0 = 0 and ω̂α

ν̄(α) = +∞. We refer to [6] for the minor

modifications that are required to handle real poles.

A nonlinear frequency warping is then performed by ap-

plying a piecewise linear and invertible change of variable

ζα = Wα(ω) mapping each subband as

Ωα
ν

Wα−−−→ Ξα
ν = [ν, ν + 1) (7)

As discussed in [6], this change of variables plays the role

of “flattening” sharp variations in the new domain ζα. Since

the control points track the peaks of the resonance curves

associated to the poles, which are the main responsible for

fast variations in the singular value or eigenvalue trajectories,

it is argued that the passivity metric

ηα(ζ
α) = η(ζα,ϑα) = φ(W−1

α (ζα),ϑα) (8)

has local variations that are almost uniform in each normal-

ized subband Ξα
ν . The advantages of this transformation are

graphically illustrated in Fig. 1.

B. Tracking pole-induced variability in the parameter space

The above frequency transformation depends on the choice

of a specific parameter value ϑα and is valid only at this

particular point. The next step towards tracking the variability

of the passivity metric throughout parameter space is to

choose a set of values {ϑα, α = 1, . . . , ᾱ} that cover the

entire parameter space, and that will be used to discretize the

Fig. 1. Passivity metric in the natural frequency domain (top; solid line: fine
sweep, dots: proposed scheme in a fast/soft mode [6]) and after frequency
warping (bottom), resulting in a better resolution in detection of local minima.

continuous parametric dependence of the model poles. In this

preliminary work, we introduce a tessellation

Θ =
ᾱ
⋃

α=1

Θα (9)

where Θα are disjoint hyper-rectangles from a uniform subdi-

vision of each direction θℓ into µℓ intervals for ℓ = 1, . . . , ρ.

This choice leads to a total number ᾱ =
∏ρ

ℓ=1 µℓ. Other

choices are possible, e.g. through high-dimensional simplexes.

We denote with ϑα the centroid of each subdomain Θα.

Figure 2 provides a graphical representation of this tessel-

lation for the one-dimensional case ρ = 1, where both Θ
and Θα are intervals. The vertical solid black lines represent

the control points, which provide a piecewise constant dis-

cretization throughout Θα of the resonance frequencies of the

poles and their induced samples as defined in (5) (thick red

lines), evaluated at ϑα. Each rectangle in the figure represents

a (ρ+ 1)-dimensional hyperrectangle

Ψα,ν = Θα × Ωα
ν (10)

The size of these subdomains and their distribution along the

frequency axis tracks the fast variations of the passivity metric

under investigation.

C. Hierarchical subdomain sampling

The next step is an independent processing of all individual

subdomains Ψα,ν . The total number of these subdomains is
∑ᾱ

α=1 ν̄(α), which can be large. Since all these subdomains

will be processed independently, the proposed scheme is

straightforward to implement on a parallel computing archi-

tecture, this is left for future investigations. Each subdomain

is mapped to the unit hypercube through a basic rescal-

ing/shifting operator Sα,ν

Ψα,ν

Sα,ν

−−−−→ X = [0, 1]ρ+1, (11)
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Fig. 2. Adaptive subdivision of parameter space Θ (vertical axis) for ρ = 1
and frequency (horizontal axis). See text for details.

and a local search for the global minimum of the passivity

metric ξ(x) = η(S−1(x)) with x ∈ X is performed.

The main tool is a (ρ+1)-dimensional M -tree [7], which is

refined through scales h with resolution M−h−1 along each

direction ℓ = 1, . . . , ρ + 1. Refinement follows the simple

rule of exploring the most promising leaf. At each scale h of

the tree the target function ξ is evaluated along one direction

ℓ at M children points xℓ
i , and the one with the smallest

value of ξ is selected for a further refinement along the next

direction ℓ+ 1. This operation is repeated until all directions

of expansion have been explored. When an expansion cycle

has been completed (ℓ = ρ + 1), we determine if the scale

of the tree h must be increased or if a restart is needed (i.e.

a new sequence of expansion is initialized). This decision is

triggered by comparing the values attained by the passivity

metric to the threshold, through a multivariate generalization

of [6]. The algorithm stops when the maximum number of

evaluations (budget) is reached.

The refinement can be setup in two modes [6]: a fast mode

providing a binary answer on whether the model is passive

or not, in which iterations are stopped as soon as a negative

value of the passivity metric is found; an accurate mode that

continues iterations until an estimate of all negative local

minima of ξ are found within a prescribed tolerance.

III. RESULTS

We consider a database of 36 models of integrated de-

vices (capacitors, inductors and transformers), half depending

on ρ = 1 (cases 1–18) and ρ = 2 (cases 19–36) parameters.

Passivity of all models was tested using the multivariate

Hamiltonian check of [5] and the proposed algorithm. The re-

sults of both approaches are documented in Fig. 3. This figure

shows that for all cases except one (#32) both approaches were

in agreement in detecting passivity violations. For case 32, the

Hamiltonian check failed to detect a passivity violation, which

was instead found by proposed approach. In some cases (#8

and #20) the local minimum estimate provided by adaptive

sampling resulted more accurate.

The real advantages of proposed adaptive sampling scheme

become evident when considering runtime. The cumulative

CPU time for running all passivity checks on univariate models

(ρ = 1) was 685 seconds for the Hamiltonian test and 54

seconds for proposed approach. For bivariate models (ρ = 2),

Fig. 3. Worst-case passivity violations identified by the standard Hamiltonian
(blue) and proposed (red) passivity checks for all 36 testcases.

Fig. 4. Adaptive sampling of φ(ω,ϑ) for a scattering model (zoomed view
with a linear color scale).

total runtime was 6660 and 308 seconds, respectively, resulting

in an average speedup of 13× and 22×. An illustrative case is

depicted in Fig. 4, which represents the passivity metric for a

univariate model (ρ = 1), highlighting the samples evaluated

by proposed algorithm. As expected, these samples crowd near

the local minima.

IV. CONCLUSIONS

This paper presented a two-step multiscale adaptive sam-

pling scheme for passivity characterization of parameterized

macromodels. For these structures, there are no purely al-

gebraic tools enabling detection of passivity violations. The

proposed method was able to correctly identify such violations

on 36 models of integrated devices, in much faster runtime

than competing approaches based on Hamiltonian matrices.
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