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ABSTRACT 1 
Roads are designed without considering the improved performance of modern vehicles and the new 2 
onboard technologies available for assisted driving. In addition, vehicles frequently travel at speeds which 3 
exceed the maximum considered in road design. Hence, the need for speed and safety related 4 
countermeasures (e.g., field control, mobile or fixed speed cameras, traffic calming measures) is evident. 5 
However, such countermeasures are proving ineffective, and the proportion of crashes which are 6 
speed-related remains significant. 7 

This investigation is aimed at the development of a new Intelligent Speed Adaptation (ISA) 8 
system based on the available sight distance (ASD). In conditions of poor sight distance available, the 9 
system may (i) inform drivers when they are travelling at inappropriate speeds in conditions of poor 10 
visibility, or (ii) generate warning sounds to the same effect, or (iii) intervene directly and compel drivers 11 
to adopt the speed which is most appropriate to the particular ASD. In this methodological paper, the 12 
functionality of the new ISA system has been tested at the driving simulator of the Politecnico di Torino 13 
(Italy). The estimation in the virtual environment of the ASD has been validated and tested successfully. 14 
Future experimental investigations will be devoted to assessing the effectiveness of the system on driver 15 
speed behavior and decision making. 16 
 17 
Keywords: speed management, intelligent speed adaptation, driver behavior, available sight distance, 18 
stopping distance.   19 
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INTRODUCTION 1 
Although vehicles and roads form part of the same transportation system, their design and development 2 
follow different disciplines, with the result that opportunities for greater cooperation at the design stage of 3 
the two components are rare (1,2). One of the biggest issues in the highway system is that of speed 4 
management. Speed is the factor that more than any other influences design (i.e., the design speed), traffic 5 
operations (i.e., the operating speed), and safety (i.e., speed at collision).  6 

In traffic safety literature, the relationship between speed and crash frequency/severity is 7 
established and can be broken down into pre-event and event phases (3). In the first, the increase of speed 8 
corresponds to a higher probability of crash occurrence (i.e., the higher the speed, the longer the distance 9 
required to stop the vehicle and the lower the probability of avoiding collisions). Data and models 10 
reported in scientific literature support this evidence (4,5). In the second, damages to vehicle and injuries 11 
to the road users involved are proportional to the kinetic energy (E) released in the collision, and 12 
consequently to the squared value of the pre-crash speed. 13 

To discourage excessive speeds, police and automated enforcement (e.g., speed cameras) and 14 
engineering solutions (e.g. road signs and markings, rumble strips, speed humps, road narrowing, etc.) 15 
may be adopted (6). However, these measures are only partially effective (7-9), with any positive effects 16 
limited to those road sections and immediate surroundings where the measures were adopted (10). 17 
Literature confirms that such systems prove ineffective in locations distant from the treated ones due to 18 
migration phenomena (6,11-13). 19 

In contrast, onboard vehicle technologies may be more effective and provide better results since 20 
they remain continuously in operation on the vehicle. Carsten and Tate (14) predicted several positive 21 
effects with Intelligent Speed Adaption (ISA) systems on new vehicles, ranging from a reduction in both 22 
crash frequency and severity, and a decrease in fuel consumption. ISA can act in a number of ways: it   23 
can (i) inform, (ii) warn the driver, or (iii) intervene directly on pedals and temporarily prevent the driver 24 
from making any speed decisions (15). Since intervening ISA systems can be deactivated (7), different 25 
speed behaviors emerge between drivers who leave the system operational and those who deactivate it. 26 
Evidence from Lai and Carsten (16) indicates that those who prefer to deactivate it get the best benefits if 27 
they use it. 28 

 29 
PROBLEM STATEMENT 30 
Current ISA technologies use speed databases or recognize vertical signs bearing speed limit information 31 
for a roadway segment (9). The posted speed limit on a road segment is based on general values from 32 
national highway rules and, more specifically, on the road category and is designed to guarantee mobility 33 
and safety for all road users and an overall acceptable level of environmental protection (17). The 34 
established reference limits can then be modified at a local level in response to factors that increase the 35 
crash risk, i.e. wet/icy road pavement conditions, limited visibility, conflicts with other road users, 36 
hazardous conditions along the roadside (18,19). However, differences between operating and posted 37 
speeds may be due to limited credibility of traffic signals (20,21). Some road factors may reduce the 38 
driver’s risk perception and promote higher speeds (e.g., wider lanes, a high number of lanes, high 39 
visibility conditions) with the result that a consistent number of drivers exceed the speed limit.  40 

In many other cases, the presence of permanent or temporary sight obstructions limits the sight 41 
distances available to the driver, with the result that he/she has to decide on the best speed to adopt to 42 
maintain the distance necessary for a sudden emergency stop (i.e., the stopping distance, SD) lower than 43 
the visible distance along the future trajectory (i.e., the available sight distance, ASD). When SD < ASD, 44 
the driver operates under safe visibility conditions. Accordingly, when negotiating a curve with limited 45 
visibility, drivers may perceive a risk due to unknown conditions along that part of the curve that they 46 
cannot see.  47 

However, the sight distance assessment is not accounted for by some road agencies in the 48 
evaluation of a safe speed limit, with the result that even drivers who are respecting the posted limit can 49 
drive unsafely (22). Furthermore, in several temporary or new road scenarios, permanent sight 50 
obstructions may further reduce the ASD with respect to the designed value (23,24). In road scenarios 51 
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with limited ASD, drivers have the opportunity to reduce their speed to safer levels. Bassani et al. (25) 1 
observed that some drivers use compensatory strategies in response to the perceived risk of sight 2 
limitations to let SD < ASD: they reduce their speed to restrict the SD, or move laterally to benefit from an 3 
increased ASD. However, a significant percentage of drivers do not perform any compensatory maneuver 4 
and, thus, they negotiate the curves at an excessive speed and travel under partially or totally unsafe sight 5 
conditions (SD > ASD). One explanation for excessive speeds at road curves can be a false perception of 6 
the roadway ahead. Table 1 exhibits the percentage of curve negotiations under safe, partially, and totally 7 
unsafe conditions and the range of compensatory strategies exhibited by a group of test drivers in the 8 
driving simulation study from Bassani et al. (25). The terms are defined as follows:  9 

 10 
(i) safe conditions, when drivers travel under good visibility (i.e., above sight distance 11 

criteria) along a curve with ASD always > SD;  12 
(ii) partially safe conditions, when drivers enter and exit a curve with ASD > SD but 13 

encounter poorer visibility conditions (ASD < SD) at the middle section of that curve 14 
(i.e., below sight distance criteria), albeit the visibility conditions might be sufficient for 15 
safe transit when one considers that sight distance equation assumptions have a generous 16 
margin of safety; and  17 

(iii) unsafe conditions, when drivers negotiate a curve with ASD < SD along the full length of 18 
the curve (25). 19 

 20 
TABLE 1 Driver choice of compensatory strategy combinations considering visibility conditions 21 
along curves with limited sight distance available (25). 22 

Visibility condition Strategy 
Lateral Shift Speed Reduction Both None 

Safe (ASD > SD) 11.5% 36.9% 3.5% 48.1% 
Partially Safe 18.9% 40.3% 6.6% 34.1% 

Unsafe (ASD < SD) 5.8% 49.3% 26.1% 18.8% 
Total 14.0% 38.8% 5.9% 41.3% 

 23 
RESEARCH OBJECTIVE 24 
This work presents the development of a new ISA system based on road geometrics and sight conditions. 25 
The new ISA functionality is based on an algorithm developed by referring to the following condition for 26 
road design (26,27): 27 

 28 
( ) ( ), ,SD v f i ASD s≤       (1) 29 

 30 
where SD is the stopping distance which depends on vehicle speed (v), the available friction between tires 31 
and pavement (f), and the longitudinal grade (i). In Equation 1, ASD is the real-time available sight 32 
distance at a specific station (s). Equation 1 is used by road designers to assess safety conditions in the 33 
geometric design of highways (26,27). 34 

In this study, the new ISA is proposed in three variants following the classification compiled for 35 
the Advanced Driver Assistance System (ADAS) (15,28,29): (i) informative and (ii) warning ISA 36 
operations, which enable drivers to maintain a safe speed via the activation of visual or acoustic signals 37 
respectively whenever the vehicle exceeds the speed limit; and (iii) an intervening ISA operation in which 38 
the vehicle speed is controlled by ensuring that the maximum possible pressure that may be exerted on the 39 
throttle pedal is calibrated to prevent the vehicle from exceeding the threshold speed limit, with this speed 40 
limit displayed to the drivers. 41 

The main aim of this manuscript is to present the initial activities related to (i) the implementation 42 
of the sensors able to detect the ASD in the virtual environment and its validation, (ii) the development of 43 
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the algorithm for three ISA variants, (iii) the implementation of the MATLAB Simulink® co-simulation 1 
framework for the application of the ISA variants at the driving simulator, and (iv) the test of the ISA 2 
variants at the driving simulator. 3 

Applications for real vehicles of this new ISA technology are possible due to the simultaneous 4 
research works already carried out on the dynamic evaluation of the available sight distance. For example, 5 
Jung et al. (24) evaluated the farthest point visible from the driver’s point of view with lidar point cloud 6 
data. They reconstructed the 3D space visible as the space reachable with a linear line of sight from a 7 
moving observer. Further updates of the system that they developed will facilitate the transfer of the 8 
system here from a virtual to the real road environment. 9 
 10 
METHODS 11 
Apparatus 12 
This study was conducted with a fixed base driving simulator equipped with a force-feedback steering 13 
wheel, pedals, dashboard, adjustable seat, and manual gearbox. Three 32-inch screens with a resolution of 14 
1920×1080 pixels having a frequency of 60 Hz were employed to project the simulated environment onto 15 
a 130° horizontal field of view. A speedometer was also inserted into a dashboard placed behind the 16 
steering wheel. Moreover, a 5.1 surrounding sound system provided realistic car engine, road, wind, and 17 
other environmental background noises. SCANeR Studio® software was used for the development of 18 
simulated road scenarios and to run the simulation. Previous studies involving this simulator found 19 
relative validation for the driver speed decision (30,31), for trajectories (32), and driving operations (33). 20 

The software provides the module and tools for the sensor simulation within the virtual 21 
environment. In this study, a “virtual sensor” was mounted in the vehicle having a 120°×60° field of view 22 
(viewing angle) in the horizontal and vertical directions respectively. This virtual sensor provides 23 
complete information on the visibility of the road surface in the virtual environment with respect to the 24 
road markers placed along the lane centerline. The distance between the farthest marker visible from the 25 
virtual sensor and the vehicle provides the ASD (Figure 1a). 26 

 27 
Figure 1 Road Sensor points on the alignment visible from the vehicle (a), and interaction between 28 
SCANeR Studio® and MATLAB Simulink® co-simulation framework (b). 29 
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There are two factors to consider regarding the positions of the road markers: (i) number, and (ii) 1 
distance between consecutive markers. The distances between the vehicle and the markers were extracted 2 
and further analyzed in the MATLAB Simulink® model to estimate the ASD.   3 

 4 
Algorithm 5 
For the application of Equation 1, the driver simulator software was co-simulated with MATLAB 6 
Simulink® in a ‘Driver In the Loop’ (DIL) model (34). The vehicle dynamic, road environment, and 7 
sensor data are transferred in real-time from SCANeR Studio® to Simulink® as per the co-simulation 8 
workflow framework between the two pieces of software (Figure 1b). 9 

The data execution frequency of MATLAB Simulink® model was set at 100 Hz, while a lower 10 
frequency (20 Hz) was set for the output message sending frequency to avoid network overload. As 11 
mentioned previously, the three ISA variants were developed in MATLAB Simulink®. 12 

 13 
Information (ISA variant-1) and Warning (ISA variant-2) operation 14 
The first two ISA variants operate by comparing the ASD and SD values as elaborated previously in 15 
Equation 1. Since the ASD is estimated by processing the sensor data in real-time using MATLAB 16 
Simulink®, a data treatment block was included in the Simulink model to locate the farthest visible point 17 
along the driving lane centerline. 18 

The exact real-time value of SD in the case of an emergency stop was estimated by assigning the 19 
following equation in the Simulink model: 20 

 21 

( )
2

2
vSD v

g f i
τ= ⋅ +

⋅ ±
      (2) 22 

 23 
The equation measures the most probable distance required to stop the vehicle considering two 24 

components: the lag distance, used to perceive and react to commands, and the braking distance to a 25 
complete vehicle stop. In Equation 2, v is the real-time vehicle speed in m/s, τ is the perception and 26 
reaction time in s (estimated with 2.8 - 0.01 · V, with V the speed in km/h), f is the tire-road friction 27 
coefficient, g is the gravitational acceleration, and i is the longitudinal grade of the road (27). Regarding 28 
the tire-road friction coefficient, safe values for wet pavement conditions provided by the Italian standard 29 
as a function of vehicle speed were used. It is worth noting that the Italian policy considers that when a 30 
significant amount of lateral friction is used for vehicle stability (e.g., along tight curves), the available 31 
longitudinal friction is reduced. In particular, the standard assumes a reduction in longitudinal friction 32 
consistent with the friction ellipse concept. Finally, the friction values used in Equation 2 were based on 33 
real-time vehicle speed through the Simulink model. 34 

In the case of Informative ISA variant-1, an icon recommending a reduction in speed was 35 
displayed in front of the driver (i.e., on the windscreen). With the auditory Warning ISA variant-2, a 36 
sound was emitted to indicate that the ASD value had fallen below the estimated SD (Equation 2). 37 
 38 
Intervening (ISA variant-3) operation 39 
The Intervening ISA (variant-3) operation prevented the vehicle exceeding a threshold speed limit (vL) 40 
that satisfies Equation 1. For this reason, the threshold speed limit along the road in real-time was 41 
calculated by replacing the SD with the ASD in Equation 2, and the speed limit (vL) was defined as 42 
follows: 43 
 44 

( ) ( )
22

L
ASDv g f i

g f i
τ τ
 ⋅

= − + ⋅ − + 
+  

    (3) 45 

 46 
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where the friction coefficient (f) and perception reaction time (τ) were calculated using real-time vehicle 1 
speeds. The intervening model operates in two additional ways: (i) it activates if the vehicle speed is 2 
higher than the estimated threshold speed at which point it automatically decreases the speed steadily and 3 
gradually back to the threshold limit, and (ii) if the driver accelerates the vehicle from a safe condition to 4 
an unsafe condition it maintain the vehicle speed at the vL value. 5 

 6 
 7 

ISA VALIDATION 8 
A two-lane road alignment with a lane width of 3.5 m and a shoulder width of 0.5 m was designed to test 9 
the model. The horizontal alignment was made up of eleven curves and designed in such a way that each 10 
curve was followed by a smaller radius as listed in Table 2. The vertical alignment was assumed to be flat 11 
(i.e., null gradient). The horizontal arcs were placed between two transitional spiral curves designed 12 
according to the Italian Geometric Design Standards (27). To limit the ASD values along curves, a sight 13 
obstruction in the form of a series of 950 mm high safety barriers was placed along the inner roadside of 14 
each horizontal curve. As illustrated in Figure 2, the barriers were placed at the outer edge of the road 15 
shoulder at 4 m from the road centerline and only mounted along the inner side of rightward (RW) and 16 
leftward (LW) curves. 17 

The virtual sensor was mounted and positioned at the vehicle center of gravity. The height of the 18 
virtual sensor was 1.1 m from the road surface, consistent with the prescription from geometric policies 19 
(26,27). For validation purposes, the vehicle trajectory was fixed on the center of the driving lane to 20 
obtain the ASD as per the road guidelines (26,27). To reduce the noise in sensor data and to attain 21 
accurate ASD values, the maximum measured distance between the virtual sensor and the road markers 22 
was set at 300 m, which is greater than the ordinary SD values typically encountered in road design. The 23 
longitudinal spacing between the road markers was set at 3 m (Figure 1a). 24 

For model validation, the minimum ASD for the curve is obtained when the sight line is placed 25 
along the curved section of the road and computed as follows: 26 

 27 

2 cos 1 = ⋅ −  

dASD R ar
R

      (4) 28 

 29 
where R represents the radius of the curve and d is the distance from center of the driving lane to the sight 30 
obstruction (road barrier) as illustrated in Figure 2.  31 

 32 
TABLE 2 Comparison between minimum values of actual ASD (estimated using Autocad®) and 33 
ASD values computed with the Simulink model for curves in rightward (RW) and leftward (LW) 34 
direction (d is the distance from the center of the driving lane to the road barrier). 35 

Horizontal 
Curve 

R 
[m] 

Length 
[m] Dir. d 

[m] 
Available Sight Distance [m] 

Autocad® Sensor Difference 
Curve-1 700 205 RW 2.25 112.2 111.3 -0.9 
Curve-2 550 185 LW 5.75 159.2 158.7 -0.5 
Curve-3 450 170 RW 2.25 90 89.9 -0.1 
Curve-4 350 150 LW 5.75 127 127.8 0.8 
Curve-5 250 130 RW 2.25 67.1 68.2 1.1 
Curve-6 350 150 LW 5.75 127 127.8 0.8 
Curve-7 265 135 RW 2.25 69.1 68.3 -0.8 
Curve-8 190 120 LW 5.75 93.7 93.3 -0.4 
Curve-9 130 105 RW 2.25 48.4 49.3 0.9 
Curve-10 85 90 LW 5.75 62.9 62.5 -0.4 
Curve-11 50 75 RW 2.25 30.1 29.1 -1 

 36 
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 1 
Figure 2 Cross-section of the roadway for RW and LW direction curves (h = height of road barrier; 2 
Lw = Lane Width; Sw = Shoulder Width; d = Distance from center of driving lane to the road 3 
barrier). 4 
 5 

In cases where the driver point of view and/or the farthest visible road marker (Figure 1) fell 6 
outside the circular section of the curve, the actual ASD values were calculated manually for a 2D road 7 
environment using AutoCAD® software on the basis of the road’s known geometrical features. The ASD 8 
was estimated by considering the position of the observer and target location at the lane centerline. The 9 
actual ASD values were estimated along the alignment having a longitudinal spacing of 5 m close to 10 
circular arcs and 15 m at straight roadway sections. The actual ASD was compared with the continuous 11 
values obtained from the Simulink model and it was observed that the Simulink model generated similar 12 
and precise ASD values as illustrated in Figure 3. The minimum ASD value for each curve was also 13 
calculated as illustrated in Table 2. In most cases, the absolute difference between actual ASD and 14 
estimated ASD is lower than 1 m along circular arcs.  15 
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 1 
Figure 3 Comparison between ASD values for ISA validation provided by virtual sensors in SCANeR 2 
Studio® and actual ASD values from AutoCAD®. 3 
 4 
ISA TESTING 5 
After completing the validation process, the ISA model was tested across the three different ISA variants. 6 
The driver received visual information on actual vehicle speed and the recommended safe speed based on 7 
the ASD via a display of static images showing safe and unsafe speed icons as shown in Figure 4. The 8 
visual information was located on the bottom left-hand corner of the main display. The visual information 9 
was positioned within 15° of the expected line of sight so that it would not distract drivers from the road 10 
ahead (35). In the case of ISA variant-2, a continuous auditory warning (i.e., beep) was provided as soon 11 
as the driver adopted unsafe speeds. The ISA variant-3 works with an intervening operation which either 12 
prevents the vehicle from exceeding the threshold speed limit, or intervenes automatically to decrease the 13 
vehicle speed gradually and smoothly back down from an unsafe speed to the threshold speed limit. 14 
During this operation, an icon is displayed on the main screen to inform the driver that an intervening 15 
operation has been activated by the system, as shown in Figure 4. To compare the results, the driver also 16 
drove under the base condition scenario without the aid of any kind of information, warning, or 17 
intervention. 18 

In addition, the model is capable of estimating the ASD with respect to the longitudinal and the 19 
lateral position of the vehicle. Figure 5 demonstrates the difference in ASD due to the variation in the 20 
lane gap (i.e., the lateral distance from the lane centerline) during the simulation. For instance, at station 21 
1540 m the difference in ASD for ISA (Information) and ISA (Intervening) was equal to 5 m due to the 22 
respective lane gaps of -0.54 m and +0.50 m. Minor differences in ASD are to be expected, as already 23 
confirmed in Bassani et al. (25) who demonstrated that drivers benefit from a greater ASD when they 24 
increase the lateral distance from the sight obstruction.  25 

 26 
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 1 
Figure 4 Examples of visual information provided to the driver with icons for ISA variant-1 2 
(Information), ISA variant-2 (auditory Warning), and ISA variant-3 (Intervening). 3 
 4 

 5 
Figure 5 ASD comparison with curves affected by the lateral position of the vehicle. A detailed 6 
representation of the different curves is provided between station 1480 and 1620 m. 7 
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Figure 6 provides the ASD and SD values obtained in real-time during model testing as a function 1 
of the longitudinal and lateral position of the vehicle on the road alignment. At a subsequent stage, the 2 
model converted the real-time ASD values (Figure 6) into safe/suggested speed values to implement the 3 
ISA variants as shown in Figure 7 as per Equation 3. Although the ASD profile changes as a function of 4 
the lateral position of the vehicle, the ASD and safe speed values in Figure 6 and Figure 7 are only 5 
plotted for the ISA-intervening scenario.    6 

In the first part of the road alignment with large curve radii (curves 1 and 2), the safe speed values 7 
are relevant due to high ASD values (here limited to 300 m), so there is no interaction between vehicle 8 
speed and safe speed (Figure 7). When the ASD starts decreasing along the alignment with shorter radius 9 
curves, the interaction between vehicle speed attained by the driver and suggested safe speed by the 10 
model is observed. Figure 7 shows a decrease in speed in the case of an intervening operation under 11 
unsafe conditions (v > vL). When the information and auditory warning ISA systems are in operation, 12 
drivers tend to reduce their speed to attain safer conditions. These observations support the robustness and 13 
effectiveness of the ISA system proposed here to provide information to the driver and to have feedback 14 
under unfavorable sight conditions.  15 

In the case of Intervening operation (variant-3), the ISA system successfully and smoothly 16 
decreases the speed by disconnecting the acceleration pedal when v > vL. Although it is evident that the 17 
model was not able to fully reduce the speed to the threshold speed limit, the authors will improve the 18 
algorithm by increasing the deceleration rate as per the activation of an automatic braking function in 19 
further testing. 20 

The ASD and speed profiles were generated in real-time with the frequency of the Simulink 21 
model set at 100 Hz. After comparing the input and output data from the Simulink model, no potential 22 
delay or over writing of data was observed which suggests that the response time of the model was less 23 
than 1 centi-second (1/100th of a second). A lower frequency (20 Hz) was set for the output message 24 
sending frequency to avoid any network overload. 25 
 26 

 27 
Figure 6 Comparison between ASD and SD profiles obtained in four different drives with and 28 
without the ISA system. 29 

 30 
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 1 
Figure 7 Comparison between the safe speed from Equation 3 and the speed values obtained from 2 
testing under base conditions and the three ISA operations. 3 
 4 
CONCLUSIONS, IMPLICATIONS AND FUTURE PERSPECTIVES 5 
According to design standards (26,27), along roads with permanent sight obstructions (e.g., traffic 6 
barriers, vegetation, buildings, and other objects along the roadside) the available sight distance (ASD) 7 
must be greater than the distance required for a complete stop (i.e., the stopping distance, SD) in front of 8 
an unexpected obstacle, e.g. a stationary vehicle, a boulder, a fallen tree, a pedestrian crossing the lane. 9 
Unfortunately, this basic safety prescription included in current design standards is not always guaranteed 10 
in real road scenarios. Moreover, sight conditions along a road typically change due to the presence of 11 
several fixed sight obstructions that continuously alter the ASD from the driver's point of view. A 12 
restricted ASD is commonly perceived as inherently risky due to the potential presence of an unknown 13 
obstacle ahead, and in cases where the driver is traveling at high speeds, he/she might not be able to stop 14 
the car from hitting such an obstacle. 15 

The aim of this work was to develop a virtual prototype for a novel intelligent speed adaption 16 
(ISA) system which would be effective in controlling vehicle speed along stretches of road with low ASD 17 
values. As it stands currently, the system can provide (i) onboard information to the driver, or (ii) issue 18 
warning signals when required, or (iii) trigger an automated speed control intervention (16). The 19 
development of this new ISA system is consistent with the simultaneous vehicle/infrastructure design 20 
(SVID) principles (1,2).  21 

The proposed ISA system considers both the road geometrics and actual sight conditions 22 
including the presence of any sight obstructions ahead, and operates as follows: 23 

 24 
(i) it calculates the real-time ASD with an onboard car sensor and compares the value 25 

obtained with the SD to assess the level of safety of the visibility conditions; 26 
(ii) ASD values are then used by the ISA algorithm to calculate the appropriate safe speed 27 

limit relative to the actual real-time visibility along the road alignment. 28 
 29 
In this study, ASD values provided by the proposed ISA were compared and validated with ASD 30 

values obtained from AutoCAD for flat terrain road alignment with horizontal road curves. The algorithm 31 
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developed with the simulation software is capable of estimating ASD values from the exact location of the 1 
vehicle considering both longitudinal and lateral positions on the road.  2 

The ensuing three information, warning, and intervening operation ISA variants developed are in 3 
line with ADAS classification (28,29). The model efficiently provided the information/warning in real-4 
time on the main display of the simulator, and robustly acted on the accelerator pedal under the unsafe 5 
sight conditions required for an intervention operation. 6 

Looking at it from a wider perspective, this work contributes to supporting driving operations to 7 
reach the general goals established by National and International Institutions and public Governments 8 
(e.g., Swedish and, recently, European Vision Zero) (36,37). For real applications, this particular ISA 9 
technology would require vehicles to be equipped with onboard sensors to compute ASD values. Thanks 10 
to the work of Ma et al. (38), the reconstructed 3D space visible with a changing line of sight for a 11 
moving observer paves the way for the introduction of the technology proposed here to the next 12 
generation of intelligent vehicles. 13 

A natural extension to this work would be an evaluation of driving competency with the new ISA 14 
system. In future steps, the speed behavior and driver acceptance of the system will be investigated. 15 
Furthermore, indicators for situation-awareness and driver workload will be selected and analyzed by 16 
conducting experiments on a large population dataset to assess the implications of the use of this new ISA 17 
system.  18 

While posted speed and curve warning data are not currently included in the system, future 19 
research on the interaction between the proposed novel ISA system and other ADAS modules should be 20 
of certain interest. Finally, the equipping of a real car with the novel ISA-system and its testing in a real 21 
road environment will provide an opportunity to see how the system might impact on the design of future 22 
generations of new vehicles. 23 
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