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1. Introduction 

1.1 Motivation 

Seismic methods are the leading techniques in oil and gas exploration. Even though 
the deep subsurface is the target of these surveys, the reconstruction of the elastic 
properties of the near-surface is crucial for two main reasons: (1) surface waves 
(ground-roll) damping. (2) statics corrections. Surface waves are usually dominant 
in the seismic data, obscuring the reflection data (McMechan and Sun, 1991; 
Henley, 2003; Halliday et al., 2015), which raises the necessity to remove them 
from the raw data. Through the years, many acquisition designs and filtering 
methods have been developed to suppress the surface wave. The primary filtering 
methods, such as low-pass or band-pass filters, are often effective in removing 
surface waves but can also eliminate the reflection data’s essential low-frequency 
elements common with surface waves (Saatcilar and Canitez,1988; Coruh and 
Costain, 1983). The 𝑓 − 𝑘  and 𝜏 − 𝑝  filtering techniques (Treitel et al., 1967; 
Yilmaz, 2001; March and Bailey, 1983; Embree et al., 1963; Kelamis and Mitchell, 
1989) are the other popular surface wave elimination methods. However, they can 
significantly distort the reflection data when the surface wave is the dominant event 
or is scattered in the crossline direction (Liu, 1999; Halliday et al., 2010). The 
alternative surface wave suppression method are the model-based techniques, in 
which the near-surface structure is constructed to estimate and subtract the surface 
wave data from the records (Blonk and Herman, 1994; Blonk, 1995; Ernst, 1998; 
Ernst et al., 2002; Halliday et al., 2010). 

The complex low-velocity shallow layers of the subsurface (weathered layers) 
create inconsistencies in the deep reflection data (Marsden, 1993; Cox, 1999). Static 
correction (statics) is an essential step of the seismic reflection surveys, in which 
the data are corrected for a specific datum depth below the weathered layers. The 
successful surface wave suppression and static corrections require knowledge of 
the near-surface S-wave and P-wave velocity (𝑉𝑆 and 𝑉𝑃) models.  

The full-waveform inversions (FWIs) applied to near-surface data provide both 𝑉𝑆 
and 𝑉𝑃 models (Brossier et al., 2009; Masoni et al., 2014; Perez Solano et al., 2014; 
Yuan et al., 2015). These methods have the advantage of considering the 
topography and provide good lateral resolution in obtaining the velocity models. 
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Despite many attempts to start FWI from crude initial models (Warner and Guasch, 
2016; van Leeuwen and Herrmann, 2013), cycle-skipping in the near-surface 
environment, especially for high frequencies, is a challenging issue. As a result, 
FWI applied to near-surface environment needs a good initial guess of the media’s 

properties to avoid cycle-skipping issues (Borisov et al., 2018). The traveltime 
tomography of the first breaks is common for near-surface 𝑉𝑃 estimation. However, 
the picking of the first arrivals could be time-consuming. Also, the low-velocity 
layers embedded in the shallow subsurface cannot be detected by the refraction 
tomography (Whiteley and Greenhalgh, 1979; Schmoller, 1982).  

Surface waves travel along the free surface and decay exponentially in depth. As a 
result, they contain important information regarding the shallow subsurface and are 
good candidates for near-surface model reconstruction. In this thesis, we aim at 
answering the question whether both 𝑉𝑆 and 𝑉𝑃 models can be estimated from 
surface wave methods. We present four surface wave methods and show their 
applications to data sets recorded with various acquisition techniques from the sites 
with different geological properties. Two of these methods (laterally constrained 
inversion and surface wave tomography) are well-known in retrieving 𝑉𝑆 model 
and are modified to also estimate 𝑉𝑃 models. 

The phase velocities of the surface wave propagation in layered media are 
characterized by geometrical dispersion. The so-called surface wave dispersion 
curves (DCs, phase velocity versus frequency) are estimated and inverted to 
estimate the velocity model. The DCs are considered to be very sensitive to 𝑉𝑆 
(Nazarian, 1984; Xia et al., 1999; Foti et al., 2018). As a result, most surface wave 
methods focus on estimating the 𝑉𝑆 model only, and they require a priori 𝑉𝑃 or 
Poisson’s ratio for the inversion step. Few researchers investigated the possibility 
of estimating 𝑉𝑃 from surface waves (Xia et al., 2003; Socco and Comina, 2017; 
Bergamo and Socco, 2016). Socco et al. (2017) discovered a strong correlation 
between DC and the time-average 𝑉𝑆 (𝑉𝑆𝑍). They showed that there exists a 
relationship between the wavelength of DCs and the investigation depth of surface 
waves (Wavelength-Depth relationship, W/D relationship). To construct the W/D 
relationship, a reference DC and the corresponding 𝑉𝑆𝑍 model is required. This 
relationship represents the wavelength and depth couples corresponding to equal 
surface wave phase velocity and 𝑉𝑆𝑍, and can be used to transform the DC at 
different locations into 𝑉𝑆𝑍. Socco and Comina (2017) proved that the W/D 
relationship is highly sensitive to Poisson’s ratio. They developed a method to 

estimate time-average 𝑉𝑃 (𝑉𝑃𝑍), exploiting only the W/D relationship.  
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Based on Socco et al. (2017) and Socco and Comina (2017) studies, we develop a 
W/D workflow to estimate interval 𝑉𝑆 and 𝑉𝑃, which is valid even in the presence 
of significant lateral variations. The proposed W/D method requires only the local 
DCs and demands no prior information. We also develop a joint inversion method 
in scheme of Monte Carlo that considers both surface wave DC and W/D 
relationship to estimate the 𝑉𝑆 and 𝑉𝑃 models. In this thesis, we use the W/D 
method to estimate the a priori Poisson’s ratio required by well-established surface 
wave methods, laterally constrained inversion (LCI) and surface wave tomography 
(SWT), to enable the estimation of both 𝑉𝑆 and 𝑉𝑃 using these methods.  

In the context of the LCI, the parameters of the 1D models are connected laterally 
and vertically through certain constraints level, which controls the variations 
between layers and adjacent model points. As a result, consistent and smooth 
estimated quasi 2D or 3D models are obtained from the LCI applications. The 
earliest applications of LCI were applied to resistivity data (Auken and 
Christiensen, 2004; Wisén  et al., 2005; Auken et al., 2005). Later, Wisén  and 
Christiensen (2005) applied LCI method to surface wave data.  

The W/D and LCI methods require the local DCs as inputs, which are estimated 
through wavefield transform applied to an array of receiver records and are assigned 
to the receiver array center (known as the multi-channel method). Different receiver 
arrays are usually selected across the 2D seismic line, and the corresponding local 
DCs are estimated. Similarly, for classical 3D data where multiple parallel and 
perpendicular lines of receivers and sources are deployed, many local DCs along 
each line are estimated and used for the model estimations. A significant fraction 
of onshore oil and gas deposits are in remote areas with extreme environment and 
challenging topography such as foothills, forests, and deserts. The difficulty in 
transporting and deploying the acquisition equipment, as well as the natural hazards 
associated with these unmarked regions, make the seismic acquisition very 
challenging. The recent technological developments, such as the capability to 
deliver the receivers from the sky, have facilitated these acquisitions. However, the 
limited sky access and constraints for source locations usually result in full 3D 
acquisition layouts instead of classical 3D acquisition setting, where the receivers 
and sources are irregularly spaced and scattered across the investigated area. For 
such data sets, the DC estimation method from array receivers aligned with sources 
leads to erroneous and inconsistent DCs: Various receiver arrays aligned with 
sources with different azimuthal angles, as a result, with different propagation 
paths, can be used to estimate the DC of the same location. To mitigate this issue 
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for 3D data sets, we propose multi-channel analysis of the receiver records over an 
area instead of along an array.  

SWT is a suitable alternative for model estimations from 3D data sets, which 
supports the irregular acquisition layout and results in high-resolution model 
estimation. SWT is a well-established method in earthquake seismology for 𝑉𝑆 
reconstruction of the crust and upper mantel (Wespestad et al., 2019; Bao et al., 
2015; Boiero, 2009; Yao et al., 2006; Shapiro et al., 2005). Recently, a few authors 
showed the SWT applications for the near-surface characterization, using active 
(Da Col et al., 2019; Socco et al., 2014) and passive data (Badal et al., 2013; Picozzi 
et al., 2009). Boiero (2009) developed a two-step SWT method, where, first, the 
path-averaged DCs are estimated and then inverted using a tomographic inversion 
algorithm to estimate the 𝑉𝑆 model. The path-averaged DCs are estimated using the 
records of receiver couples aligned with a source (also known as the two-station 
method).  

Surface wave propagation is a multi-modal phenomenon. Although usually, the 
fundamental mode of the surface wave is solely excited or dominant in the whole 
bandwidth, under certain conditions of the site and the source, multiple modes of 
surface waves can be created. The higher modes travel with larger wavelengths. As 
a result, including them in the inversion increases the investigation depth (MacBeth 
and Burton, 1985; Yoshizawa and Kennet, 2004; Xia et al., 2003; Ganji et al., 1998; 
Khosro Anjom et al., 2021). Unlike the multi-channel method, the two-station 
method does not provide enough resolution to estimate various surface wave 
modes. We propose a two-station DC estimation method that includes the muting 
in x-t domain and enables the estimation of multiple modes of surface waves. The 
proposed method focuses on estimating a specific surface wave mode at each 
attempt, where a proper mute based on the preliminary multi-channel analysis of 
the data is used to damp the other modes. We modify the SWT inversion algorithm 
by Boiero (2009) to support the multi-modal DCs. 

1.2 Thesis outline 

A review of the surface wave’s properties is provided in chapter 2. The surface 
wave dispersion, multi-modal propagation, and DC forward model are explained. 
Then, the steps involving the common surface wave methods are reviewed, 
focusing on the ones used in this thesis. 
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A total of 5 data sets are processed, which are described in chapter 3. The data sets 
are recorded in different environments with different acquisition techniques.  The 
data are divided into vintage data sets, for which prior information about the 
characteristics of the site are available, and industry data sets. For each data set, the 
main properties are explained, and the key aspects necessary for the surface wave 
method application are discussed. 

In chapter 4, we outline the workflow used for the direct transform method (W/D 
method) to estimate the interval 𝑉𝑆 and 𝑉𝑃 models. The method is applied to a 
vintage data set from a controlled test site and two industry data sets from stiff sites. 
When available, we compare the results with the previously estimated models from 
other studies. In chapter 4, we also describe the technique based on the W/D method 
to estimate Poisson’s ratio required for the inversion methods in chapters 6 and 7. 

In chapter 5, we explain the Monte Carlo joint inversion algorithm aimed at 
estimating high-resolution 𝑉𝑆 and 𝑉𝑃 models. We apply the method to two 
synthetic examples to evaluate the performance of the method in unsaturated and 
saturated environment. We also show the application of the method to a real 
example from one of the vintage data sets. We interpret the estimated 𝑉𝑃 based on 
the information from the previous seismic reflection survey, downhole test, and P-
wave traveltime tomography studies. 

In chapter 6, we briefly explain the laterally constrained inversion (LCI) developed 
by Boiero (2009) and describe the modifications made to the algorithm. We then 
show the method’s application to an industry data set from a stiff site to estimate 
the 𝑉𝑆 and 𝑉𝑃 models. 

In chapter 7, we describe the steps to estimate path-averaged multi-modal DCs and 
show the technique’s performance on a synthetic example. Then, we describe the 
tomographic inversion method and the implemented modifications to the algorithm. 
We show the application of the multi-modal SWT to 3D data sets acquired by 
airdropped sensors in the foothills of Papua New Guinea (PNG). We also show the 
application of the tomographic inversion to the fundamental modes from two sites 
characterized by stiff material. 

The W/D, LCI, and SWT methods are compared in chapter 8, using the estimated 
𝑉𝑆 and 𝑉𝑃 models from one of the used data sets. We discuss the methods’ pros 
and cons, considering the resolution, investigation depth, and computational costs. 
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In chapter 9, we provide the final remarks of the thesis and discuss the possible 
prospects. 
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2. Surface Waves 

2.1 Introduction 

In this chapter, the essential properties of surface waves for understanding this 
thesis are provided. We also briefly describe the forward model used for the 
synthetic DC simulation of all surface wave methods in this thesis. Finally, we 
review the common surface wave methods.   

2.2 Features and Properties 

2.2.1 Surface wave dispersion 

The surface wave propagates horizontally and decays in depth. The surface waves 
with various frequencies (wavelength) penetrate different subsurface portions and 
create different particle displacement fields. The displacement field can be 
computed numerically and in homogenous isotropic half-space the vertical 
displacement becomes negligible roughly at depth equal to one wavelength. In 
Figure 2.1a, an example synthetic model is shown, and in Figure 2.1b, we show the 
relevant normalized vertical particle displacement for 20 Hz and 100 Hz surface 
wave fundamental modes, computed using Lai and Rix (2002) algorithm. It can be 
clearly observed that the 100 Hz (short wavelength) harmonic decays at shallower 
depth compared to the 20 Hz (large-wavelength) one.  

 
Figure 2.1: The normalized vertical displacement relevant to the 

propagation of the fundamental mode computed based on a synthetic example. (a) 
The 𝑉𝑆 and 𝑉𝑃 of the synthetic example. (b) The normalized vertical particle 
displacement at 20 and 100 Hz. 
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In a homogenous semi-infinite medium, the surface wave velocity is constant. 
However, in vertically varying models such as the example in Figure 2.1a, the phase 
velocity of the surface waves is dispersive. The geometrical dispersion of the 
surface waves is usually expressed with phase velocity as a function of frequency 
(dispersion curve, DC). Figure 2.2a shows the computed fundamental mode DC, 
corresponding to the example in Figure 2.1a. The DC can also be represented as a 
function of wavelength by computing wavelengths as: 

,c
f

 =         (2.1) 

where c  and f  are the phase velocity and frequency. In Figure 2.2b, we show the 
fundamental mode DC as a function of wavelength, corresponding to the example 
in Figure 2.1a.  

 

Figure 2.2: The computed DC corresponding to the synthetic model in 
Figure 2.1a, as a function of: (a) frequency. (b) wavelength. 

The surface wave propagation and dispersion curve parameters are the 𝑉𝑆, 𝑉𝑃, 
density, and thicknesses.  The DC exhibits strong sensitivity to 𝑉𝑆 while 𝑉𝑃 has a 
weaker effect and the density an even smaller influence on the DC (Foti and 
Strobbia 2002). 

2.2.2 Multi-modal dispersion curves  

The surface wave propagation in vertically heterogeneous media is a multi-modal 
phenomenon: Each frequency component can propagate at different phase 
velocities. The higher modes of surface waves are usually excited when 𝑉𝑆 of the 
media changes irregularly in depth, and low-velocity layers are embedded between 
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high-velocity layers (Parolai et al., 2005). The higher modes are faster than the 
fundamental mode, providing larger wavelengths and penetrating a deeper 
subsurface portion (MacBeth and Burton, 1985; Yoshizawa and Kennet, 2004; Xia 
et al., 2003; Ganji et al., 1998). Figure 2.3a shows the vertical displacement pattern 
of the fundamental and 1st higher modes at 20 Hz corresponding to the example in 
Figure 2.1a, where the 1st higher mode is affected by a deeper portion of the 
subsurface. In Figure 2.3b, we show the multi-modal DC of the synthetic example 
in Figure 2.1a, which includes the fundamental and first 9 higher modes.  

 

Figure 2.3: The multi-modal diplacement pattern and DC corresponding to 
the example in Figure 2.1a. (a) The comparison between the normalized vertical 
particle displacement of the fundamental and 1st higher modes at 20 Hz. (b) The 
simulated fundamental and first 9 higher mode DCs. 

2.2.3 Forward Model 

Thomson (1950) provided an algorithm to compute the synthetic DC of the multi-
layered laterally invariant model, which was later modified by Haskell (1953). The 
method involves the computation of transfer matrices that describe the stress and 
displacement field at the bottom and top of the layers. The continuity of the stress 
and displacement fields at the interface of the layers are considered to eliminate the 
equations of the intermediate interfaces and achieve a single matrix (system matrix) 
that describes the fields within all layers based on the external boundary conditions. 
For the surface wave modes to exist, the determinant of the system matrix, also 
known as Haskell and Thomson matrix determinant, should be zero. The Haskell 
and Thomson determinant is a function of angular frequency and wavenumber and 
its roots give the modal solution of surface wave. Many numerical methods have 
been developed to find the roots and compute modal DCs. 
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The early forward algorithms for computing the synthetic DCs were unstable when 
the model contained large layers, and the high frequencies were considered (Lowe, 
1995; Cercato, 2005). Dunkin (1965) slightly modified the method so that the 
equations do not become ill-conditioned for modal solutions at high frequencies. 
Herrmann developed the surface wave forward model in Fortran based on Dunkin’s 

mathematical derivations (Herrmann, 2002). Maraschini (2008) translated and 
modified Hermmann’s routine in MATLAB. We implemented modifications (e.g., 
pre-allocation of variables, vectorization of mathematical operations and etc) to 
Maraschini’s algorithm aiming at optimizing the MATLAB routine to expedite the 
DC computation. The current algorithm is at least ten times faster than Maraschini’s 
original algorithm, depending on the number of layers. 

2.3 Common Surface Wave Methods 

The conventional surface wave methods usually include data acquisition, a 
processing technique to estimate the DCs, and an inversion method to estimate the 
near-surface 1D 𝑉𝑆 velocities. In the following, we introduce certain aspects of 
these steps. 

2.3.1 Data Acquisition 

The seismic surface waves are excited in almost all types of seismic acquisitions, 
enabling the use of the surface wave methods regardless of the acquisition design. 
However, the lateral resolution and investigation depth of the estimated models 
from surface wave methods are significantly affected by the acquisition outline and 
equipment. The short spacing of receivers allows the estimation of dense, high-
quality DCs, increasing the lateral resolution of the obtained 2D or 3D models.  

In addition, the frequency band of the seismic source and the receiver type directly 
affect the frequency band of the records. As explained in section 2.2, the penetration 
depth of the surface waves is related to the wavelength (frequency) of the DCs. The 
broadband DCs, including both high and low frequencies, ensure both shallow and 
deep model estimation. Traditionally, in the oil and gas exploration context, 10 Hz 
geophones are used. In Figure 2.4, with a synthetic example, we highlight the 
impact of using geophones characterized by various natural frequencies. In Figure 
2.4a and b, we show the 𝑉𝑆 and 𝑉𝑃 models and the corresponding DC. If we 
consider DC’s low-cutoff frequency equal to the geophone’s natural frequency 
(equal attenuation at all frequencies), using 10 Hz geophones, the red portion of the 
DC can be retrieved. Employing 4.5 and 2 Hz geophones in the acquisition allow 



11 
 

also the estimation of the low frequency DCs highlighted in green and blue in Figure 
2.4b.  

 

Figure 2.4: (a) The 𝑉𝑆 and 𝑉𝑃 model of the synthetic example. (b) The 
computed DC corresponding to the synthetic models in (a), segmented according 
to the low cut-off frequency of the 10 Hz, 4.5 Hz, and 2 Hz geophones. 

In Figure 2.5, we show the same DC from Figure 2.4b as a function of wavelength: 
The part of the DC obtained by 10 Hz geophones corresponds to very short 
wavelengths, and allows the estimation of the shallowest part of the model only. 
However, using the 2 Hz geophone allows the estimation of the wavelengths up to 
400 m. The investigation depth of surface wave methods almost linearly increases 
with the maximum registered wavelength. So, it is highly recommended to use 
receivers with low natural frequencies to enhance the surface wave investigation 
depth. This recommendation is valid provided that long enough receiver arrays are 
deployed to capture large wavelengths when the source provides the low-frequency 
waves. 
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Figure 2.5: The DC from Figure 2.4b represented as a function of 
wavelength. The segments of the DC are according to the low cut-off frequency of 
the 10 Hz, 4.5 Hz, and 2 Hz geophones. 

2.3.2 Local DC estimations 

Usually, the records from segments of receiver arrays are considered to estimate the 
DCs corresponding to the segment centers. We refer to such estimated curves as 
local DCs. There are many methods available in literature for estimating the local 
DCs. Most of these methods use spectral estimators to measure the phase 
differences of the surface wave harmonics at multiple locations (Nolet and Panza, 
1976; McMechan and Yedlin, 1981; Park et al., 1998). These methods are 
commonly known as multi-channel approaches, as more than two receivers’ records 
are used to compute the spectrum.  

If possible, the spectra computed from recordings of the same receiver locations, 
but different source positions are stacked to improve the signal-to-noise ratio. Also, 
the DCs from individual spectra are estimated for the uncertainty analysis. At each 
frequency, a phase velocity standard deviation is obtained based on the estimated 
phase velocity of the non-stacked spectra. In the following, we briefly explain the 
two processing methods used in this thesis. 

2.3.2.1 f-k method 

One of the most popular local DC estimation techniques is the f-k method, which 
involves the computation of the 2D Fourier transform of recordings. The raw f-k 
technique requires the recording from an array of receivers evenly spaced. We use 
the f-k method developed by Bergamo et al. (2012), in which the traces are spatially 
windowed using a moving Gaussian window before the computation of the 
spectrum. The 2D Fourier transform is employed to transform the data into the f-k 
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domain. The local maxima on the f-k spectrum are picked and transformed to phase 
velocity (phase velocity = 2𝜋𝑓

𝑘
 ). The  spatial windowing provides estimated DCs 

focused on a specific portion of the subsurface. The standard deviation of the spatial 
Gaussian window is defined as: 

2
N




= ,              (2.2) 

where N  is the number of the receivers and   is the parameter inversely 
proportional to the standard deviation. Depending on the number of the receivers, 
a large   results in a very narrow window. The data’s spatial windowing creates a 
compromise between the spectral resolution and the lateral resolution retrieved by 
the estimated DCs, which is determined by the standard deviation. A very narrow 
window well localizes the data and results in the computation of the spectrum 
corresponding to the property beneath the array center. However, the data 
windowed this way leads to poor spectral resolution. Bergamo et al. (2012) provide 
recommendations for selecting   based on the number of receivers and the 
required spectral resolution to properly separate different propagating modes. 

2.3.2.2 Phase shift method 

The phase-shift method (Park et al., 1998) provides the frequency-phase velocity 
spectrum that helps visualization of the velocity trend during the DC picking. It can 
be applied to receiver layouts with irregular spacing. The frequency-phase velocity 
spectrum is obtained by integrating the Fourier transform of the traces over the 
offset:  

( , ) ( , )
i x

cs c e u x dx


 
 

−  
 =  ,     (2.3) 

where u is the phase component of the Fourier transform. 𝜔 and 𝑐 are the angular 
frequency and phase velocity, respectively. The DC is then picked as the local 
maxima at each frequency.  

2.3.3 Inversion 

The inversion is the process of finding a realistic model that produces a synthetic 
DC similar enough to the experimental one. The challenging task of optimizing an 
inversion problem has led to the development of many inversion algorithms. Most 
conventional inversion methods focus on the estimation of a 𝑉𝑆 model 
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corresponding to a single DC. The inversion algorithms can be classified into two 
main categories: (i) Deterministic methods. (ii) Stochastic methods.  

2.3.3.1 Deterministic inversion methods 

The deterministic methods are based on Newtonian or similar iterative approaches, 
in which an initial guess of the model is provided to the algorithm, and its 
corresponding DC is compared with the experimental DC. Based on the synthetic 
DC’s sensitivity to the model parameters (usually only 𝑉𝑆), the model is updated 
iteratively until a satisfactory misfit between the synthetic and experimental DC is 
achieved. The deterministic inversion of the surface wave is a convex problem, and 
the solution is non-unique: A good guess of the model is required so that the 
inversion converges to the global minimum (Sambridge and Kennett, 2001; Luke 
et al., 2003; Wathelet et al., 2005). The possibility of imposing constraints or a 
priori information to least-square inversion methods can reduce the degree of non-
uniqueness (Cercato, 2009). 

2.3.3.2 Stochastic inversion methods 

Many of the surface wave stochastic inversion approaches are based on the Monte 
Carlo method (e.g., Sambridge and Mosegaard, 2002; Tarantola, 2005). In these 
methods, the parameters of the models are randomly sampled within a model space, 
and the best-fitting models are selected as the solution. The stochastic approaches 
partially solve the non-uniqueness issue of the deterministic inversions, which is 
caused by assumption of the linear relation between the DCs and the model 
unknowns.  

Here, in specific steps of the proposed methods, we use Monte Carlo inversion 
developed by Socco and Boiero (2008). The inputs of the method are the boundaries 
of the model space and experimental local DC. All surface wave model parameters 
can be defined as a variable in the method. The model parameters are randomly 
sampled within the homogenous boundaries. The modal solutions of the surface 
wave are scalable: If the velocities of all layers are equally scaled, the phase velocity 
of the DC will scale to the same extent (Socco and Strobbia, 2004). The algorithm 
developed by Socco and Boiero (2008) takes advantage of this principle; the 
synthetic DCs of the random models are computed and shifted as close as possible 
to the experimental DC; the scaling factor is obtained from the level of the shift and 
the models are scaled. These scaling steps which are performed fully automatic, 
provide more realistic models within the model space, and reduce the number of 
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required simulations to find the inversion results. The best fitting models are then 
selected according to a statistical Fisher test with a certain level of confidence.  

We use the Monte Carlo inversion in chapter 4 to estimate the reference model 
required for W/D relationship estimation. Also, in chapter 5, we develop a Monte 
Carlo joint inversion method based on the principles explained here. 
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3. Data Sets 

We will test the application of the surface wave methods on five field data sets, out 
of which two are vintage data sets recorded in controlled sites, and three are industry 
data sets provided by TOTAL E&P. In this chapter, we introduce the site locations 
and describe essential characteristics of the field and the recorded data. 

3.1 Vintage data sets 

3.1.1 CNR 

The data were acquired in a test site at CNR (National Research Council) 
headquarter in Turin, Italy. The properties of the site are well-known. The site 
contains an artificial loose sand body embedded in more compacted geological 
formations (i.e., sand and gravel). The sand body occupies an area of 5 × 5 m2 and 
extends to 2.5 m in depth. The target of the surface wave experiment is to recover 
the lateral variation created by the sand body. The 𝑉𝑃 model from the traveltime P-
wave tomography is available for the site, facilitating the evaluation of the 
estimated model from the surface wave method. 

The 2D acquisition was carried out along a line crossing the sand body. The 
acquisition parameters of the 2D acquisition line are given in Table 3.1. Four cross-
line acquisitions were also carried out using the same hammer source shooting 
externally to 18 geophones, evenly spaced every 0.5 m. 

Table 3.1: The acquisition parameters of the CNR’s 2D seismic line 

Receivers Receiver 
spacing 

(m) 

Sources Number 
of 

receivers 

Number 
of shots 

Sampling 
rate (ms) 

Recording 
time 

window 
(s) 

4.5 Hz 
geophones 

0.3 8 kg 
Hammer 

72  
(every 
0.3 m) 

11 
(various 
spacings) 

0.152 0.512 s 
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For each source position, 8 to 10 shots were stroke and stacked to improve the 
recordings’ signal-to-noise ratio. The aerial view of the site and acquisition outline 
are reported in Figure 3.1. The sand body’s extent can be observed in Figure 3.1c, 
where we show the main receiver array superimposed with the vertical section of 
the sand body. More details about CNR seismic acquisition can be found in Teodor 
et al. (2017). 

 

Figure 3.1 The acquisition outline of the CNR data set. (a) Aerial view of 
the site with the sand body highlighted with red square. (b) The top view of the 
acquisition layout. (c) The cross-section of the main 2D acquisition line. The 
indices 1-13 show the location of the estimated DCs in chapter 4.5.1.  

In Figure 3.2a, we show the first 0.3 s recordings of the main line’s receivers from 

the shot location circled in green in Figure 3.1b; the arrival times and pattern of the 
recorded data significantly change when the surface waves enter the sand body area. 
This is mainly due to the unconsolidated sand body that is expected to have lower 
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𝑉𝑆 than the surrounding areas. This velocity contrast can also be observed in the 
DCs from the two environments. We separately performed the phase-shift method 
on the first 10 m of the data (outside the sand body) and the portion of the data 
inside the sand body area. In Figure 3.2b and c, we show the estimated spectra 
corresponding to the area outside and inside the sand body, respectively. The 
estimated fundamental mode of Figure 3.2b shows a much higher phase velocity 
compared to the estimated one in Figure 3.2c. The examples’ frequency band is 

limited between 18 to 80 Hz (wavelengths between 1 to 20 m), suggesting a surface 
wave investigation depth of up to a few meters. 

 

Figure 3.2 Example recordings and frequency-phase velocity spectra from 
the CNR data set. (a) The main receiver line’s recordings from the shot location 
highlighted in Figure 3.1b. (b) The spectrum and estimated fundamental mode 
corresponding to the first 10 m of the recordings in Figure 3.2a. (c) The spectrum 
and estimated fundamental mode corresponding to the sand body area highlighted 
in Figure 3.2a. 

 



19 
 

3.1.2 La Salle 

The data were acquired in La Salle, a small village in the north-west of Italy. The 
town is located on a 1.5 × 2.5 km2 triangular alluvial fan, mainly consisting of 
medium to coarse gravelly deposits. The site is interesting for surface wave 
applications since it is well-characterized by two high-resolution reflection surveys 
and 𝑉𝑃 model from P-wave traveltime tomography. Also, the 𝑉𝑆 and 𝑉𝑃 at two 
locations are available from downhole tests.  

Active and passive seismic acquisitions were performed at five selected locations. 
The active data were collected along multiple receiver arrays with varying lengths 
(48 to 75 m). The passive data were acquired using circular receiver arrays with 
even receiver spacings.  The details of the acquisition parameters are given in Table 
3.2. 

Table 3.2: The parameters of active and passive acquisitions in La Salle site.  

 Receivers Sources Sampling 
rate (ms) 

Recording 
time 

window (s) 

Active 
Data 

4.5 Hz 
geophones 

sledgehammer 0.5 4.096 

Passive 
Data 

2 Hz 
geophones 

Ambient 
noise 

16 522 

 

Socco et al. (2008) separately processed the active and the passive data to estimate 
the local DCs, using the f-k and frequency domain beamformer (FDBF) methods.  
They then merged the estimated DCs from the active and passive data to obtain 
broadband DCs at the five site locations. In the map in Figure 3.3a, the locations of 
the estimated local DCs (A to E), the downhole tests, and the two seismic lines used 
for the reflection surveys are shown. In Figure 3.3b, we plot these estimated DCs. 
A full description of the acquisition and the site’s characteristics are available in 
Socco et al. (2008). 
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Figure 3.3: (a) The La Salle site’s map shown with the location of the 
estimated DCs, downhole tests, and seismic reflection lines (reproduced from Socco 
et al., 2008). (b) Estimated local DCs, labeled according to the locations 
highlighted in (a). 

3.2 Industry data sets 

3.2.1 PNG: METIS’s first pilot 

The data were acquired in the foothills of Papua New Guinea (PNG) as the first 
pilot of METIS (Multiphysics Exploration Technologies Integrated System), over 
an area of about 0.2 km2. The acquisition in remote areas such as PNG is very 
challenging as transporting and deploying acquisition equipment are hard to 
achieve. Also, the violent rains, intense humidity, high temperature, and dense 
vegetation make PNG an extreme environment for acquiring seismic data. In the 
age of technological developments and innovations, the METIS research project 
was created to reform the conventional acquisition methods and enable seismic 
imaging of remote areas (Lys et al., 2018). In the scheme of METIS, the sensors are 
placed in 40 cm DARTs (downfall air receiver technology), and drones are used to 
deliver and drop them to predefined positions. The DARTs are equipped with radio 
transmitters that enable real-time recording (Pagliccia et al., 2018). The sources and 
receivers’ deployment geometry are based on the so-called carpet recording, where 
a fine grid of receivers is deployed, and the number of sources is limited only to the 
accessible locations (Lys et al., 2018). The data acquired with the novel acquisition 
technique from such unmarked areas require innovative processing tools. We 
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exploit the surface wave available in the data to reconstruct the near-surface 𝑉𝑆 and 
𝑉𝑃 models. 

In the densely vegetated environment of the site, the DARTs were expected to 
safely land only into the gaps between the trees (sky holes). So, before the 
acquisition days, the location and the size of the sky-holes were identified using an 
airborne lidar survey. Also, 25 holes (approximately 2 to 3 m) were drilled for mud-
gun sources. In Figures 3.4a and b, we show the prototype drone and DART. An 
aerial view of a drone dropping a DART in a sky-hole is given in Figure 3.4c. 

 

Figure 3.4 (a) The drone and 2 DARTs installed on the drone. (b) a DART 
(c) An aerial view of a drone dropping a DART into a sky-hole (Pagliccia et al., 
2018). 

Among 81 deployed DARTs, 38 geophones’ data were recovered. The full 
description of the acquisition parameters is given in Table 3.3. 

Table 3.3: Acquisition parameters of the PNG data set 

Receivers Sources Number of 
receivers 

Number 
of shots 

Sampling 
rate (ms) 

Recording 
time window 

(s) 

10 Hz 
geophones 

Mud gun 
(2000 psi) 

38 
(irregular 
layout) 

25 
(irregular 
layout) 

4 6 
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In Figure 3.5a, we show the deployment geometry of the receivers and the sources. 
At each source’s location, between 5 to 8 shots were stroke; the saturated signals 
were detected and removed before the stacking of the traces. In Figure 3.5b, we 
show the first 3 s of the normalized recordings from the shot location highlighted 
in Figure 3.5a. The records are displayed on a single spatial axis, considering only 
the source-receiver offset. The first breaks are available for all receivers; although, 
they are less evident in the far offset. In Figure 3.5b, the solid red lines show the 
boundaries of the surface wave’s time panel. The data show the excitation of the 
fundamental and 1st higher modes of the surface wave; the separation of the two 
surface wave modes is evident in the offset beyond 300 m. The two surface wave 
modes can also be observed in the frequency-phase velocity spectrum in Figure 
3.5c, where the estimated fundamental and 1st higher modes are shown in blue and 
red, respectively. The spectrum of the records in Figure 3.5c shows that surface 
waves are available between 5 to 20 Hz. However, depending on the source-
receiver offset, the surface wave is present up to 55 Hz.   

 

Figure 3.5: (a) The deployment geometry of the sources and receivers for 
the PNG data set. (b) The recordings from the highlighted shot in (a) plotted on a 
single spatial axis, which represents the distance between the source position and 
receivers. (c) The frequency-phase velocity spectrum, corresponding to the seismic 
data in (b). 
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3.2.2 Aurignac 

The data were acquired and licensed by Gallego Technic Geophysics in a mining 
site in the province of Aurignac, south France, characterized by stiff materials. The 
surface wave applications to mining sites characterized by stiff material are very 
challenging and rare (Papadopoulou et al., 2020). We consider various surface wave 
methods to reconstruct the near-surface 𝑉𝑆 and 𝑉𝑃 of the area. 

The data set is considered a test data set, which was acquired in the direction of the 
METIS’s acquisition scheme to evaluate the carpet recording and real-time wireless 
recording, using various types of sources. The acquisition was performed inside and 
outside the two active open mining pits. Similar to the PNG data set in section 3.2.1, 
the carpet acquisition layout was adopted for the Aurignac data set. Many receivers 
were deployed within regular grids (area 2 km × 1 km), and several source locations 
were limited to access roads, resulting in a 3D large scale acquisition layout. The 
data were acquired using various source types, such as vibrator truck, 
electromagnetic sources (Storm and Lightning) from Seismic Mechatronics, and 
weight drop. We compared the surface wave in the different sources’ recordings 
and concluded that the data from the vibrator truck is the most promising for the 
surface wave applications. The Birdwagen Mark IV off-road trucks equipped with 
24-ton vibrator generated seismic waves at various locations within 3 to 110 Hz. 
The data were recorded remotely using the RT2 wireless system. The position of 
the shooting locations and the receivers, as well as the topographic map of the area, 
were obtained with 0.01 m accuracy, thanks to the real-time kinematic GPS system. 
The full description of the acquisition parameters is given in Table 3.4. 

Table 3.4: Acquisition parameters of the Aurignac data set. 

Receivers Sources Number of 
receivers 

Number 
of shots 

Sampling 
rate (ms) 

Recording 
time window 

(s) 

5 Hz 
geophones 

Vibroseis 
truck 

918 
(spacing 25 

to 50 m) 

1077 
(irregular 
layout) 

2 5 

The site is characterized by significant natural and human-made elevation contrast, 
which can cause highly scattered surface waves. Figure 3.6a shows the map of the 
area superimposed with the acquisition outline and the topography. We split the 
data into four sub data sets, each with relatively flat topography, to minimize the 
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effect of scattered surface waves. In Figure 3.6b, we show the sub data sets with 
different colors; in the pit zones, the sources and receivers at the pits’ benches were 
excluded. In this thesis, we apply surface wave methods to the two sub data sets 
from outside the pits. 

 

Figure 3.6: (a) The aerial map of the Aurignac site superimposed with the 
acquisition geometry and the elevation map. (b) The data divided into four sub data 
sets shown with different colors, each within relatively flat area. 
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In Figure 3.7, we show the first 2 s of the recordings from the shot location 
highlighted in Figure 3.6b, in which only 20 % of the traces from the north-west 
zone are shown for better visualization.  

 
Figure 3.7: A sample seismogram from the north-west zone of the Aurignac 

site, highlighted with green circle in Figure 3.6b.  

The surface wave is available in a broad time panel, suggesting multi-modal 
propagation of the surface waves. Our preliminary study of the data confirmed this 
observation. In Figure 3.8, we show an example estimation of the frequency-phase 
velocity spectrum, which was estimated from the recordings of a receiver spread 
highlighted in Figure 3.8a; the individual spectra corresponding to each source 
within 250 m of the receiver spread were computed and stacked to increase the 
signal-to-noise ratio. The spectrum in Figure 3.8b shows the excitation of at least 
two higher modes of surface waves in addition to the fundamental mode. We limit 
our surface wave analysis within the 4 to 55 Hz frequency range to avoid 
contamination of the data by airwaves and other correlated noises. 
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Figure 3.8: An example of the obtained spectrum for the Aurignac data set 

using the phase-shift method. (a) The geometry of the selected sources and 
receivers. (b) The obtained frequency-phase velocity spectrum, where the red dots 
show the estimated modes of surface waves. 

3.2.3 Oil and gas exploration data set  

The data were acquired at the bottom of the mountainside along a 12 km 2D seismic 
line. The area is characterized by recent alluvial deposits on top of the sedimentary 
bedrock. The data were acquired for oil and gas exploration; the recordings from 
receiver groups were stacked to damp the surface waves. We evaluate and process 
the residual surface waves in the data to estimate near-surface 𝑉𝑆 and 𝑉𝑃 models. 

The vibroseis truck sources with a sweeping profile between 4 to 90 Hz were used 
at various locations. For each receiver station, the recorded data from the 12 
geophones were stacked to improve the signal-to-noise ratio of the reflection data 
and damp the surface waves. The acquisition parameters of the data set are provided 
in Table 3.5. A thorough description of the data and the site’s geology is given in 
Masoni (2016). 

 

 

 



27 
 

Table 3.5: The acquisition parameters of the oil and gas exploration data set  

Receivers Sources Number of 
receivers 

Number 
of shots 

Sampling 
rate (ms) 

Recording 
time window 

(s) 

10 Hz 
geophones 

Vibroseis 
truck 

601 
(every 20 

m) 

600 
(every 20 

m) 

2 6.002 

A schematic view of the acquisition location is given in Figure 3.9. The area’s 
topography is relatively flat, except for the two canyons, each with a maximum 
depth of 30 m over the 500 m of the acquisition line.  

 

Figure 3.9: Schematic view of the acquisition location for the oil and gas 
exploration data set (Masoni, 2016). 

In Figure 3.10a, we show an example shot from the data set, in which we 
highlighted the different events. The preliminary analysis of the data showed the 
excitation of the fundamental mode. In Figure 3.10b, we show the frequency-phase 
velocity spectrum corresponding to the area highlighted in Figure 3.10a. Despite 
the use of receiver groups in the acquisition to damp the surface waves, they are 
still strongly available in the data. In Figure 3.10c, we show the amplitude spectrum 
of the traces in Figure 3.10a. The data are available in a broad frequency band; 
however, the surface waves are limited to the first low-frequency peak. While the 
maximum amplitude of surface waves is observed within 15 to 20 Hz, they are 
available between 8 to 30 Hz.  
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Figure 3.10: (a) An example shot gather from the oil and gas exploration 

data set, where various observed events are highlighted. (b) The estimated 
frequency-phase velocity spectrum using the recordings highlighted in (a) with a 
red rectangle. (c) The amplitude spectrum of the recordings from the highlighted 
area in (a). 

3.3 Conclusion 

We introduced five data sets and explained the essential properties of the site and 
acquisition. Each data set provides unique characteristics that we consider 
interesting for surface wave applications. We process these data sets using various 
surface wave methods to estimate the near-surface 𝑉𝑆 and 𝑉𝑃 models.  
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4. Wavelength – Depth method 
(W/D) 

The wavelength-depth method (W/D) was initially introduced to estimate near-
surface 𝑉𝑆𝑍 and 𝑉𝑃𝑍 models. We develop a stable W/D workflow that estimates 
interval 𝑉𝑆 and 𝑉𝑃 and can be used for the sites characterized by significant lateral 
variations. We also develop an uncertainty workflow to evaluate the estimated 𝑉𝑆 
and 𝑉𝑃 models’ reliability from the W/D method. The proposed method and its 
application to CNR data set is available also in Khosro Anjom et al. (2019). In the 
following, we describe the W/D workflow and uncertainty estimation. Then, we 
show the method’s application to the CNR, Aurignac, and oil and gas exploration 
data sets. We evaluate the estimated models based on the information available for 
the site and the models provided by other methods.  

4.1  W/D method’s background: advantages and pitfalls 

Socco et al. (2017) showed that local DC as a function of wavelength, and the 
corresponding time-average 𝑉𝑆 (𝑉𝑆𝑍) are highly correlated. Time-average velocity 
(either for S-wave or P-wave) can be obtained from the layered velocity model as: 
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              (4.1) 

where zV is the time-average velocity at depth z  and n  is the number of layers 
down to depth z , and the thickness and interval velocity of the i th layer are 
denoted by ih , and ,t iV . Socco et al. (2017) developed a method to estimate a 

relationship between the investigation depth and the surface wave wavelength. The 
W/D relationship is an ensemble of the depth and wavelength data points satisfying 
the expression: 

( )( , ) W/D ( ) ( ),i i i iz c VSZ z   =                                          (4.2) 
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where i  is the index of the W/D data points at each depth level. The only pieces of 
information required to estimate a W/D relationship are the 𝑉𝑆𝑍 and DC from the 
same location. In sites with no sharp lateral variations, the estimated W/D 
relationship at a reference location can be used at different locations to directly 
transform the DCs (phase velocity as a function of wavelength) into local 𝑉𝑆𝑍 
models (Socco et al., 2017), considering equation (4.2). In Figure 4.1, we show the 
process of obtaining the W/D relationship for a synthetic example. The dashed lines 
in Figure 4.1a are instances of wavelength-depth couples with equal phase velocity 
and 𝑉𝑆𝑍. The wavelength-depth couples are assembled to build the W/D 
relationship in Figure 4.1b.  

 

Figure 4.1: Example estimation of the W/D relationship. (a) The 𝑉𝑆 and 
𝑉𝑆𝑍 models in blue and black, and DC in green. The dashed lines highlight three 
example depth-wavelength couples that demonstrate equal 𝑉𝑆𝑍 and phase velocity. 
(b) The estimated W/D relationship. The colored dots correspond to the 
wavelength-depth couples highlighted in (a). 

Socco and Comina (2017) showed that the W/D relationship is highly sensitive to 
Poisson’s ratio. They developed a method to estimate a reference apparent 
Poisson’s ratio from the reference W/D relationship. The apparent Poisson’s ratio 

relates the 𝑉𝑆𝑍 and 𝑉𝑃𝑍 as: 
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            (4.3) 

According to the method, first, the reference location’s 𝑉𝑆 model is considered for 
computing a set of synthetic DCs, each from a specific constant Poisson’s ratio. 
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Then, the synthetic DCs and the reference 𝑉𝑆𝑍 are used to estimate synthetic W/D 
relationships. The experimental W/D relationship is compared with the synthetic 
ones to obtain the apparent Poisson’s ratio at each depth as: 

expW/D:  ( ) ( ) ( ) ( ),app syn synz z z z z     =  =                   (4.4) 

where syn is the Poisson’s ratio of the synthetic W/D relationships. In practice, at 

each depth, the discrete values of syn  from a set of synthetic W/D relationships 

are interpolated to find the syn that satisfies equation (4.4) and the corresponding 

syn is considered as the apparent Poisson’s ratio at depth z .  

In Figure 4.2, we show the steps of apparent Poisson’s ratio estimation for the 

example introduced in Figure 4.1. The synthetic DCs and reference 𝑉𝑆𝑍 in Figure 
4.1a are used to compute the synthetic W/D relationships in Figure 4.2b. Finally, 
the apparent Poisson’s ratio at each depth (Figure 4.2c) is estimated by linear 
interpolation between the synthetic W/D relationships and comparing them with the 
experimental one. 

 

Figure 4.2: The estimation of apparent Poisson’s ratio for the example in 
Figure 4.1. (a) The synthetic DCs computed from true model parameters but each 
with the indicated Poisson’s ratio. The 𝑉𝑆𝑍 model is shown in black. (b) The 
experimental W/D relationship compared with the synthetic ones. The color scale 
of the synthetic W/Ds matches the ones used for the DCs in (a). (c) The estimated 
apparent Poisson’s ratio as a function of depth. 
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For smoothly laterally varying sites, the estimated apparent Poisson’s ratio at a 
reference location is used to transform the estimated 𝑉𝑆𝑍 models at various 
locations into 𝑉𝑃𝑍 (Socco and Comina, 2017) as:  

( )2 1
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2 1
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VPZ VSZ




−

−
=           (4.5) 

Socco et al. (2017) and Socco and Comina (2017) successfully tested the method 
on multiple synthetic and real data sets. The method directly estimates the 𝑉𝑆𝑍 and 
𝑉𝑃𝑍 from the local DCs without the need for extensive inversion. However, it 
requires the 𝑉𝑆𝑍 and 𝑉𝑆 models at a reference location to estimate the experimental 
W/D and apparent Poisson’s ratio, respectively. Moreover, the W/D relationship is 
valid for a site where no sharp lateral variations exist. Here, we address these 
limitations: We develop a W/D workflow that accounts for the lateral variations in 
a site and requires no known 𝑉𝑆𝑍 and 𝑉𝑆 model to estimate the experimental W/D 
relationship and apparent Poisson’s ratio. Also, we provide a method to estimate 
the interval 𝑉𝑆 and 𝑉𝑃 velocities from the 𝑉𝑆𝑍 and 𝑉𝑃𝑍 models. Since the W/D 
method is a data transformed method, the estimated models’ uncertainty is highly 
data-driven and noise dependent. We develop an uncertainty propagation workflow 
that obtains the standard deviation of the estimated 𝑉𝑆 and 𝑉𝑃 models based on the 
uncertainty of the input DCs. We also provide a method to estimate the interval 
Poisson’s ratio at the reference location. 

4.2 The Method 

The only inputs of the proposed W/D method are the local DCs from different 
locations at a site. Let us assume that a set of DCs has been obtained along a seismic 
line (2D geometry) or over an acquisition area (3D geometry) using the methods 
explained in section 2.3.2. We use these DCs to build the quasi 2D or 3D velocity 
models, following the workflow described in Figure 4.3.  

The DCs are grouped into clusters of relatively homogeneous sets (a). For each 
cluster: A reference DC is selected and inverted with a Monte Carlo inversion 
(MCI) algorithm to obtain 𝑉𝑆 and 𝑉𝑆𝑍 models as reference models (b). The 
estimated 𝑉𝑆𝑍 and the corresponding DC are used to estimate a reference W/D 
relationship for the cluster (c). The reference W/D relationship is employed to 
transform all DCs of the cluster into 𝑉𝑆𝑍 models (d). An apparent Poisson’s ratio 
for the cluster is estimated utilizing the reference W/D relationship and the 
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reference 𝑉𝑆 model (e). Each 𝑉𝑆𝑍 profile is transformed into a 𝑉𝑃𝑍 profile, thanks 
to the estimated apparent Poisson’s ratio (f). All the reconstructed 𝑉𝑆𝑍 and 𝑉𝑃𝑍 
1D models are then transformed into interval 𝑉𝑆 and 𝑉𝑃 profiles using specific 
differentiation rules (g). In the following, we consider each step of this workflow 
for a more detailed description. 

 
Figure 4.3: The full workflow of the W/D method to estimate the local 1D 

𝑉𝑆 and 𝑉𝑃 models. The DCs are divided into clusters and the W/D steps are 
performed individually for each cluster to estimate local 𝑉𝑆𝑍 and VPZ models. 
These models are transformed to interval 𝑉𝑆 and 𝑉𝑃 models through differentiation 
process. 
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4.2.1 Local DC clustering 

Given a data set of DCs, a hierarchical clustering algorithm (Rokach and Maimon, 
2005) is applied to divide the data set into homogeneous sets of DCs (Khosro 
Anjom et al., 2017). Hierarchical clustering algorithms do not require prior 
information regarding, for example, possible lateral velocity variations. Moreover, 
the number of clusters does not need to be defined, and they are obtained from the 
algorithm. The distinction between the clusters is based on the dissimilarity 
between DCs and is obtained by defining appropriate metrics and linkage criteria. 
We use the Euclidean distance between each two DCs as metrics, which is 
expressed as: 
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1 2 1 2
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 
c c      (4.6) 

where 1c  and 2c are the phase velocity vectors of two DCs corresponding to 
frequencies within the common frequency band. The i  is the index of the frequency 
elements, where i =1 and i = n are the indices of the minimum and maximum 
frequencies within the frequency band. Wide frequency common band between the 
DCs ensures reliable clustering. As a result, to maximize the frequency band 
between all DCs, it is necessary to remove the short banded DCs before the 
clustering.  

We use the average linkage criterion, in which the distance between two clusters is 
computed as the average distance between any element of one cluster to the other 
cluster. This allows all elements of each DC to contribute to the clustering process. 
The hierarchical clustering outcome is a dendrogram used to identify the DC 
clusters.  

4.2.2 Reference 𝑽𝑺, 𝑽𝑺𝒁, and W/D estimation 

The reference 𝑉𝑆 and 𝑉𝑆𝑍 models and their corresponding DC are needed for 
estimation of the W/D relationship. For each cluster, the DC with the broadest 
frequency band is selected as the reference DC and inverted using a Monte Carlo 
inversion (MCI) algorithm (Socco and Boiero, 2008; section 2.3.3.2) to estimate  
reference 1D 𝑉𝑆 and 𝑉𝑆𝑍 models. Vast model space is defined by selecting ranges 
for each model parameter (𝑉𝑆, thicknesses, and the Poisson ratio for each layer). A 
large population of random models is generated, and their relevant fundamental 
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modes are computed using the Haskell and Thomson forward modeling (Haskell, 
1953; Thomson, 1950; Maraschini, 2008). The final result of the MCI is a set of 
accepted 𝑉𝑆 models, according to the imposed level of confidence in a statistical 
one-tailed Fisher test. We use a low level of confidence to accept a set of models 
that their DCs show a good fitting with respect to the experimental one. The selected 
models are then transformed into their corresponding 𝑉𝑆𝑍 models using equation 
(4.1). The reference 𝑉𝑆 and 𝑉𝑆𝑍 models are computed by averaging the models at 
each depth. The reference DC and 𝑉𝑆𝑍 are used to estimate the reference W/D 
relationship, following the method proposed by Socco et al. (2017) and explained 
in section 4.1. 

4.2.3 𝑽𝑺𝒁 estimation over a cluster 

Socco et al. (2017) showed that given a homogenous set of DCs, where no 
significant lateral variations exist, the reference W/D relationship is valid for all 
DCs to obtain the local 𝑉𝑆𝑍s at the position of each DC. The reference W/D 
relationship for the cluster is used for all DCs of the cluster to retrieve the associated 
𝑉𝑆𝑍 profiles (equation 4.2). 

4.2.4 Reference apparent Poisson’s ratio and 𝑽𝑷𝒁 estimation 

We compute the synthetic W/D relationships required to estimate the reference 
apparent Poisson’s ratio of each cluster, thanks to the reference 𝑉𝑆 model of the 
cluster. Then, we estimate the apparent Poisson’s ratio by comparing the synthetic 
and experimental W/D relationships according to equation (4.4). Assuming 
negligible variation of the apparent Poisson’s ratio inside each cluster area, we use 
the reference apparent Poisson’s ratio to transform all estimated 𝑉𝑆𝑍s into 𝑉𝑃𝑍 
models using equation (4.5). 

4.2.5 Interval 𝑽𝑺 and 𝑽𝑷 estimation 

The time-average velocity models can be useful for computing static corrections, 
but an interval velocity model is needed for most applications. Equation (4.1) 
expresses the computation of the time-average velocity from interval velocity. We 
develop a stable approach for inverting this equation to transform time-average 
velocities into interval velocities and apply it to the 𝑉𝑆𝑍 and 𝑉𝑃𝑍 models relevant 
to all the DCs.  
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Considering interval velocity (either for P-wave or S-wave) as a set of  elements 
corresponding to different intervals, let us define the interval transit time it  inside 

the i -th interval. Considering that interval’s thickness is equal to i iV t , we can 
rewrite the time-average velocity (equation 4.1) as a function of time: 

( )
1

1

( ) ,

n

i i
i

z n

i
i

V t
V t

t

=

=



=






             (4.7) 

and, by moving to a continuous depth description, we can express the time-average 
velocity under the integral form: 
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where the quantity 𝑉𝑡 is the interval velocity defined within each interval 𝑑𝑡. 
Equation (4.8) is the continuous analog of the discrete equation (4.1): an illustration 
of why the quantity zV is called time-average velocity. This relation is unique 
between the time and depth variables. The differentiation of equation (4.8) gives 

(  . ( ))t zV dt d t V t=  from which we can obtain the interval velocity 𝑉𝑡 through the 
expression: 

( ) z
t z

dVV t V t
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= + .              (4.9) 

Based on equation (4.9), the interval velocity tV  consists of a time-average velocity 

term and a derivative term. The difference zdV  can be discretized at each depth and 
divided by the stepwise t  to get a numerical value of the derivative; however, 
small perturbations in the time-average velocity leads to massive relative changes 
in the derivative estimation (Khosro Anjom et al., 2019). Hence, a different 
approach must be applied for the derivative calculation, especially for noisy data. 
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Many methods are available in literature to differentiate noisy data, such as least-
squares polynomial approximation, Tikhonov regularization, and total-variation 
regularization (Knowles and Renka, 2014). The estimated 𝑉𝑆𝑍 and 𝑉𝑃𝑍 carry noise 
because they are directly obtained through data transform. On the other hand, abrupt 
but realistic variations in the velocity profile produce discontinuities in the 
derivative trend. So, the method to calculate the derivative term should intrinsically 
allow discontinuities in the derivative estimation to avoid too strong smoothing. We 
consider the total variation regularization for the estimation of the derivative term 
in equation (4.9). Total variation regularization was initially introduced by Rudin 
et al. (1992) to remove the noise from images without smearing the edges. In this 

method, given a discrete set of data points 𝑉𝑧, the first derivative zdV
dt

 
 
 

 is 

approximated by the solution 𝑢 of the minimization of the function: 

2

0 0

1( ) ( ) '  ( ) ( ) ,
2

T T

zF u u t dt Au t V t dt= + −          (4.10) 
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Au t u d =   defines the smoothed zV and the regularization parameter is 

denoted by the symbol  . The term 
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between the smoothed function ( )Au t  and the input function ( )zV t . On the other 

hand, 
0
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u t dt  is the total variation of the first derivative u . The regularization 

parameter controls the balance between the two terms. The numerical 
implementation in MATLAB to be used in our application is provided by Chartrand 
(2011). 

In Figure 4.4, we show an example transformation of a noisy and noise-free 𝑉𝑆𝑍 to 
interval 𝑉𝑆. In Figure 4.4a, the noisy 𝑉𝑆𝑍 (noise level ±2 m/s) is plotted in blue, 
and the noise-free 𝑉𝑆𝑍 is represented in black. The difference between these two 
𝑉𝑆𝑍 models is almost unnoticeable, given the low noise level. In Figure 4.4c, the 

derivative term zdV
dt

 
 
 

 of noisy data is evaluated either by numerical differentiation 

in green or by the total variation technique of equation (4.10) in red, while Figure 
4.4b provides the wanted interval velocity: a minor amount of noise, present in the 
𝑉𝑆𝑍, has a significant impact on the interval 𝑉𝑆 estimation. The total variation 
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regularization provides an acceptable reconstruction of the true model (shown in 
red).  

 

Figure 4.4: The application of equations (4.9) and (4.10) to transform noisy 
synthetic 𝑉𝑆𝑍 example into interval 𝑉𝑆 models. (a) True and noisy  𝑉𝑆𝑍 models  in 
black and blue. (b) Estimated 𝑉𝑆 profiles without ( green) and with regularization 

(red) compared to the true profile (black). (c) Estimated dVSZ
dt

 
 
 

 without (green) 

and with regularization  (red) compared to the true derivative (black). 

To estimate the interval 𝑉𝑆 and 𝑉𝑃 models from the time-average velocities at 
different positions, we use equation (4.9), in which we perform total variation 
regularization (equation 4.10) for the computation of the derivative term. This 
procedure is applied to all estimated 𝑉𝑆𝑍 and 𝑉𝑃𝑍 models to obtain interval 𝑉𝑆 and 
𝑉𝑃. These interval velocity models can be laterally interpolated for obtaining quasi 
2D or 3D velocity models. 

4.3 Uncertainty propagation 

We start from the uncertainties associated with the estimated local DCs, and we 
translate this uncertainty to the estimated 𝑉𝑆 and 𝑉𝑃 models. In section 2.3.2, we 
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explained how the uncertainties of the DCs are usually obtained. However, 
sometimes, in particular when small scale data sets are being processed, there are 
not enough data to estimate uncertainties of the experimental DCs. Passeri (2019) 
investigated the uncertainty of 52 sites, and he obtained an empirical equation with 
which we can approximate the standard deviations of the phase velocities as: 

( )0.1819 0.00770.2822 0.0226 ,f f
c e e c −= +           (4.11) 

where 𝑓 is the frequency, and the c is the phase velocity at f. We use this equation 
to approximate DC’s uncertainty when it is not possible to estimate the 
experimental uncertainties using the seismic data.  

To propagate the uncertainty to the 𝑉𝑆 and 𝑉𝑃 models, we follow the same 
workflow steps shown in Figure 4.3. We divide the steps into two main blocks: (1) 
obtaining the uncertainty of the reference W/D and apparent Poisson’s ratio of each 
cluster, and (2) propagating the uncertainty to each estimated 1D 𝑉𝑆 and 𝑉𝑃 
models.  

4.3.1 Reference W/D and apparent Poisson’s ratio uncertainty 

Considering g as a function of h and k, and assuming no correlation between the 
error of h and k, we can propagate the variance of  h and k to g(h,k) as:  
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           (4.12) 

where 𝜎𝑔, 𝜎ℎ and 𝜎𝑘 are the standard deviations of g, h, and k, respectively. We 
start from the standard deviation of the reference DC. As the first step, knowing 
that wavelength is phase velocity divided by frequency and considering negligible 
uncertainty for the frequency, we use equation (4.12) to translate the standard 
deviation of the phase velocity to the wavelength as: 

.c

f


 =              (4.13) 

The reference 𝑉𝑆𝑍 is estimated from the MCI, as explained in section 4.2.2. We 
know that the solutions of the inversion are non-unique. As a result, the uncertainty 
of the reference 𝑉𝑆𝑍 model should be included in the uncertainty workflow. We 
estimate a standard deviation for the reference 𝑉𝑆𝑍 at each depth by considering 
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the distribution of the selected 𝑉𝑆𝑍 models from the MCI. Given that depth is 𝑉𝑆𝑍 
multiplied by one-way arrival time and considering negligible standard deviation 
for time measurement (sampling rate), we estimate the standard deviation for depth 
using equation (4.12), which gives: 

 . ,z VSZ one wayt  −=             (4.14) 

where 𝑡𝑜𝑛𝑒−𝑤𝑎𝑦 is the one-way traveltime, and 𝜎𝑉𝑆𝑍 is the estimated standard 
deviation of the reference 𝑉𝑆𝑍.  

We directly translate the estimated standard deviations for the wavelength (obtained 
from equation 4.13) and depth (obtained from equation 4.14) to the reference W/D 
relationship. The next step is to estimate the standard deviation of the reference 
apparent Poisson’s ratio. As explained in section 4.2.4, the reference apparent 
Poisson’s ratio is obtained by comparing the synthetic W/D relationships, each from 
a constant Poisson’s ratio, with the reference W/D relationship. First, we randomly 
sample the W/D relationship points, considering the normal Gaussian distribution 
of the error. Then, we compare the randomly sampled data points with the synthetic 
W/D relationships to estimate an ensemble of experimental apparent Poisson’s ratio 
at each depth. Finally, we estimate the standard deviations of the reference apparent 
Poisson’s ratio, considering the distribution of the obtained data points at each 
depth.  

At the end of this step, we obtain the standard deviation of the reference W/D 
relationships and apparent Poisson’s ratios of each cluster. 

4.3.2 Uncertainty of the estimated 𝑽𝑺 and 𝑽𝑷 models.    

The first step is to estimate the uncertainty of the local 𝑉𝑆𝑍 models. The 𝑉𝑆𝑍’s 
uncertainty is governed by the uncertainties of the corresponding local DC and the 
reference W/D relationship which transforms it to 𝑉𝑆𝑍 model. To estimate the 
latter, we consider the same random samples of the reference W/D relationship to 
perform the direct transformation method and estimate a set of estimated 𝑉𝑆𝑍 at 
each depth. We consider the distribution of the 𝑉𝑆𝑍 data points at each depth to 
estimate the standard deviation related to the application of W/D workflow. Each 
local DC is associated with phase velocity uncertainty, either from the data or 
computed from equation (4.11). To include the local DC’s uncertainty for the 
estimation of the 𝑉𝑆𝑍, we use the reference W/D relationship to transform the 
standard deviation of phase velocity into the standard deviation of 𝑉𝑆𝑍 as a function 
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of depth. We compute the total standard deviation of the estimated 𝑉𝑆𝑍 model at 
the position of each DC as the summation of the standard deviations from the 
application of the W/D workflow and the standard deviation from the DC. 

We now consider the estimation of the 𝑉𝑃𝑍 at the position of each DC. Considering 
equation (4.5) and following the uncertainty propagation method explained in 
equation (4.12), we translate the uncertainty associated with the estimated 𝑉𝑆𝑍 
model and the reference apparent Poisson’s ratio to the estimated 𝑉𝑃𝑍 as: 
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where 𝜎𝑉𝑃𝑍, 𝜎𝑉𝑆𝑍 , and  𝜎𝜐𝑎𝑝𝑝
 are the standard deviations of 𝑉𝑃𝑍, 𝑉𝑆𝑍, and apparent 

Poisson’s ratio, respectively.  

The interval 𝑉𝑆 and 𝑉𝑃 are estimated using equations (4.9) and (4.10). To estimate 
the uncertainties associated with interval velocities, assuming normal Gaussian 
distribution of the error for time-average velocity estimates, we randomly sample, 
at each depth, the estimated 1D 𝑉𝑆𝑍 and 𝑉𝑃𝑍 models. Using the proposed 
workflow (equations 4.9 and 4.10), we transform time-average velocities into 
interval velocities. Then, we use the distribution of the estimated interval velocity 
at each depth to estimate the standard deviations of the interval 𝑉𝑆 and 𝑉𝑃. We 
normalize the standard deviations to the velocities for a better understanding of the 
uncertainty level. 

4.4 W/D method to estimate reference Poisson’s ratio 

The W/D method is a stand-alone method, which provides interval 𝑉𝑆 and 𝑉𝑃 
models. However, when other surface wave methods, such as LCI, SWT and etc., 
are applied to estimate the 𝑉𝑆 model, they require a priori Poisson’s ratio in the 
inversion stage. We use the W/D method to estimate the Poisson’s ratio required 
for these methods. Also, using the same Poisson’s ratio, we transform the estimated 
𝑉𝑆 models from these methods into 𝑉𝑃. 

In chapter 4.1, it was described how we cluster the DCs to group them to more 
homogenous sets, and we estimate a reference W/D relationship and apparent 
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Poisson’s ratio for each set (cluster). We go a step further to estimate an laterally 
invariant interval Poisson’s ratio corresponding to the area of the cluster. We use 
the reference 𝑉𝑆𝑍 and apparent Poisson’s ratio of each cluster to estimate the 

reference 𝑉𝑃𝑍, using equation (4.5). Then, we estimate the reference interval 𝑉𝑃 
from the reference 𝑉𝑃𝑍, thanks to equations (4.9) and (4.10). Then, we use the 
reference 𝑉𝑆 and 𝑉𝑃 models to estimate the Poisson’s ratio of the cluster, using the 
expression: 
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We use this method in sections 6 and 7 to estimate a priori Poisson’s ratio required 

for LCI and SWT.  

4.5 Application to field data sets 

4.5.1 CNR 

4.5.1.1 Local DCs and clusters 

The local DCs were estimated along the 2D seismic line in different positions by 
spatially windowing the data and performing f–k wavefield transform (Bergamo et 
al. 2012; section 2.3.2.1), which was designed according to equation (2.2). Having 
72 receivers along the main seismic line, we used an α number of 6, which 

corresponds to a standard deviation of 1.8 m and a wavenumber resolution of 0.9 
rad/m. For each window position, the spectra from the four sources external to the 
line were stacked to improve the signal-to-noise ratio before extracting the DC. We 
estimated nine DCs, each 1.8 m apart. We also estimated four DCs using cross-line 
acquisitions. The location of the 13 retrieved DCs are indicated in the Figure 3.1c 
of the section 3.1.  

The estimated DCs were continuous and smooth, and since the site is characterized 
by a smooth velocity gradient, we assume that the DCs correspond to the 
fundamental mode of surface wave propagation without any contamination by 
higher modes. In Figures 4.5a and b, we show the estimated DCs as a function of 
frequency and wavelength, respectively. The extracted DCs were analyzed by the 
hierarchical clustering strategy (Figure 4.5c). Two main clusters were detected: six 
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DCs for the blue cluster (cluster A) and five for the green cluster (cluster B). Two 
DCs were identified as outliers by the clustering process (indicated in red); 
therefore, they were excluded from the workflow. In Figures 4.5a and b, the same 
colors are used to distinguish the clusters and the outliers. 

  

Figure 4.5: The estimated DCs from the processing of the CNR data set 
using the f-k method. (a) Estimated DCs as a function of frequency, indicated with 
different colors based on the obtained clusters in (c). (b) Estimated DCs as a 
function of wavelength, indicated with different colors based on the obtained 
clusters in (c). (c) The dendrogram obtained through hierarchical clustering; two 
main clusters are shown in blue and green, and the two outlier DCs are shown in 
red . 

As was mentioned in section 3.1.1, an area of the site was excavated and filled with 
loose sand (sand body), creating sharp lateral variations. The two selected clusters 
correspond to DCs located inside and outside the sand body, and the outliers are 
located at the sand body boundaries. Thus, the clustering was effective in 
identifying different zones along the survey line and positions where sharp lateral 
variations occur. 

4.5.1.2 The reference W/Ds and apparent Poisson’s ratios 

In Figures 4.6a to c and Figures 4.6d to f, we show the results of the MCI to estimate 
reference 𝑉𝑆𝑍 models from the reference DCs of clusters A and B, respectively. In 
Figures 4.6 a and d, we show the experimental DCs with the uncertainties computed 
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according to equation (4.11). The selected 𝑉𝑆 models (Figures 4.6b and e) were 
then transformed into 𝑉𝑆𝑍 models (Figures 4.6c and f), which we averaged to 
obtain the reference 𝑉𝑆𝑍 models. When comparing the 𝑉𝑆 results shown in Figures 
4.6b and e, the different velocities between loose sand and stiffer material of the 
background corresponding to cluster A and B can be observed. 

 

Figure 4.6: The results of the MCI applied to the reference DCs of the CNR 
data set. (a) to (c) are related to cluster A and (d) to (f) are related to cluster B. 
(a,d) The experimental DC with the uncertainties and the selected synthetic DCs. 
(b,e) The selected 𝑉𝑆 models. The black model shows the average of the selected 
models. (c,f) The selected 𝑉𝑆𝑍 models and the averaged reference 𝑉𝑆𝑍 models. 

In Figures 4.7a and b, we show the reference DCs of clusters A and B as a function 
of wavelength, where the horizontal and vertical bars are the standard deviation of 
the phase velocity and wavelength (equation 4.13). We estimated the standard 
deviation of the reference 𝑉𝑆𝑍 models (section 4.3.1) using the selected 𝑉𝑆𝑍 
models in Figures 4.6c and f. We propagated the 𝑉𝑆𝑍 uncertainty to depth 
uncertainty using equation (4.14). In Figures 4.7a and b, we also show the reference 
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𝑉𝑆𝑍 models (in black), where the horizontal and vertical bars are the standard 
deviation of the 𝑉𝑆𝑍 and depth, respectively. Next, we used the reference DCs and 
corresponding 𝑉𝑆𝑍 models to estimate the reference W/D relationships. In Figure 
4.8a and b, we show the reference W/D relationships with the corresponding depth 
and wavelength uncertainties (black bars). 

 

Figure 4.7: The reference DC and 𝑉𝑆𝑍 models in red and black with the 
uncertainties, corresponding to: (a) cluster A, and (b) cluster B. 

the synthetic W/D relationships in Figures 4.8a and b were compared with the 
experimental ones to estimate the reference apparent Poisson’s ratio of cluster A 

and B in Figures 4.8c and d. At each depth, 10,000 random samples based on the 
standard deviations of the W/D relationships (gray dots in Figures 4.8a and b) were 
generated, and the standard deviations of the reference apparent Poisson’s ratios 

were estimated (horizontal bars in Figures 4.8c and d) following the uncertainty 
propagation method explained in section 4.3.1.  
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Figure 4.8: The estimated reference W/D and apparent Poisson’s ratios for 
the CNR data set. (a) and (c) are related to cluster A. (b) and (d) belong to cluster 
B. (a,b) The estimated reference W/D relationship in black with depth and 
wavelength standard deviations shown as horizontal and vertical bars, and the 
random samples of the reference W/D relationship in gray dots. The synthetic W/D 
relationships for Poisson’s ratio analysis are highlighted in different colors. (c,d) 
The estimated apparent Poisson’s ratios with the uncertainties as the standard 
deviations. 

4.5.1.3 Results 

All DCs inside each cluster were transformed into 𝑉𝑆𝑍 profiles using the reference 
W/D relationship of the cluster (Figures 4.8a and b). These 𝑉𝑆𝑍 profiles were 
converted into interval 𝑉𝑆 profiles by applying equations (4.9) and (4.10). From the 
11 DCs, 11 𝑉𝑆 profiles were estimated and linearly interpolated to create a quasi 
2D section of the 𝑉𝑆. In Figure 4.9a, we show the estimated interval 𝑉𝑆 model with 
the sand body shape superimposed. The estimated 𝑉𝑆 shows lower velocity inside 
the loose sand region, as expected. In Figure 4.9a (black dots), we show the DC 
data points after the W/D transform, which can be considered as the vertical 
resolution of the data. Figure 4.9b shows the normalized uncertainty of the 
estimated 2D section of the S-wave velocity (Figure 4.9a). The uncertainties are 
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below 10 % in most regions except for the small portion below and inside the sand 
body, where it gets as high as 20%. 

 

Figure 4.9: (a) The estimated quasi 2D 𝑉𝑆 model from the application of 
the W/D method to the CNR data set superimposed with the sand body; the black 
dots represent the DC data distribution along the profile. (b) The normalized 
uncertainty of the estimated 𝑉𝑆 model in (a). 

We estimated the 𝑉𝑃 model (Figure 4.10a), following the method explained in 
section 4.2.4 and 4.2.5. In Figure 10b, we compare the estimated 𝑉𝑃 with the 𝑉𝑃 
model obtained from a benchmark P-wave traveltime tomography (Khosro Anjom 
et al., 2019). At each point, the difference ε between these two models is calculated 

as: 

𝜀 =  
𝑉𝑃𝑡𝑜𝑚𝑜 − 𝑉𝑃𝑊𝐷

𝑉𝑃𝑡𝑜𝑚𝑜
  . (4.17) 

In Figure 4.10c, we show the ε. In most parts of the 2D section, the difference 

between the estimated 𝑉𝑃 and the benchmark is less than 5%. The highest 
differences are registered at very shallow depths as well as at the bottom and below 
the sand body. The water table is not expected within the first 5 m of the site’s 

subsurface, which is also confirmed by the depicted low P-wave velocities. We 
estimated the normalized uncertainty of the estimated 𝑉𝑃 (Figure 4.10d), following 
the method in section 4.3.2, which shows values of less than 10% except for parts 
of the sand body area. 
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Figure 4.10: The estimated quasi 2D 𝑉𝑃 models from the application of the 
W/D method to the CNR data set compared with the benchmark 𝑉𝑃 from P-wave 
tomography: (a) Estimated 𝑉𝑃 model from  the W/D method. (b) Benchmark 𝑉𝑃 
from the P-wave traveltime tomography (Khosro Anjom et al., 2019). (c) The 
normalized difference between the models in (a) and (b) using equation (4.17). (d) 
The normalized uncertainty of the estimated 𝑉𝑃 from the W/D method in (a). 
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4.5.1.4 Full-waveform matching 

In this section, using the estimated quasi 2D 𝑉𝑆 and 𝑉𝑃 models, we construct a full 
3D model, representative of the site conditions, to numerically simulate the full-
waveform propagation from the position of the sources and store the recordings at 
the position of the 72 receivers. These synthetic records are then compared with the 
observed (real) recordings for further evaluation of the results. Next, based on the 
similarity of the real and synthetic data, we investigate the possibility of using the 
estimated 𝑉𝑆 and 𝑉𝑃 models from the W/D method as the initial models for the 
FWI. 

Full-waveform numerical simulations were performed using a 3D spectral-element 
method (Trinh et al., 2019). To construct the 3D simulation domain, we extended 
laterally the estimated 2D models to a 3D structure by symmetrically replicating 
the 2D section along the cross-line direction (y-direction). The extent of the sand 
body in the y-direction was kept equal to that observed one in the x-direction.  Also, 
the models were extended laterally along the x-direction and in-depth, beyond the 
investigation limits of the method, with the aim of avoiding boundary artifacts 
during numerical simulations. The vertical extension was performed using a 
constant gradient, extrapolating the trend of the lower portion of the estimated 
models. In Figures 4.11a and c, we show the vertical sections of the extended 𝑉𝑆 
and 𝑉𝑃 superimposed with the boundaries of the estimated 𝑉𝑆 and 𝑉𝑃 before the 
extension (dashed black line). In Figures 4.11b and d, we show the horizontal 
section of the 3D models at the surface, where the black line shows the position of 
the receivers along the main seismic line.  

The model parameters required for the simulations are the estimated 𝑉𝑃 and 𝑉𝑆, 
density, and quality factors (QP and QS). The density was assumed constant over 
the 3D space (1800 kg/m3), while QP and QS values were estimated from the 
velocity models according to Hauksson and Shearer (2006).  

We performed the simulations considering the space and time numerical dispersion 
criteria. In agreement with the frequency band (10 -150 Hz) and velocity range (80 
m/s – 1050 m/s), a mesh with a constant element size of 0.3 m (in the x, y, and z-
direction) was used to honor the wavelength sampling and avoid numerical 
dispersion.  
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Figure 4.11: The extended estimated 𝑉𝑆 and 𝑉𝑃 models (from W/D method) 
of the CNR data set prepared for the full-waveform simulation. (a) The vertical 
section of the extended 𝑉𝑆 superimposed with the boundaries of the estimated 𝑉𝑆 
before extension. (b) The horizontal section of the extended 𝑉𝑆 model at depth=0. 
(c) The vertical section of the extended 𝑉𝑃 superimposed with the boundaries of the 
estimated 𝑉𝑃 before extension. (d) The horizontal section of the extended 𝑉𝑃 model 
at depth=0 . 

The simulation results together with the observed (real) records at one shot position 
(in Figure 3.1b, the 4th shot from left) are shown in Figure 4.12. The simulated data 
(in red) from the forward modeling show the same patterns of phases as the real 
data (in black), except for small diffracted phases. In Figures 4.12b and c, zoomed 
sections (shown as black boxes in Figure 4.12a) illustrate the in-phase shape of 
waveforms, which confirms the good accuracy of the estimated 𝑉𝑆 and 𝑉𝑃 models. 
Teodor et al. (2018) performed the similar approach to a synthetic data set similar 
to CNR geological properties. They applied the W/D method to the synthetic data 
to obtain the 𝑉𝑆 and 𝑉𝑃 models and then, they simulated the data based on the 



51 
 

estimated models. The true and simulated data well-matched except for the far-
offset which exhibited small phase difference (figure 7 in Teodor et al., 2018).  

 

Figure 4.12: The comparison between the simulated and real data from one 
of the shot locations (4th shot from left in Figure 3.1b) of the CNR field test. In black, 
the traces of the recorded on the field. In red, the traces, for the same shot position, 
obtained by running forward simulations on the estimated 𝑉𝑆 and 𝑉𝑃 models from 
the application of the W/D method. (a) The whole recordings. (b) The zoomed view 
of the traces 0–17. (c) The zoomed view of the traces 45–72. 

As further validation, DCs were extracted from the synthetic data and compared 
with those obtained from real data (Figure 4.13). Differences between phase 
velocities of these DCs were always less than 10%. In Figure 4.13, the two different 
phase velocity trends, inside and outside the sand body, can be observed both for 
the real DCs and those obtained from the simulated data.  
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Figure 4.13: Comparison between the experimental DCs of the CNR data 
set and the DCs from synthetic seismograms of numerical simulations. 

Cross-correlation between real and synthetic data can be a fair criterion for the 
goodness of the full-waveform matching, especially when cycle-skipping effects 
are considered. In Figure 4.14, we show the results of the cross-correlation of the 
synthetic and real recordings from Figure 4.12, where the solid red line shows the 
zero-time lag. To avoid the cycle-skipping in the FWI process, the error in matching 
the real and synthetic data should fall below half-the-period of the dominant 
frequency (Virieux and Operto, 2009). For CNR data set, at a dominant frequency 
of 60 Hz, the half-period corresponds to 8.33 ms. It can be observed in Figure 4.14 
that the short-offset traces (0 to 52) show lower time-lag than half-the-period, while 
long offset traces (52 to 72) show a time lag higher than 8.33 ms, leading to possible 
cycle-skipping problems, relevant to long offsets and arrival times greater than 0.12 
s (see Figure 4.12c). The high-frequency surface waves generated from the source 
are highly affected by the low velocity inside the sand body before reaching 
receivers 52 to 72; slight errors in the velocity or the sand body's size significantly 
affect the arrival time of the high-frequency phases. These effects, related to the 
interaction of the wavefront with the sand body anomaly, can be mitigated by 
hierarchical strategies from low-to-high frequencies and short offsets to large 
offsets. Dedicated FWI strategies should be designed for overcoming these cycle-
skipping issues. 
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Figure 4.14: The cross-correlation of the experimental and synthetic data 
from Figure 4.12a. 

 

Figure 4.15: Full waveform comparison of the data from Figure 4.12 after 
muting. In black, the muted traces of the recorded on the field; In red, the traces, 
for the same shot position, obtained by running forward simulations on the 3D 
estimated 𝑉𝑃 and 𝑉𝑆 models and muted afterward. (a) The whole recordings. (b) 
Zoomed view of traces 0 to 17. (c) Zoomed view of traces 45 to 72. 
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As an illustration of such hierarchical strategy, we muted the out of phase portion 
of the recordings at far offsets. In Figure 4.15a, the muted real and synthetic 
recordings are shown in black and red. The muting impact on the cycle-skipping is 
illustrated by the cross-correlation of real and synthetic recordings in Figure 4.16. 
The cross-correlation shows an acceptable time-lag for the whole seismogram 
considering the recordings' main frequency as 60 Hz.  

 

Figure 4.16: The cross-correlation of the muted experimental data with the 
muted synthetic from Figure 4.15a. 

Teodor et al. (2021) compared the use of different initial models, including the 
estimated models from W/D method (Figures 4.9a and 4.10a), for the FWI of the 
CNR data. They concluded that the use of the initial models from W/D method 
significantly improves the final results of the inversion; the extent and velocities of 
sand body area were better resolved. 

4.5.2 Aurignac 

4.5.2.1 Local DC estimation 

The classical 3D data sets usually consist of multiple parallel and perpendicular 
acquisition lines. The phase-shift processing method can be separately applied to 
various seismic lines to estimate reliable local DCs at different locations. For full 
3D data sets, such as the Aurignac data set, the receivers aligned with the sources 
can be located, and the estimated DCs can be assigned to the center of the receiver 
arrays. However, application to a full 3D data set can lead to significant 
inconsistencies between the adjacent estimated local DCs: A DC at a particular 
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position can be obtained from receiver arrays with various azimuthal angles aligned 
with sources; the propagation paths from different angles can result in very different 
DCs. To better show this issue, we compare the estimation of local DC at a specific 
location of the Aurignac data set (green cross in Figure 4.17a) from two receiver 
arrays representing different angles (highlighted in blue and red in Figure 4.17a). 
The estimated DCs corresponding to the same location are more than 15% different 
in terms of phase velocity for the whole frequency band (Figure 4.17b). The two 
arrays have a single intersection point and a completely different surface wave 
propagation path, which leads to this significant difference. 

 

Figure 4.17: Two example receiver arrays from Aurignac data set to obtain 
the DC at the same location.(a) The acquisition layout in the north-west of the 
Aurignac data set. Two selected receiver arrays and shot locations highlighted in 
blue and red used to separately estimate the DC at the location of green cross. (b) 
The estimated fundamental mode DCs from the two sets of recordings from the 
receiver arrays in (a) using the phase-shift method. 

To resolve arrays directionality for 3D data sets, we consider areal receiver spread 
instead of linear spreads. For each DC estimation, we select the receivers inside a 
square area, and we consider the recordings from sources within a specific range 
distance from the center of the square. We use the phase-shift method to estimate 
the DC, and we assign it to the center of the receiver spread. We estimate DCs 
corresponding to different locations by sliding the square.  

For the Aurignac data set, we selected the receivers inside a 100×100 m2 square 
and considered sources within 250 m from the square’s center. We slid the square 

by one inter receiver distance to maximize the number of the estimated DCs. In the 
northern part of the field, the inter-receiver distance was 50 m, while this value was 
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25 m in the southern parts. We processed separately the two sub data sets (north-
west and south-west) from the outside of mining pits to minimize the effect of the 
elevation difference on the propagation of surface waves from the north to the south 
and vice versa. Figure 4.18 shows two estimations of the fundamental mode DCs 
from the north-west area using the adopted DC estimation workflow. In Figures 
4.18a and c, we show the selected receivers and sources. We stacked the computed 
spectra from different source locations to increase the signal-to-noise ratio. In 
Figures 4.18b and d, we show the obtained spectra and the fundamental mode 
corresponding to the records from the selected shots in Figures 4.18a and c. In 
Figure 4.18d, the excitation of at least one higher mode of the surface wave is 
evident. We only consider the fundamental modes of the DCs for the application of 
the W/D method. 

 

Figure 4.18: The example estimations of the fundamental mode of the 
surface waves for the Aurignac data set. (a,c) The selected receiver and sources for 
the phase-shift transform. (b,d) The estimated spectra and fundamental modes 
corresponding to the selected recordings in (a) and (c), respectively. 

In total, we estimated 545 fundamental mode DCs for the considered two zones. In 
Figure 4.19a, we show the estimated DCs as a function of frequency. The next step 
from the W/D workflow is the clustering of DCs. The clustering algorithm requires 
DCs with a common frequency band. We excluded the short banded DCs from the 
clustering algorithm, but not the whole workflow, to increase the common band 
between the DCs. The circles in Figure 4.19b show the DCs used for the clustering 
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and the colors distinct the two obtained cluster. Based on the spatial location of the 
obtained clusters, we assigned the previously excluded DCs to the clusters. The 
DCs of the western cluster (cluster A shown in blue) presented lower phase 
velocities compared to the eastern DCs (cluster B shown in green).   

 

Figure 4.19: The estimated DCs and clustering of the Aurignac data set. (a) 
The estimated DCs, where the colors of obtained clusters in (b) are used to distinct 
the two velocity trends. (b) The spatial view of the obtained clusters. The circles 
present the DCs used for the clustering algorithm. The asterisks show all DCs 
divided into two clusters based on the spatial location of the two clusters. 

To analyze the wavelength coverage of the estimated DCs, in Figure 4.20, we plot 
the pseudo-slices within different wavelength ranges, where the color scale shows 
the average phase velocity within the wavelength range. A limited portion of data 
are available for wavelengths below 40 m (Figure 4.20a). The coverage increases 
for the wavelengths above 40 m until it reaches the maximum at 160 to 220 m 
(Figure 4.20e). Then, the coverage declines. The velocity contrast detected by the 
clustering algorithm between the west and east of the area can be seen in the pseudo-
slices in Figure 4.20.  
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Figure 4.20: Wavelength coverage of the estimated DCs for the Aurignac 
data set plotted as pseudo-slices within different wavelength ranges: (a) 0 to 40m. 
(b) 40 to 80 m. (c) 80 to 120 m. (d) 120 to 160 m. (e) 160 to 220 m. (f) 220 to 280 
m. 

4.5.2.2 The reference W/D and apparent Poisson’s ratios 

Amongst the DCs of each cluster, a reference DC was selected as the reference DC. 
In Figures 4.21, we show the steps of estimating the reference W/D relationship and 
apparent Poisson’s ratio for cluster A. We inverted the reference DC of cluster A 

(Figure 4.21a) using the MCI; we considered variable Poisson’s ratio between 0.1 

and 0.45 and a vast model space for the 𝑉𝑆. We used density of 2000 kg/m3 for the 
first layer and constant density of 2200 kg/m3 for the rest of the layers. We imposed 
a 0.05 level of confidence for the Fisher test to select the best fitting models. Figure 
4.21a shows the reference DC of cluster A with phase velocity uncertainty 
estimated from the seismic data and the synthetic DCs corresponding to the selected 
𝑉𝑆 models in Figure 4.21b. The selected and reference 𝑉𝑆𝑍 models are shown in 
Figure 4.21c. We used the reference 𝑉𝑆𝑍 and experimental DC to estimate the W/D 
relationship in Figure 4.21d. Then, we estimated the reference apparent Poisson’s 

ratio (Figure 4.21e), following the method explained in sections 4.2.4. In Figures 
4.21d and e, we also show the uncertainty associated with the reference W/D and 
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apparent Poisson’s ratio of the cluster A, following the steps explained in section 

4.3.1. 

 

Figure 4.21: The steps of estimating the reference W/D relationship and 
apparent Poisson’s ratio of the Aurignac data set for the area labeled as cluster A 
in Figure 4.19b. (a) The reference DC with the uncertainty and the synthetic 
selected DCs from the MCI. (b) The selected 𝑉𝑆 models from the MCI. (c) The 
selected 𝑉𝑆𝑍 models from the MCI; the solid black line is the reference 𝑉𝑆𝑍 model 
computed by averaging the selected 𝑉𝑆𝑍 models. (d) Estimated reference W/D 
relationship in black with the vertical and horizontal bars showing the depth and 
wavelength standard deviations. The colored W/D relationships are the synthetic 
ones, each with constant Poisson’s ratio, used for Poisson’s ratio sensitivity 
analysis. (e) The estimated reference apparent Poisson’s ratio with the standard 
deviation at each depth. 

In Figure 4.22, we show the steps of estimating the W/D relationship and apparent 
Poisson’s ratio for cluster B in the same order explained for cluster A. The 
uncertainties of the estimated W/D relationship and apparent Poisson’s ratio of 
cluster A are higher than the observed ones for cluster B. This is mainly due to the 
higher uncertainties of the reference DC of cluster A (Figure 4.21a) compared to 
cluster B (Figure 4.22a). The depth range of the estimated W/D relationship and 
apparent Poisson’s ratio for cluster A are limited to 20 to 128 m (Figures 4.21d and 
e), while the depth ranges are increased to 20 to 140 m for cluster B (Figures 4.22d 
and e): The higher phase velocities of DCs of cluster B resulted in larger 
wavelengths, providing a deeper subsurface investigation depth. 
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Figure 4.22: The steps of estimating the reference W/D relationship and 
apparent Poisson’s ratio of the Aurignac data set for the area labeled as cluster B 
in Figure 4.19b. (a) The reference DC with the uncertainty and the synthetic 
selected DCs from the MCI. (b) The selected 𝑉𝑆 models from the MCI. (c) The 
selected 𝑉𝑆𝑍 models from the MCI; the solid black line is the reference 𝑉𝑆𝑍 model 
computed by averaging the selected 𝑉𝑆𝑍 models. (d) Estimated reference W/D 
relationship in black with the vertical and horizontal bars showing the depth and 
wavelength standard deviations. The colored W/D relationships are the synthetic 
ones, each with constant Poisson’s ratio, used for Poisson’s ratio sensitivity 
analysis. (e) The estimated reference apparent Poisson’s ratio with the standard 
deviation at each depth. 

4.5.2.3 Results 

We estimated the 1D 𝑉𝑆𝑍 models from the local DCs of each cluster, thanks to the 
W/D relationships in Figures 4.21d and 4.22d. Then, we used equation (4.9) and 
(4.10) to estimate the interval 𝑉𝑆 models at every 10 cm depth step. In Figure 4.23a 
to i, we show the horizontal slices of the estimated local 𝑉𝑆 models averaged over 
the depth intervals indicated on top of each plot. Also, the 1D 𝑉𝑆 models at every 
10 cm steps were laterally interpolated (linear) to form the quasi 3D model in Figure 
4.23j. In Figure 4.23k, we show the isosurfaces of the estimated 𝑉𝑆 model at various 
plains in x, y, and z directions, which was obtained from the quasi 3D model in 
Figure 4.23j.  
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Figure 4.23: The estimated 𝑉𝑆 model for the Aurignac site using the W/D 
method. (a to i) The horizontal slices within various depth intervals indicated on 
top of each figure. (j) The pseudo 3D view of the estimated 𝑉𝑆 after linear 
interpolation of the 1D models. (k) Isosurfaces obtained from the 3D model in (j) 
at plains x=600 m, y=0 and 400 m, and z=70 and 125 m. 
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Figure 4.24: The estimated 𝑉𝑃 model for the Aurignac site using the W/D 
method. (a to i) The horizontal slices within different depth intervals indicated on 
top of each figure. (j) The pseudo 3D view of the estimated 𝑉𝑃 after linear 
interpolation of the 1D models. (k) Isosurfaces obtained from the 3D model in (j) 
at plains x=600 m, y=0, and 400 m, and z=70 and 125 m. 
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Using equation (4.5) and thanks to the reference Poisson’s ratio of the two clusters 

(Figures 4.21e and 4.22e), we transformed the estimated 1D 𝑉𝑆𝑍 models into 𝑉𝑃𝑍 
models. Then, we transformed the 𝑉𝑃𝑍 model into interval 𝑉𝑃 models (equations 
4.9 and 4.10). In Figures 4.24a to i, we show the horizontal slices of the interval 𝑉𝑃 
models within the same depth interval as shown in Figures 4.23a to i. Similar to the 
estimated 1D 𝑉𝑆 models, we linearly interpolated the 1D 𝑉𝑃 models to obtain the 
pseudo 3D view in Figure 4.24j. In Figure 4.24k, we show the isosurfaces of the 
estimated 𝑉𝑃 model obtained from Figure 4.24j. The estimated 𝑉𝑆 and 𝑉𝑃 models 
do not contain velocity values between 125-140 m for the west side (Figures 4.23i 
and 4.24i), since the W/D relationship and apparent Poisson’s ratio of the cluster A 
provided estimations only up to the depth 128 m (Figures 4.21d and e). The 
estimated 𝑉𝑆 and 𝑉𝑃 models show a significant velocity contrast between the east 
and west. However, this contrast reduces in the deeper portion of the model. 

We estimated the associated uncertainty to the estimated 𝑉𝑆 and 𝑉𝑃 models, 
following the method explained in section 4.3. In Figure 4.25 and 4.26, we show 
the 3D view of the normalized standard deviation for the estimated 𝑉𝑆 and 𝑉𝑃 
models, respectively. In the majority of the 3D volume, the uncertainty is lower 
than 15%. However, for both models, the uncertainty of the west side is higher than 
the east; this is mainly because of the more complex geology of the west side which 
led to higher uncertainties of the DCs. 

 

Figure 4.25: The normalized standard deviation of the estimated 𝑉𝑆 model 
for Aurignac site using the W/D method (Figure 4.23). (a) The pseudo 3D 
representation of the standard deviations. (b) the isosurfaces obtained from the 3D 
plot in (a) at plains x=600 m, y=0 and 400 m, and z=70 and 125 m. 



64 
 

 

Figure 4.26: The normalized standard deviation of the estimated 𝑉𝑃 models 
for the Aurignac site using the W/D method (Figure 4.24). (a) The pseudo 3D 
representation of the standard deviations. (b) The isosurfaces obtained  the 3D plot 
in (a) at plains x=600 m, y=0 and 400 m, and z=70 and 125 m. 

4.5.3 Oil and gas exploration data set  

4.5.3.1 Local DC estimation and clustering 

The local DCs along the seismic 2D line were estimated by Karimpour (2018) in 
the f-k domain using the method proposed by Bergamo et al. (2012). The data were 
spatially windowed using Gaussian windows prior to wavefield transform. A DC 
for every 60 m of the 12 km 2D seismic line was estimated, giving a total of 198 
DCs. A quality control method was used to locate the noisy and possibly erroneous 
DCs. 52 DCs were considered low quality, and they were discarded from the data. 
For more information regarding the estimation of the DCs and the quality control, 
please see Karimpour (2018). In Figure 4.27a, we show the estimated DCs as a 
function of frequency. The clustering of the DC data suggested two groups of DCs 
(dendrogram in Figure 4.27b). We show the spatial location of the clustered DCs in 
Figure 4.27c. The outlier DC (In Figure 4.28c at the position of around 5000 m) 
was removed from the DC data. In Figure 4.27a, the two trends of the DCs (cluster 
A and B) are distinct with different colors. 
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Figure 4.27: (a) The estimated DCs for oil and gas exploration data set 
using f-k wavefield method. The color scale separates the two clusters obtained in 
(b) and (c). (b) The dendrogram showing the clustering of the DCs in (a); two main 
clusters are detected. (c) The spatial location of the two clusters obtained from (b). 

In Figure 4.28a, we show the pseudo-section of the estimated local DCs along the 
seismic line, where the y-axis and the color scale show the wavelength and phase 
velocity of the DCs, respectively. A significant change in the trend of the DCs can 
be seen at an approximated position of 2000 m; the DCs between 0 to 2000 m show 
lower phase velocities compared to the rest of the line, which was detected also by 
clustering algorithm (Figure 4.27c).  

 

Figure 4.28: Pseudo-section of the estimated DCs for the oil and gas 
exploration data set. The y-axis and the color scale are the wavelength and phase 
velocity of the local DCs, respectively. 
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4.5.3.2 The reference W/Ds and apparent Poisson's ratios 

For each cluster, we selected the reference DC based on the quality control 
performed by Karimpour (2018). In Figure 4.29 and 4.30, we show the steps of 
estimating the W/D relationship and apparent Poisson's ratio for clusters A and B, 
respectively. The velocity contrast between the west side and east side of the 
seismic line can also be observed by comparing the 𝑉𝑆 results of the MCI inversion 
for the cluster A and B (Figures 4.29b and 4.30b). 

 

Figure 4.29: The steps of estimating the reference W/D relationship and 
apparent Poisson's ratio of the oil and gas exploration data set for the locations 
labeled as cluster A in Figure 4.27c. (a) The reference DC and the synthetic 
selected DCs from the MCI. (b) The selected 𝑉𝑆 models from the MCI. (c) The 
selected 𝑉𝑆𝑍 models from the MCI; The solid black line is the reference 𝑉𝑆𝑍 model 
computed by averaging the selected 𝑉𝑆𝑍 models. (d) Estimated reference W/D 
relationship in black. The colored W/D relationships are the synthetic ones, each 
with constant Poisson's ratio, used for Poisson's ratio sensitivity analysis. (e) The 
estimated reference apparent Poisson's ratio. 
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Figure 4.30: The steps of estimating the reference W/D relationship and 
apparent Poisson's ratio of the oil and gas exploration data set for the locations 
labeled as cluster B in Figure 4.27c. (a) The reference DC and the synthetic 
selected DCs from the MCI. (b) The selected 𝑉𝑆 models from the MCI. (c) The 
selected 𝑉𝑆𝑍 models from the MCI; The solid black line is the reference 𝑉𝑆𝑍 model 
computed by averaging the selected 𝑉𝑆𝑍 models. (d) Estimated reference W/D 
relationship in black. The colored W/D relationships are the synthetic ones, each 
with constant Poisson's ratio, used for Poisson's ratio sensitivity analysis. (e) The 
estimated reference apparent Poisson's ratio. 

4.5.3.3 Results 

In Figure 4.31a, we show the estimated 𝑉𝑆 models at the location of the local DCs 
using the method explained in sections 4.2.3 to 4.2.5. In Figure 4.31b, we compare 
the estimated 𝑉𝑆 with the 𝑉𝑆 model by CGG using “surface wave 1D inversion” 
(Masoni, 2016). Both estimated 𝑉𝑆 models show significant lateral variation at 
approximately position 2000 m. However, the 𝑉𝑆 model from the surface wave 1D 
inversion presents lower 𝑉𝑆 compared to the model from W/D method. Moreover, 
the estimated 𝑉𝑆 model from W/D method presents more lateral and vertical 
variability for the investigated area. 
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Figure 4.31: Estimated 𝑉𝑆 models for the oil and gas exploration data set 
using: (a) W/D method. (b) surface wave 1D inversion performed by CGG 
(reproduced from Masoni, 2016). 

We also estimated the 𝑉𝑃 model following the method described in section 4.2.5. 
In Figure 4.32, we compare the estimated 𝑉𝑃 model from the W/D method (Figure 
4.32a) with the 𝑉𝑃 model obtained by Masoni (2016) using P-wave traveltime 
tomography (Figure 4.32b).  

The 𝑉𝑃 from the W/D method shows the same lateral discontinuity also observed 
by the estimated 𝑉𝑆 model. The 𝑉𝑃 from W/D method (Figure 4.32a) shows  higher 
resolution of the lateral and vertical variability compared to the model from P-wave 
traveltime tomography. 
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Figure 4.32: Estimated 𝑉𝑃 models for the oil and gas exploration data set 
(a) using the W/D method. (b) P-wave traveltime tomography (reproduced from 
Masoni, 2016). 

4.6 Conclusion 

We showed the application of the W/D method to three data sets to estimate the 
near-surface 𝑉𝑆 and 𝑉𝑃 models. The adopted hierarchical clustering of the DCs 
well detected the lateral discontinuities of the sites, which enables the method’s 

application in the presence of sharp lateral variations. We reformulated the 
relationship between time-average velocity and interval velocity (equation 4.9), and 
by including total variation regularization (equation 4.10), we reached a stable 
mechanism to estimate the interval 𝑉𝑆 and 𝑉𝑃 models. Being the W/D method a 
direct transformation technique, the noise in DCs is inherently propagated to the 
estimated 𝑉𝑆 and 𝑉𝑃 models. We developed a method to compute the uncertainty 
of the estimated 𝑉𝑆 and 𝑉𝑃 models from the experimental uncertainty of the data. 
For the CNR data set, the comparison between field records and synthetic 
waveforms computed from the obtained velocity model showed a very good 
agreement. This makes the W/D data transform method a good candidate for a fast 
estimate of initial velocity models to be used in FWI. 
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5. Monte Carlo joint inversion 

We develop a Monte Carlo joint inversion method to estimate high-resolution 𝑉𝑆 
and 𝑉𝑃 models. While DCs are mainly sensitive to the 𝑉𝑆 model, W/D relationships 
are sensitive also to Poisson's ratio and 𝑉𝑃. We perform the joint inversion in a 
Monte Carlo's scheme, based on two minimization objectives: (1) DC misfit. (2) 
W/D misfit. In the following, we explain the method. Then, we show its application 
to two synthetic examples and La Salle field data set. In the second synthetic 
example, we evaluate the performance of the proposed method in water saturated 
loose environment characterized by high Poisson’s ratio. The proposed method is 
published in Khosro Anjom et al., (2018) and also its E-lecture is available on 
EAGE website (Khosro Anjom et al., 2021). 

5.1 Method 

The inputs of the method are the experimental W/D relationship and DC at the same 
location. In smooth laterally varying sites, where the DCs can be considered as a 
single cluster, the experimental W/D relationship is not expected to change 
drastically at different locations. As a result, the W/D relationship of the close-by 
positions can be used at the location of the joint inversion. We estimate the 
experimental W/D relationship following the MCI method explained in section 
4.2.2. In Figure 5.1, we show the workflow of the joint inversion. 

 

Figure 5.1: The Monte Carlo joint inversion workflow. The inputs of the 
workflow are the experimental DC and W/D relationship, while the outputs are a 
set of selected 𝑉𝑆 and 𝑉𝑃 models. 
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We consider both 𝑉𝑆 and 𝑉𝑃 as targets of the inversion. So, a set of 𝑉𝑆 models, 
thicknesses, and Poisson’s ratios are uniformly sampled within the boundaries of 
the model space, which are chosen a priori. The number of layers selection involves 
a compromise between defining the system properly and the model over-
parameterization. The unknowns of the inversion increase almost linearly with the 
number of layers. As a result, the number of the randomly sampled model should 
increase when more layers are considered. We consider a fixed density profile for 
the inversion, based on the geological information from the site. The DC for each 
randomly generated model is calculated using Haskell and Thomson DC forward 
model. At this stage, the random 𝑉𝑆 models are automatically optimized (scaled), 
thanks to the scaling property of the DCs explained in section 2.3.3.2. The scaling 
adjusts the randomly sampled models to better-fitting models and minimizes the 
impact of possible poor model space boundary selection. We use theoretical DCs 
and corresponding 𝑉𝑆𝑍 models to obtain theoretical W/D relationships. Next, we 
compute the misfit of the theoretical W/D relationships and DCs with respect to the 
experimental ones. Given the different units of the two misfits (i.e., velocity for DC 
and wavelength for WD), we consider normalized misfit. We estimate the misfits 
for the DCs and W/Ds as:  
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where 𝑛 is the number of the layers (half-space excluded). So, 3𝑛 + 2 corresponds 
to the number of 𝑉𝑆, Poisson’s ratio, and thickness unknowns. 𝑙𝐷𝐶 and 𝑙𝑤𝑑  are the 
number of data points of the experimental DC and W/D. The exp,ic and ,syn ic are the 

experimental and synthetic phase velocity corresponding to 𝑖th frequency element, 
while the exp,i and ,syn i are the experimental and synthetic wavelength of the W/D 

relationships at each depth. If the uncertainties for the W/D relationship and 
experimental DC are available, the phase velocity and wavelength standard 
deviations can be used instead of  exp,ic and exp,i  to normalize equations (5.1) and 

(5.2).  
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The solution of multi-objective problems is non-trivial: a single solution that 
optimizes both misfits does not exist. We select the models that minimize the two 
misfits ( DCQ  and WDQ ), according to Pareto optimality. Pareto optimality or 
efficiency is a situation for which it is not possible to find a solution with lower 
misfit for one of the misfit functions without, at least, making one other misfit 
worsen off (Edgeworth, 1881; Pareto, 1896). A solution is called dominated when 
there exist other solutions having lower misfit for at least one of the misfit terms, 
while the other misfits remain unchanged. The Pareto efficient solutions are those 
solutions that cannot be dominated by any other solution from the defined model 
space. The Pareto efficiency of the solutions are assessed by the Pareto dominance 
criterion. Given two possible model solutions Am  and Bm , solution A  dominates 
B  if:  

{1,2}, ( ) ( )j A j Bj Q Q  m m ,            (5.3) 

where 1Q  and 2Q are the DC and W/D misfits. Usually, the result of applying 
Pareto dominance criterion is not a single but a set of Pareto efficient solutions. If 
these solutions are connected graphically on the cross-plot of the misfit, they create 
the front of optimum solutions, which is also known as the Pareto front (PF). For a 
small population of data, PF can be obtained graphically from the cross plot of the 
misfits. We developed a MATLAB routine that compares the model misfits in terms 
of Pareto dominance (equation 5.3) and automatically obtains the set of Pareto 
efficient models. We use this algorithm to select the Pareto efficient models that 
minimize the DCQ and WDQ , and we consider the 𝑉𝑆 and 𝑉𝑃 of these models as the 
solution of the joint inversion. 

To evaluate the inversion results, we compare the estimated models with true 
models (for synthetic examples) or with the benchmark models (for real data). We 
discretized the 𝑉𝑆 and 𝑉𝑃 of the selected and true (or benchmark) models within 
the investigation depth. For each selected model 𝑖, we compute the model misfit as: 
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where trVS  and trVP  are the true model (or benchmark) values, while iVS  and iVP  
are the velocities of the selected models. The misfit is computed at each discretized 

depth jz  and averaged over the n  number of data points in depth. 

5.2 Synthetic example 1 

The parameters of the synthetic example 1 are summarized in Table 5.1, where 4 
layers with gradually increasing 𝑉𝑆 are considered overlying the bedrock half-
space. 

Table 5.1: The model parameters of the synthetic example 1. 

 Thickness (m) 𝑉𝑆 (m/s) Poisson’s 

ratio (-) 
Density 
(kg/m3) 

Layer 1 2 100 0.2 1800 

Layer 2 5 200 0.2 1800 

Layer 3 10 400 0.33 2200 

Layer 4 20 500 0.33 2200 

Half-space - 1000 0.33 2200 

In Figure 5.2a, we show the true 𝑉𝑆 model, as well as the 𝑉𝑆𝑍 and DC, which we 
used to estimate the experimental W/D relationship in Figure 5.2b.  



74 
 

 

Figure 5.2: W/D relationship estimation and 𝑉𝑆 model sampling for the 
inversion of synthetic example 1. (a) The true 𝑉𝑆, 𝑉𝑆𝑍, and DC. (b) The estimated 
W/D relationship using the 𝑉𝑆𝑍 and DC in (a). (c) The generated 1,000,000 
random 𝑉𝑆 models for the Monte Carlo inversion compared with the true 𝑉𝑆 in 
black. 

The adopted model space boundaries for the Monte Carlo inversion are given in 
Table 5.2. We uniformly sampled 1,000,000 models within the defined boundaries. 
In Figure 5.2c, we show the 𝑉𝑆 of the sampled models. In the following, we 
compare the results of the inversion by considering the DC misfit with those from 
the joint inversion.  

Table 5.2: The boundaries of the model space used for random sampling of 
the parameters for the inversion of synthetic example 1. 

 Thickness 
(m) 

𝑉𝑆 (m/s) Poisson’s 
ratio (-) 

Density 
(kg/m3) 

Layer 1 1 to 5 50 to 150 0.15 to 0.4 1800 

Layer 2 2 to 10 150 to 250 0.15 to 0.4 1800 

Layer 3 5 to 20 250 to 550 0.15 to 0.4 2200 

Layer 4 10 to 30 300 to 750 0.15 to 0.4 2200 

Half-space - 800 to 1300 0.15 to 0.4 2200 
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5.2.1 Monte Carlo DC inversion 

We computed the misfit between true DC and synthetic DCs from random models. 
We used the statistical Fisher test (section 2.3.3.2) with a high confidence level 
(0.15) to select the best fitting models. In Figure 5.3, we show the selected results 
of the inversion in blue and the curves relevant to the true model in black. In Figure 
5.3b and c, we show in red the best matching 𝑉𝑆 and 𝑉𝑃 models among the 
1,000,000 randomly sampled models with respect to the true ones, according to 
equation (5.4); the best-matching random 𝑉𝑆 and 𝑉𝑃 models were not selected by 
the inversion and are 3.8% different from the true 𝑉𝑆 and 𝑉𝑃. The selected models 
from the inversion show a 10 to 32% difference with respect to the true models.   

 

Figure 5.3: The result of Monte Carlo inversion applied to synthetic 
example 1, considering only the DC misfit as selection criterion. (a) The selected 
DCs compared with the true one. (b) The selected 𝑉𝑆 models in blue compared with 
the true 𝑉𝑆 model in black. (c) The selected 𝑉𝑃 models in blue compared with the 
true 𝑉𝑃 model in black. In (b) and (c), the red VS and VP models are the best-
matching models among the random models according to equation (5.4). 

5.2.2 Monte Carlo Joint inversion 

In the previous section, we used the DC misfit to select the 𝑉𝑆 and 𝑉𝑃 models. 
Here, we consider both DC and W/D misfits for the inversion. In Figure 5.4a, we 
show the cross-plot of the W/D and DC misfits corresponding to each randomly 
sampled model, where the color scale associated with each point represents the 
model misfit computed from equation (5.4). Five models out of the 1,000,000 
models were registered as Pareto efficient (asterisks in Figure 5.4a). The 
comparison between the DC and W/D relationship of these five models with respect 
to the true ones, are given in Figures 5.4b and c. In Figures 5.4d and e, we show the 
selected 𝑉𝑆 and 𝑉𝑃 models; the plots also include the true models and the best-
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matching model amongst the randomly sampled models according to equation 
(5.4). The minimum difference of 7.3% was registered for the estimated joint 
inversion models with respect to the true model. This value was 3.8% for the best-
matched randomly sampled models (red models in Figures 5.4d and e), which was 
not selected by the joint inversion. The estimated models show a better estimation 
of 𝑉𝑆 and 𝑉𝑃 in deeper layers than the obtained models from DC inversion only 
(Figure 5.3b and c). 

 

Figure 5.4: The Monte Carlo joint inversion result for the synthetic example 
1. (a) The cross-plot showing the W/D and DC misfit of the random models. The 
color scale shows the misfit between each model with respect to the true one 
according to equation (5.4). (b) The DCs of the selected models compared with the 
true one. (c) The W/Ds of the selected models compared with the true one. (d) The 
selected 𝑉𝑆 models in light blue compared to the true one in black. (e) The selected 
𝑉𝑃 models in light blue compared with the true one in black. In (d) and (e), the red 
VS and VP models are the best-matching models among the random models 
according to equation (5.4). 

In the boxplot in Figure 5.5, we compare the model misfit of all randomly sampled 
models, the selected models from DC inversion, and the selected models from the 
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joint inversion. The box plot is defined by three lines showing the 25th percentile, 
median and 75th percentile of the residual’s distribution, and whisker lines 

extending from the box’s edges up to 1.5 times the distance between the edges of 

the box. The rest of the data are considered outliers and shown with “+”. The 

median misfit of the estimated models, according to both inversions, is significantly 
less than all models’ misfits. Yet, the joint inversion estimated more accurate 
models, which mostly were less than 15% different from true 𝑉𝑆 and 𝑉𝑃 models. 

 

Figure 5.5: The model misfit of all 1,000,000 randomly sampled models, 
selected models using DC inversion (Figure 5.3), and selected models using joint 
inversion (Figure 5.4), with respect to the true 𝑉𝑆 and 𝑉𝑃 models of the synthetic 
example 1. These model misfits are computed using equation (5.4). 

5.3 Synthetic example 2 

We applied the joint inversion method to a 1D synthetic example composed of sand 
deposit overlying the half-space with the water table at depth 10 m. In Figure 5.6, 
we show the soil column of the synthetic example 2, in which we divided the sand 
deposit medium into unsaturated and saturated layers. 
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Figure 5.6: The geometry of the synthetic example. The sand deposit is 
divided into unsaturated and saturated layers, which overly the bedrock half space.  

The petrophysical properties related to the sand deposit shown in Table 5.3 are 
taken from Garofalo (2014) and based on Comina et al. (2010) and Santamarina et 
al. (2001). In Table 5.3, skeleton ,   and s  are the Poisson’s ratio of the skeleton, 
porosity and density corresponding to the sand deposit, respectively. f and fK

are the density and bulk modulus of the fluid (water). 

Table 5.3: The petrophysical properties adopted for the sand deposit and 
pore fluid (water) of the synthetic example 2 shown in Figure 5.6. 

skeleton  0.227 

  0.4 

s  2650 kg/m3 

f  1000 kg/m3 

fK  2.18 Gpa 

Foti et al. (2002) proposed a relationship to estimate the porosity of the saturated 
granular material from the seismic velocities. We reorganized this equation to 
estimate 𝑉𝑃 as:  
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We used equation (5.5) to estimate the 𝑉𝑃 of the saturated portion of the sand 
deposit. We also computed the density of the saturated and unsaturated sand layer 
using:  

(1 ) s f   = − + .                 (5.6) 

In Table 5.4, we report the seismic model parameters of the synthetic example, 
where the density of the layers 1 and 2 were computed from equation (5.6) and the 
𝑉𝑃 of the saturated portion of the sand deposit (layer 2) was obtained from equation 
(5.5). The 𝑉𝑆 of the layers and also the parameters of the half-space were assumed 
according to Garofalo (2014).  

 

Table 5.4: The model parameters of the synthetic example 2. 

 H          
(m) 

Density 
(kg/m3) 

𝑉𝑆 (m/s) 𝑉𝑃     
(m/s) 

Layer 1 10 1590 170 346 

Layer 2 20 1990 200 1688 

Half-space - 2402 350 2000 

In Figure 5.7a, we show the true 𝑉𝑆, 𝑉𝑆𝑍 and DC of the synthetic example 2 which 
was used to estimate the experimental W/D relationship in Figure 5.7b. The adopted 
model space boundaries selected for the inversion of synthetic example 2 is reported 
in Table (5.5). We sampled 1,000,000 models uniformly within these boundaries 
(Figure 5.7c).  
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Table 5.5: The boundaries of the model space used for random sampling of 
the parameters for the inversion. 

 Thickness        
(m) 

𝑉𝑆         
(m/s) 

Poisson’s 

ratio 
Density       
(kg/m3) 

Layer 1 6 to 14  100 to 250 0.1 to 0.495 1590 

Layer 2 12 to 28  150 to 350 0.1 to 0.495 1990 

Half-space - 250 to 500 0.1 to 0.495 2402 

 

 

Figure 5.7: W/D relationship estimation and 𝑉𝑆 model sampling for the 
inversion of synthetic example 2. (a) The true 𝑉𝑆, 𝑉𝑆𝑍, and DC. (b) The estimated 
W/D relationship using the 𝑉𝑆𝑍 and DC in (a). (c) The generated 1,000,000 𝑉𝑆 
models for the Monte Carlo inversion compared with the true 𝑉𝑆 in black.  

In the following, we first show the results of the inversion considering only the DC 
misfit. Then, we perform the joint inversion to estimate the models and compare 
the result with the DC inversion. 

5.3.1 Monte Carlo DC inversion 

The statistical Fisher test (section 2.3.3.2) with a high confidence level (0.15) was 
applied to select the models according to the DC misfit. In Figure 5.7, we show the 
results of the inversion, where, in Figure 5.7b and c, the selected 𝑉𝑆 and 𝑉𝑃 models 
are compared with the true (in black) and best-fitting model among the 1,000,000 
generated models (in red) according to equation (5.4). The selected models do not 
include the best-matching model (red in Figures 5.7b and c) and show 23 to 35% 
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difference with respect to the true ones according to equation (5.4).  This high 
difference is mainly caused by the significant inaccuracy in estimating the 𝑉𝑃 
model. 

 

Figure 5.8: The result of Monte Carlo inversion applied to synthetic 
example 2, considering only the DC misfit as selection criterion. (a) The selected 
DCs compared with the true one. (b) The selected 𝑉𝑆 models in blue compared with 
the true 𝑉𝑆 model in black. (c) The selected 𝑉𝑃 models in blue compared with the 
true 𝑉𝑃 model in black. In (b) and (c), the red VS and VP models are the best-
matching models among the random models according to equation (5.4). 

5.3.2 Monte Carlo joint inversion 

The application of the joint inversion (Figure 5.9) resulted in 11 Pareto efficient 
solutions, which are shown as red asterisks in the cross-plot of the misfits (Figure 
5.9a). The 𝑉𝑆 of the selected models well depicted the true 𝑉𝑆 of the synthetic 
example 2 (Figure 5.9d). The selected 𝑉𝑃 models well recovered the unsaturated 
first layer (Figure 5.9e), however, the accuracy decreased in determining the 
saturated layer and the half-space, which is mainly due to the high Poisson’s ratio 
at these levels.  
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Figure 5.9: The Monte Carlo joint inversion result for the synthetic example 
2. (a) The cross-plot showing the W/D and DC misfit of the random models. The 
color scale shows the misfit between each model with respect to the true one 
according to equation (5.4). (b) The DCs of the selected models compared with the 
true one. (c) The W/Ds of the selected models compared with the true one. (d) The 
selected 𝑉𝑆 models in light blue compared to the true one in black. (e) The selected 
𝑉𝑃 models in light blue compared with the true one in black. In (d) and (e), the red 
VS and VP models are the best-matching models among the random models 
according to equation (5.4). 

In Figure 5.10, we compare the estimated Poisson’s ratio from the DC inversion 

and the joint inversion with the true profile. In Figure 5.10b, it can be observed that 
the selected Poisson’s ratios from the joint inversion well recovered the true profile. 
However, small inaccuracy in Poisson’s ratios estimation resulted in significant 

variation of the 𝑉𝑃 of the saturated layer and the half-space (Figure 5.9e).  
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Figure 5.10: Selected (estimated) Poisson’s ratio for the synthetic example 

2, using: (a) DC Monte Carlo inversion. (b) Monte Carlo joint inversion. 

The inaccuracy of 𝑉𝑃 estimation in high Poisson’s ratio environment is due to the 
non-linear relationship between 𝑉𝑃 and Poisson’s ratio (equation 4.16): The 
sensitivity of Poisson’s ratio to 𝑉𝑃/𝑉𝑆 variations significantly decreases when high 
Poisson’s ratio values are available. To better show the effect of this non-linearity 
on the W/D relationship, we performed sensitivity analysis of the W/D relationship 
with respect to Poisson’s ratio (Figure 5.11a) and 𝑉𝑃/𝑉𝑆 (Figure 5.11b) variations. 
In Figure 5.11a, we show the W/D relationship obtained for synthetic example 2 
using different Poisson’s ratio ranging from 0 to 0.5, while, in Figure 5.11b the 
similar W/D relationships were obtained by changing the 𝑉𝑃/𝑉𝑆 ratio. Figure 5.11a 
shows that the W/D relationship is sensitive to the Poisson’s ratio variation within 

various intervals of Poisson’s ratio. On the other hand, when 𝑉𝑃/𝑉𝑆 ratio is 
considered (Figure 5.11b), most of the W/D variations are related to the range 
between the minimum 𝑉𝑃/𝑉𝑆 ratio (√2; 𝜈 = 0) and 𝑉𝑃/𝑉𝑆 =3.5 (𝜈 = 0.45). 
Beyond this ratio range, the W/D relationship variations significantly decreases to 
a point that it almost collapses to a single relationship (Figure 5.11b in red) for 
𝑉𝑃/𝑉𝑆 greater than 5 (𝜈 > 0.48).  

The misfit of the joint inversion’s selected models according to equation (5.4) 
ranged between 10 to 23%, which is more than the difference obtained for synthetic 
example 1 (7.3 to 18%). However, compared to the DC inversion of example 2 
(Figure 5.8c), the joint inversion much better resolved the P-wave velocities (Figure 
5.9e). This improvement can be better observed in the boxplot of the model misfit 
for synthetic example 2 (Figure 5.12), where we compare the model misfit of all 
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randomly sampled models, the selected models from DC inversion, and the selected 
models from the joint inversion. 

 

Figure 5.11: The W/D relationship variation of synthetic example 2 by 
changing: (a) Poisson’s ratio, and (b) VP/VS ratio. In both cases the VS is fixed to 

the value used for synthetic example 2 (Table 5.4). The red portion in (b) is related 
to 𝑉𝑃/𝑉𝑆 greater than 5. 

 

Figure 5.12: The model misfit of all 1,000,000 randomly sampled models, 
selected models using DC inversion (Figure 5.8), and selected models using joint 
inversion (Figure 5.9), with respect to the true 𝑉𝑆 and 𝑉𝑃 models of the synthetic 
example 2. These model misfits are computed using equation (5.4). 

5.4 Field Example (La Salle data set) 

We performed the joint inversion at location B of the La Salle site (Figure 3.3a). 
The site is known for smooth lateral variation. To further test the performance of 
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the method, we provided the W/D relationship needed for the joint inversion from 
location A.  

We used the method explained in section 4.2.2 to estimate the experimental W/D 
relationship at location A of the site (location shown in Figure 3.3a). We randomly 
sampled 5,000,000 models within the model space boundary given in Table 5.6. 
We used the statistical Fisher test with a low level of confidence (0.05) to include 
all possible models with various geological properties best fitting the DC at position 
A. 

Table 5.6: The selected model space for the inversion of the DC at location 
A. 

 Thickness 
(m) 

𝑉𝑆 (m/s) Poisson’s 
ratio (-) 

Density 
(kg/m3) 

Layer 1 1.5 to 3 170 to 240 0.1 to 0.45 1800 

Layer 2 1.5 to 3 250 to 350 0.1 to 0.45 1800 

Layer 3 3 to 5 350 to 400 0.1 to 0.45 1800 

Layer 4 3 to 5 400 to 450 0.1 to 0.45 1800 

Layer 5 7.5 to 11 430 to 480 0.1 to 0.45 2200 

Layer 6 7.5 to 11 480 to 550 0.1 to 0.45 2200 

Layer 7 12 to 17 550 to 650 0.1 to 0.45 2200 

Layer 8 25 to 34 650 to 720 0.1 to 0.45 2200 

Layer 9 25 to 34 720 to 800 0.1 to 0.45 2200 

Half-space - 800 to 900 0.1 to 0.45 2200 

In Figure 5.13, we show the steps of estimating W/D relationship at point A of La 
Salle site. The selected 𝑉𝑆 models (Figure 5.13b) were transformed to 𝑉𝑆𝑍 models 
using equation (4.1); the 𝑉𝑆𝑍 models were averaged at each depth to estimate the 
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𝑉𝑆𝑍 model required for the W/D relationship (Figure 5.13c). The estimated W/D 
relationship is shown in Figure 5.13d.  

 

Figure 5.13: The W/D relationship estimation for location A of La Salle site 
(Figure 3.3a) using the Monte Carlo inversion. (a) The experimental DC of location 
A and the selected synthetic DCs. (b) The selected 𝑉𝑆 models. (c) The selected 𝑉𝑆𝑍 
models. The reference 𝑉𝑆𝑍 in black. (d) The estimated W/D relationship. 

We use the estimated W/D relationship (Figure 5.13d) at location B, where we 
perform the joint inversion. Similar to the synthetic examples, we first show the 
result of the inversion considering only DC misfit as a selection criterion of the 
Monte Carlo inversion. Then, we perform the joint Monte Carlo inversion. The 
adopted model space boundaries for both inversions are given in Table 5.7, which 
we used to randomly sample 5,000,000 models.  
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Table 5.7: The model space defined for the inversion of the experimental 
DC at location B of La Salle site. 

 Thickness 
(m) 

𝑉𝑆 (m/s) Poisson’s 
ratio (-) 

Density 
(kg/m3) 

Layer 1 1.5 to 3 230 to 300 0.1 to 0.45 1800 

Layer 2 1.5 to 3 320 to 400 0.1 to 0.45 1800 

Layer 3 3 to 5 350 to 450 0.1 to 0.45 1800 

Layer 4 3 to 5 400 to 500 0.1 to 0.45 1800 

Layer 5 7.5 to 11 500 to 650 0.1 to 0.45 2200 

Layer 6 7.5 to 11 600 to 730 0.1 to 0.45 2200 

Layer 7 12 to 17 700 to 900 0.1 to 0.45 2200 

Layer 8 25 to 34 900 to 1100 0.1 to 0.45 2200 

Layer 9 25 to 34 1000 to 1350 0.1 to 0.45 2200 

Half-space - 1200 to 1500 0.1 to 0.45 2200 

5.4.1 Monte Carlo DC inversion  

We applied a statistical Fisher test with a 0.15 confidence level to select the models 
according to DC misfit. In Figure 5.14a, we show the selected DCs and 
experimental DC at location B. In Figures 5.14b and c, we compare the estimated 
𝑉𝑆 and 𝑉𝑃 models with the models obtained from the close-by downhole test (solid 
black lines obtained from Socco et al., 2008). The minimum difference between the 
selected models and the ones from downhole tests is 9.1% according to equation 
(5.4). 
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Figure 5.14: The results of the Monte Carlo inversion at location B of the 
La Salle site considering only the DC misfit. (a) The DCs of the selected models 
compared with the experimental one. (b) The selected 𝑉𝑆 models in blue compared 
with the one obtained from close-by down hole test in black (from Socco et al., 
2008). (c) The selected 𝑉𝑃 models in blue compared with the one obtained from 
close-by downhole test in black (from Socco et al., 2008). In (b) and (c), the red VS 
and VP models are the best-matching models with respect to the ones from down 
hole tests (in black) according to equation (5.4).  

5.4.2 Monte Carlo Joint inversion 

We estimated the DC and W/D misfit of each randomly generated model, thanks to 
equations (5.1) and (5.2). Figure 5.15a shows the cross-plot of the DC and W/D 
relationships of the randomly sampled models. 11 models out of 5,000,000 models 
were found as Pareto efficient solutions. In Figures 5.15b and c, we compare the 
selected models' DCs and W/D relationships with the experimental ones. In Figure 
5.15d and e, we compare the selected 𝑉𝑆 and 𝑉𝑃 models with the models obtained 
from the downhole tests (Socco et al., 2008) and the best-matching models 
according to equation (5.4). The selected models were 8.4% to 22% different from 
the models obtained from the downhole test. 
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Figure 5.15: The results of the Monte Carlo joint inversion applied to the 
location B of the La Salle data set. (a) The cross-plot showing the W/D and DC 
misfit of the random models. (b) The DCs of the selected models compared with the 
experimental one. (c) The W/Ds of the selected models compared with the 
experimental one. (d) The selected 𝑉𝑆 models in light blue compared with 𝑉𝑆 model 
of the close-by downhole test in black (from Socco et al., 2008). (e) The selected 𝑉𝑃 
models in light blue compared with the 𝑉𝑃 model of the close-by downhole test in 
black (from Socco et al., 2008). In (d) and (e), the red VS and VP models are the 
best-matching models with respect to the ones from down hole tests (in black) 
according to equation (5.4).  

In Figure 5.16, we compare the model misfit of the selected models obtained from 
the two inversions and all randomly sampled models. Similar to the synthetic 
examples, the joint inversion provided better matching models with respect to the 
DC inversion.  
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Figure 5.16:The model misfit of all 5,000,000 randomly sampled models, 
selected models using DC inversion (Figure 5.14) and selected models using joint 
inversion (Figure 5.15), with respect to the downhole test  models within first 50 m 
of the subsurface (the black models in Figures 5.15d and e; from Socco et al., 2008). 
These model misfits were computed using equation (5.4). 

5.5 Discussion and conclusion 

We successfully tested the joint inversion method on two synthetic data sets 
(Figures 5.4 and 5.9). Including the W/D relationship in the inversion guaranteed 
more accurate 𝑉𝑆 and 𝑉𝑃 model estimations. Even though the accuracy of the 𝑉𝑃 
estimation decreased for the synthetic example 2 below the water table, the joint 
inversion yet provided significantly better estimation of the P-wave velocity (Figure 
5.9e) compared to the DC inversion (Figure 5.8c). We also applied the method to 
the La Salle data set. We compared the results of using only DC misfit with the 
results of the joint inversion. Although the estimated 𝑉𝑆 models of both methods 
were well supported by the near-by downhole test's 𝑉𝑆 model, the joint inversion 
resulted in a less number of estimated models and more confined velocity estimates 
(Figure 5.15d). The estimated 𝑉𝑃 models of the joint inversion showed satisfactory 
agreement with the 𝑉𝑃 from the downhole test.  

In Figure 5.17, we compare the 𝑉𝑆 and 𝑉𝑃 results of the joint inversion with the 
results of the high-resolution reflection survey (Figure 5.17a, reproduced from 
Socco et al., 2008) and the P-wave traveltime tomography (Figure 5.17b, 
reproduced from Socco et al., 2008). In Figure 5.17e and f, we show the average of 
the selected 𝑉𝑆 and 𝑉𝑃 models by the joint inversion (computed from Figure 5.17c 
and d), for which we used the distribution of the velocities at each depth to obtain 
a standard deviation. Two primary reflections were observed (Socco et al., 2008) 
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from the seismic section in Figure 5.17a, which coincide with the location B of the 
La Salle site (inversion location) at depths 22 and 120 m.  

 

Figure 5.17: The comparison between the estimated models for the location 
B of the La Salle site with the benchmark seismic reflection survey, P-wave 
traveltime tomography and near-by downhole test. (a) The high-resolution 
reflection survey (reproduced from Socco et al., 2008). The location of the 
downhole test and the location of the joint inversion are highlighted with red and 
light blue arrows. (b) The 𝑉𝑃 model from P-wave traveltime tomography 
superimposed with the seismic reflection image of (a) (reproduced from Socco et 
al., 2008). (c) The selected 𝑉𝑆 models from the Monte Carlo joint inversion in light 
blue. In black the 𝑉𝑆 of the near-by downhole test (from Socco et al., 2008). (d) The 
selected 𝑉𝑃 models from the Monte Carlo joint inversion in light blue. In black the 
𝑉𝑃 of the near-by downhole test (from Socco et al., 2008). (e) The average of the 
selected 𝑉𝑆 models from (c), where the bars are the standard deviations. (f) The 
average of the selected 𝑉𝑃 models from (d), where the bars are the standard 
deviations. The red circle in (f) highlights the portion that is interpreted as water 
table by benchmark seismic reflection survey in (a) and P-wave traveltime 
tomography in (b). 
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The shallow reflection (blue horizon in Figure 5.17a) was interpreted as the water 
table. The water table was also confirmed by P-wave traveltime tomography 
showing the 𝑉𝑃 of 1500 m/s at this level. The average 𝑉𝑃 of the selected models 
from Monte Carlo joint inversion  (Figure 5.17f) shows values around 1500 m/s for 
depth between 18 to 27 m and the value of 1492 m/s at depth 22 m. Unlike the 𝑉𝑆 
results of the joint inversion (Figure 5.17e), the estimated average 𝑉𝑃 from the joint 
inversion (Figure 5.17f) shows a substantial increase in the standard deviation 
below the water table, which indicates the challenges in determining the 𝑉𝑃 model 
in saturated environment. 

The second reflection was interpreted as the bedrock (Socco et al., 2008), which is 
partially observed in the tomography result. Although the selected models of the 
joint inversion (Figure 5.17d in light blue) do not provide a well-confined 
estimation at the bedrock depth (120 m), the averaged 𝑉𝑃 model in Figure 5.17f 
depicts the high 𝑉𝑃 of this portion of the subsurface.   

The joint inversion algorithm supports parallel computing, which significantly 
expedites the inversion. Compared to the DC Monte Carlo inversion, the joint 
inversion has two additional steps: The W/D estimations and the Pareto dominance 
check of the randomly generated models. The algorithm running time grows almost 
linearly with number of randomly generated models. The joint inversion of 
5,000,000 sampled models takes about 12 hrs, employing 10 CPU cores. 
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6. Laterally Constrained Inversion 
(LCI) 

We use the LCI to estimate the 𝑉𝑆, for which we provide a priori Poisson’s ratio 
using the W/D method explained in section 4.4. We then use the same Poisson’s 

ratio to transform the 𝑉𝑆 results into 𝑉𝑃. In the following, we first briefly explain 
the method. Then, we show the method's application to the Aurignac data set. 

6.1 Background 

The LCI is a well-established method in many geophysical applications, such as 
resistivity and EM data (Wisén et al., 2005; Auken et al., 2005; Mansoor et al., 
2006). The first application of LCI to surface seismic wave data was introduced by 
Wisén and Christiansen (2005). Since then, many authors have applied LCI to 
surface wave data (Socco et al., 2009; Boiero, 2009; Bardainne et al., 2017). In the 
scheme of LCI, the lateral constraints link the adjacent model parameters to control 
the lateral variations (Figure 6.1). Similarly, the constraints can be imposed to 
connect parameters of different layers to limit the variations in depth. In the scheme 
of LCI, the DCs are inverted simultaneously, minimizing the non-uniqueness of 
single inversion.  

 

Figure 6.1: A schematic view of how the lateral constraints are imposed in 
LCI methods. The constraints are indexed according to the indices of the model 
points and layers. 
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The constrained inversion leads to a smoother and more consistent model 
estimation (Socco et al., 2009). Moreover, it diminishes the effect of erroneous DCs 
(outliers) that are significantly different from the close by DCs. The surface wave 
LCI methods' target is usually the 𝑉𝑆 model, demanding a priori Poisson’s ratio. 

6.2 The method 

6.2.1 Inputs: the local DCs and reference model 

The method's inputs are the local DCs and the reference model at their location. The 
DCs are estimated using any of the methods explained in section 2.3.2. The 
reference model is composed of the thickness, density, Poisson’s ratio, and 𝑉𝑆, 
where equal thicknesses are used by discretizing the investigation depth. The 
densities are set based on the geological properties of the site. We cluster the DCs 
and estimate 1D reference Poisson’s ratio for each cluster using the W/D method 
explained in section 4.4. At each spatial location, the relevant Poisson’s ratio 

according to the clustering of the DCs is associated with the reference model. We 
select the 𝑉𝑆 of the reference models according to the estimated 𝑉𝑆 models from 
the Monte Carlo inversion used for Poisson’s ratio estimation explained.  

6.2.2 Inversion algorithm 

The LCI algorithm was developed by Socco et al. (2009) and Boiero (2009), based 
on the work of Auken and Christiansen (2004). We modified the algorithm to 
support parallel computing. The method is a deterministic least-square inversion 
method which minimizes the misfit 𝑄 as:  

𝑄 =  [(𝐝𝐨𝐛𝐬 − 𝐝(𝐦))𝐓 𝐂𝐨𝐛𝐬
−𝟏  (𝐝𝐨𝐛𝐬 − 𝐝(𝐦)] +

 [(−𝐑𝐩𝐦)
𝐓
𝐂𝐑𝐩

−𝟏(−𝐑𝐩𝐦)],       

 (6.2) 

where the first term determines the misfit between the experimental data 𝐝𝐨𝐛𝐬 and 
synthetic data 𝐝(𝐦). 𝐦 is the vector of the model parameters and 𝐂𝐨𝐛𝐬

−𝟏  is the 
reciprocal of the covariance matrix. The second term defines the lateral 
regularization of the velocities and thicknesses, where 𝐑𝐩 is the regularization 
matrix composed of values 1 and -1 for the constrained parameters and zeros 
elsewhere. The strength of the regularization is determined by the covariance matrix 
𝐂𝐑𝐩.  
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The model parameters 𝑉𝑆 and thickness are updated iteratively according to 
damping least-square algorithm (Marquart, 1963) until a local minimum of the 
misfit is reached. A thorough description of the method is available in Boiero 
(2009) and Socco et al. (2009). 

We use the reference Poisson’s ratio of each cluster to transform the related 

estimated 𝑉𝑆 models from the LCI to 𝑉𝑃 models. 

6.2.3 Constraints selection criterion 

The value (strength) of the constraints plays an important role in the inversion. The 
higher the constraints, the smoother the model will be. However, too strong 
constraints can result in an over-smoothed model estimation (Socco et al., 2009). 
We consider the residual misfit between the synthetic DCs of the last iteration and 
the experimental ones as an indicator for selecting the constraint level. We compute 
the residual misfit of each DC as: 

exp, ,

1 exp,

1 ,
n

i syn i
norm

i i

c c
r

n c=

−
=         (6.2) 

where exp,ic  and ,syn ic  are the experimental and synthetic phase velocities of the ith 

data point out of n  data points of the DC. We also compute the total residual misfit 
as the average residual misfit of all DCs. The unconstrained inversion provides the 
lowest residual misfit. As a result, we first invert the data without imposing 
constraints to estimate a misfit baseline. Then, we repeat the inversion by gradually 
increasing the constraints’ strength. For each inversion, we compare the misfit with 
the misfit baseline (unconstrained inversion misfit). We consider the 𝑉𝑆 model 
obtained from the constrained inversion with the highest level of constraints that is 
not significantly impacting the misfit. 

6.3 Application to Aurignac data set 

6.3.1 Estimated Local DCs 

Previously, in section 4.5.2.1, a total of 545 DCs were estimated (Figure 4.19a), 
which were clustered into two groups (Figure 4.19b); the DCs of the west side 
(cluster A) showed slower phase velocity compared to the east side (cluster B) of 
the site (Figure 4.20).  



96 
 

6.3.2 Reference Model 

We defined the reference model composed of 9 layers overlying half-space with 
constant thicknesses of 15 m, except for the first layer which was set 20 m, giving 
an investigation depth of about 140 m. We previously obtained the reference DC, 
W/D relationship, and apparent Poisson’s ratio for each cluster (in section 4.5.2.2; 
Figures 4.21 and 4.22). We followed the method explained in section 4.3 to estimate 
the 1D Poisson’s ratio corresponding to each cluster. In Figure 6.2a and b, we show 
the estimated 𝑉𝑆 and 𝑉𝑃 corresponding to cluster A and cluster B. We used 
equation (4.16) to estimate the Poisson’s ratios of cluster A (Figure 6.2c) and cluster 
B (Figure 6.2d). The Poisson’s ratios (blue lines) are obtained for every 0.1 m 
interval. We averaged the data points within the defined layers of LCI and also 
extrapolated the Poisson’s ratios to cover the whole 140 m investigation depth 

required for the LCI. In Figures 6.2c and d, in red, we show the adopted Poisson’s 

ratio used for the clusters A and B, respectively. We defined a constant density of 
2400 kg/m3, except for the first layer (2200 kg/m3).  

 

Figure 6.2: Estimated Poisson’s ratios for the cluster A and Cluster B of the 
Aurignac data set using the W/D method explained in section 4.3. (a) The estimated 
𝑉𝑆 and 𝑉𝑃 models corresponding to the reference DC of Cluster A. (b) The 
estimated 𝑉𝑆 and 𝑉𝑃  models corresponding to the reference DC of Cluster B. (c) 
The estimated Poisson’s ratio for the cluster A in blue. In red, the obtained 
Poisson’s ratio for LCI and later for SWT. (d) The estimated Poisson’s ratio for 

cluster B in blue. In red, the obtained Poisson’s ratio for LCI and later for SWT. 
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6.3.3 Results 

We performed an unconstrained and several laterally constrained inversions to find 
the optimal level of constraints. The 50 m/s was the highest level of constraints that 
did not significantly impact the inversion's residual misfit. In Figure 6.3, we 
compare the residual misfits of the laterally constrained (50 m/s) and unconstrained 
inversion, which were computed by equation (6.2). In both inversions, the synthetic 
DCs are less than 10 % different from the experimental ones at all locations. Even 
though the constrained inversion shows a slight increase in the residuals on the west 
side, the total residual misfits are very similar (2.07% for the constrained and 1.82% 
for the unconstrained inversions).   

 

Figure 6.3: The residual misfit computed for the final models of LCI 
inversion using equation (6.2) for: (a) LCI with 50 m/s lateral constraints. (b) 
unconstrained inversion. 

The selected inversion (50 m/s constraints) automatically stopped after 37 
iterations.  In Figure 6.4a to i, we show slices of the estimated 𝑉𝑆 model at various 
depths. We interpolated the estimated 1D models to obtain the quasi 3D 𝑉𝑆 model 
(Figure 6.4j). In Figure 6.4k, we show several isosurfaces of the 3D model in x, y, 
and z directions. 

We used the estimated Poisson’s ratio of the two clusters in Figures 6.2c and d (the 
blue lines) to estimate the subsurface's 𝑉𝑃 model. The estimated Poisson’s ratios of 

cluster A and B were limited between depths 20 to 128 m (Figure 6.2c) and 20 to 
140 m (Figure 6.2d), respectively. As a result, the estimated 𝑉𝑃 model in Figure 
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6.5 is also bounded by this limitation. We show the quasi 3D model and isosurfaces 
of the estimated 𝑉𝑃 in Figures 6.5j and k. 

 

Figure 6.4: The estimated 𝑉𝑆 model for the Aurignac site using the LCI 
method. (a to i) The horizontal slices at different depths indicated on top of each 
figure. (j) The pseudo 3D view of the estimated 𝑉𝑆 after linear interpolation of the 
1D models.(k) Isosurfaces obtained from the 3D model in (j) at plains x=600 m, 
y=0 and 400 m, and z=70 and 125 m. 
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Figure 6.5: The estimated 𝑉𝑃 model for the Aurignac site obtained by 
converting the 𝑉𝑆 results of the LCI using the Poisson’s ratios from W/D method 

in Figures 6.2c and d. (a to i) The horizontal slices at different depths indicated on 
top of each figure. (j) The pseudo 3D view of the estimated 𝑉𝑃 after linear 
interpolation of the 1D models.(k) Isosurfaces obtained from the 3D model in (j) at 
plains x=600 m, y=0 and 400 m, and z=70 and 125 m. 
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7. Surface Wave Tomography 
(SWT) 

We develop an SWT workflow that enables the estimation and use of multi-modal 
surface waves. Also, we integrate the SWT with the W/D method, which enables 
the estimation of 𝑉𝑃 in addition to 𝑉𝑆 model. In the following, we introduce the 
method in detail and show its application to three industry data sets from section 
3.2. The proposed method and its application to the PNG data set is also published 
in Khosro Anjom et al., (2021). 

7.1 Background 

The surface wave phase velocity and group velocity tomography are widely applied 
to reconstruct crust and upper mantle (Ritzwoller and Levshin, 1998; Kennet and 
Yoshizawa, 2002; Boiero, 2009; Yao et al., 2006; Shapiro et al., 2005; Sabra et al., 
2005). Recently, the SWT tomography has become popular also for near-surface 
characterization using active (Da Col et al., 2019; Socco et al., 2014; Papadopoulou 
et al., 2018) and passive (Badal et al., 2013; Picozzi et al., 2009) data. Socco et al. 
(2014) applied SWT to the 2D data from a laterally varying site in New Zealand to 
estimate the 2D 𝑉𝑆 model of the first 50 m subsurface. Da col et al. (2020) evaluated 
the possibility of using the SWT for mineral exploration; they showed the 
application of the SWT to the data from a mining site in Finland and were able to 
reconstruct the first 270 m of the 𝑉𝑆 model of the area. Picozzi et al. (2009) applied 
the SWT to high-frequency ambient noise data from a test site in Nauen, Germany, 
and were able to recover the first 25 m of the near-surface model.  

The SWT methods are generally composed of three steps (Yoshizawa and Kennett, 
2004; Shapiro and Ritzwoller, 2002; Yao et al., 2008). First, many path-averaged 
DCs with various azimuthal angles are computed using the cross-correlation 
between records of the couple receivers aligned with a source. Then, the estimated 
path-averaged DCs are inverted to obtain the phase velocity maps corresponding to 
various frequencies. Finally, the phase velocity maps' elements at different 
locations are considered separately and inverted to estimate 1D 𝑉𝑆 models.  
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Alternatively, the inversion of the path-averaged DCs can be used to directly 
estimate the 𝑉𝑆 model, skipping the phase velocity map estimation (Boschi and 
Ekstrom, 2002; Boiero,2009; Fang et al., 2015). In particular, the method developed 
by Boiero (2009) involves the simultaneous tomographic inversion of all path-
averaged DCs in the least-square laterally constrained scheme to estimate the 𝑉𝑆 
model. He applied the method to data from Tibetan Plateau to estimate quasi 3D 
𝑉𝑆 model of the crust and upper mantle; the estimated model was in agreement with 
the estimated model from the application of three-step SWT (Yao et al., 2008). 

Surface wave fundamental mode is usually the dominant mode in the recordings 
and can be efficiently retrieved (e.g., Shapiro et al. 2005). In presence of energetic 
higher modes within the frequency band of fundamental mode, the higher modes 
can be damped by time windowing the recordings based on the group velocity of 
the fundamental mode (Yao et al., 2006). However, including the higher modes in 
the inversion instead of eliminating them can improve the investigation depth and 
resolution of the obtained model from surface wave analysis (MacBeth and Burton, 
1985; Yoshizawa and Kennet, 2004; Xia et al., 2003; Beaty et al., 2002; Ganji et 
al., 1998). On the other hand, the separation of the modes using only two receivers 
recording at a time is not possible unless the modes are isolated prior to the 
processing stage for DC estimation (Halliday and Curtis, 2008). In the context of 
earthquake seismology, the separation of modes can be performed using band-pass 
filters (Båth and Crampin, 1965) or phase-match filtering (Hwang and Mitchell, 
1986). However, accurate isolation of higher modes requires surface wave multi-
channel analysis (e.g., Nolet, 1975; Nolet and Panza, 1976; Cara, 1978; Mitchel, 
1980). We propose a muting strategy based on the multi-channel analysis of the 
DCs that allows the estimation of various modes of surface wave.  

7.2 Method 

The proposed workflow is composed of two main parts, one based on local DC 
analysis (multi-channel method) to estimate the velocity limit separating the 
different modes of surface wave in the site, and the other SWT. In the local DC 
analysis part, we also perform the W/D method to estimate a priori Poisson’s ratio 

required for the SWT. The application of the W/D method to estimate a priori 
Poisson’s ratio was explained in section 4.4.  

In Figure 7.1, we show the detailed steps of the proposed workflow, where the SWT 
steps are highlighted in red, and the steps to obtain the velocity limit and Poisson’s 

ratio are shown in green. The proposed method is valid for estimating and 
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employing various modes of surface waves in the SWT scheme. However, since 
our applications are restricted to the fundamental and 1st higher modes, the 
workflow in Figure 7.1 is limited to using the first two modes of surface waves.  

 

Figure 7.1: The detailed workflow of the SWT, where the steps involving the 
local DCs are highlighted in green and the SWT steps are shown in red. The local 
DC analysis provide the trend of various modes which will be used to design a 
frequency dependent velocity limit that separates them. Also, it is used to estimate 
the a priori Poisson’s ratio. The SWT part is composed of two main steps that 
involves the path-averaged DC estimations and tomographic inversion to obtain 
the models. For details regarding various steps of the workflow refer to sections 
7.2.1 to 7.2.3. 
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The method provides the 𝑉𝑆 and 𝑉𝑃 models at the location of model grids defined 
for the tomographic inversion. We use these 1D estimated models to build quasi 2D 
or 3D 𝑉𝑆 and 𝑉𝑃 models. In this section, we first explain the estimation of the 
velocity limit from the local DCs. Then, we introduce the various steps of path-
averaged DC estimations, and we evaluate the path-averaged DC technique using a 
synthetic example. Finally, we describe various aspects of the tomographic 
inversion.  

7.2.1 Local DC estimation and the Velocity Limit 

To compute the DCs, we use the phase-shift method (section 2.3.2.2), with which 
it is possible to compute the frequency-phase velocity spectrum corresponding to 
receiver spreads with irregular spacing and separate the different propagation 
modes. We estimate various fundamental and 1st higher mode DCs corresponding 
to receiver spreads at different site locations. We then manually design a frequency-
dependent velocity limit that best separates the fundamental and 1st higher modes 
of all DCs. The method is valid if the different modes of DCs are separated. In the 
presence of modes superpositions, this method can be applied to high frequencies, 
where the separation is expected. For the application of the SWT method using only 
the fundamental mode, this step should be neglected. 

7.2.2 Path-averaged DC estimation 

The first step of the SWT is to estimate the path-averaged DCs. These DCs are 
estimated using the recordings from receiver couples aligned with a source, in 
literature also known as the two-station or interferometry method. We implement 
an automatic algorithm to find the receiver couples aligned with the source at each 
azimuth angle, considering 1° tolerance for the deviation from a straight path. We 
filter the traces of the receiver couples, using a zero-phase Gaussian filters. Then, 
the filtered traces of the receiver couples are cross-correlated and assembled to form 
the cross-multiplication matrix. We use a 3rd order spline interpolator to convert the 
cross-multiplication matrix to the frequency-velocity domain. Finally, at each 
frequency, the phase velocity is picked as the maximum of the cross-multiplication 
matrix, closest to the reference DC.  

Unlike local DC estimation methods that use the recordings from an array of 
receivers, the path-averaged DC estimation method from couple receivers does not 
deliver enough resolution to detect and pick multiple modes of surface waves. As a 
result, in the presence of multiple modes (such as the PNG data set; section 3.2.1), 
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it is imperative to isolate each mode before performing the recordings' cross-
correlation (Halliday and Curtis, 2008). We propose a pre-processing technique 
based on which the dispersive velocity limit is used to automatically mute the 
seismic data and isolate multiple modes of the surface waves. We mute the 
recordings before the application of the two-station method and perform the two-
station method separately for the computation of each mode of surface waves. 
Depending on whether the fundamental mode or the 1st higher mode estimation is 
intended, we apply the velocity limit as a half-Gaussian mute to the relevant time 
panel of the pair receivers’ recordings.  

7.2.2.1 Synthetic example: the path-averaged DC estimation 

Here, we show how the path-averaged DCs are estimated in the presence of two 
modes, through the application of the method to synthetic signals at two locations. 
We created the two signals containing two events at the expected times of the 
fundamental and the 1st higher modes of surface waves for the 1D layered system 
in Figure 7.2a. The signals were obtained by convolving a Morlet wavelet with a 
time series containing a spike at the expected time for each mode and each 
frequency and then stacking on the whole frequency band (10-25 Hz). In Figure 
7.2a, we show the computed responses at positions 1000 m (T1) and 1200 m (T2). 
The processing workflow requires a velocity limit, which separates the fundamental 
and the 1st higher modes. For real data, we estimate the velocity limit from the 
multi-channel analysis. Here, given the synthetic example, we obtained the velocity 
limit by averaging the phase velocities of the true fundamental and 1st higher modes 
at each frequency. In Figure 7.2a, we also show the velocity limit in black; the blue 
and red hatches below and above the velocity limit are the fundamental and 1st 
higher mode zones, respectively. We applied the two-station method twice to 
estimate the fundamental and 1st higher modes of the surface waves. 

In Figure 7.2b and c, we show, as examples, the processing steps applied to estimate 
the 1st higher mode at 10 Hz and fundamental mode at 25 Hz, respectively. First, 
the velocity limit was transformed into time at the location of each trace (T1 and 
T2) by dividing the offsets (1000 m for T1 and 1200 m for T2) to velocity limit at 
the two considered frequencies (690 m/s at 10 Hz and 488 m/s at 25 Hz). Based on 
the arrival times (1.45 s and 1.74 s for T1 and T2 at 10 HZ, and 2.05 s and 2.46 s 
for T1 and T2 at 25 Hz), mutes were designed according to the intended mode 
estimation (first panels of Figure 7.2b for the 1st higher mode estimation at 10 Hz 
and Figure 7.2c for the fundamental mode estimation at 25 Hz). The traces were 
multiplied (×) by the muting functions. Then, the muted traces were narrow-band 
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filtered at the considered frequencies. We performed the filtering in the frequency 
domain by multiplying a narrow banded zero-phase Gaussian filter centered at the 
desired frequencies (10 Hz and 25 Hz) to the frequency domain representation of 
the traces (T1-muted and T2-muted). For a more straightforward representation of 
the filtering, in the second panels of Figures 7.2b and c, we show the filtering of 
T1-muted and T2-muted in the time domain as the convolution (*) to the 10 Hz and 
25 Hz filters. Finally, the muted and filtered traces were cross-correlated (third 
panels in Figure 7.2b for the 1st higher mode at 10 Hz and Figure 7.2c for the 
fundamental mode at 25 Hz). The processing method in Figures 7.2b and c shown 
at 10 Hz and 25 Hz for the 1st higher and fundamental modes was repeated for all 
frequencies within the band 10 to 25 Hz. The cross-correlated signals were 
assembled to form the cross-multiplication matrices in the first panels of Figures 
7.2d and e. Knowing the distance between the two receivers (200 m), we used a 3rd 
order interpolator to transform the cross-multiplication matrix as a function of 
frequency and time delay to the same matrix as a function of frequency and velocity. 
In the second panel of the Figures 7.2d and 7.2e, we show the estimated cross-
multiplication matrices to estimate the fundamental and 1st higher modes, 
respectively; the trends of the true fundamental and 1st higher modes (blue and red 
solid lines) are well obtained by the two matrices, except for the 1st higher mode 
above 23 Hz (second panel in Figure7.2d). 

It is noteworthy that the synthetic example in Figure 7.2 was designed to show the 
steps of the path-averaged DC estimation and the muting strategy used to recover 
the correct cross-multiplication matrix corresponding to each surface wave mode. 
The very close maxima obtained in the cross-multiplication matrix of the 
fundamental mode (second panel of Figures 7.2e) are caused by the selected 
parameters of the synthetic example. In the scope of seismic exploration, this issue 
is usually observed when the method is applied to the recording of very distant 
receiver couples. In these situations, unless a very accurate reference local DC is 
available, the DC should not be picked to mitigate the picking of the wrong maxima. 
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Figure 7.2: The fundamental and 1st higher mode estimation of a synthetic 
example. (a) The inputs of the method: the model parameters of the laterally 
invariant example; the computed responses at location 1000 and 1200 m from the 
source; the velocity limit separating the fundamental and the 1st higher mode zone. 
(b) The steps for phase velocity estimation of the 1st higher mode at 10 Hz. (c) The 
steps for the phase velocity estimation of the fundamental mode at 25 Hz. (d) The 
estimated cross-multiplication matrices in the frequency-time delay domain and the 
frequency-velocity domain aim to estimate the 1st higher mode within 10 – 25 Hz. 
(e) The estimated cross-multiplication matrices in the frequency-time delay domain 
and the frequency-velocity domain aim to estimate the fundamental mode within 10 
– 25 Hz. 
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7.2.3 Tomographic inversion 

The tomographic inversion is based on Boiero (2009). Concerning the formulation, 
we included higher modes and modified the algorithm to support parallel 
computing. Also, we introduced wavelength-based weighting of  the data points, 
which increases the investigation depth and vertical resolution of the obtained 
model (Khosro Anjom and Socco, 2019). The only inputs of the tomographic 
inversion are the path-averaged DCs and a reference model.  

7.2.3.1 Reference Model 

The model is a regular grid of 1D models (model points). The parameters of the 
model are the thickness, 𝑉𝑆, Poisson's ratio, and density. The only parameter that 
updates in the inversion is 𝑉𝑆, while the others are fixed a priori; thus, the number 
of unknowns of the inversion is the number of the model points multiplied by the 
number of the layers plus one (the half-space). We use constant thicknesses for the 
layers within the investigation depth. We define the initial 𝑉𝑆 model based on the 
trend of the selected 𝑉𝑆 models from the Monte Carlo inversion of the reference 
local fundamental mode. Considering negligible lateral variations for the Poisson's 
ratio, we use the reference Poisson's ratio from the W/D method (explained in 
section 4.4) as prior information for the SWT inversion. Although the inversion is 
not very sensitive to Poisson's ratio, a priori Poisson's ratio helps the inversion to 
get a more consistent and accurate 𝑉𝑆 model. The density has a minor effect on the 
inversion, and it is selected based on the information available for the site's 
formations. 

7.2.3.2 Forward operator 

In this stage, the synthetic path-averaged DCs corresponding to the observed paths 
are obtained. The algorithm computes the local 1D synthetic DCs at each model 
point, using a Haskell (1953) and Thomson (1950) forward model, developed by 
Maraschini (2008) in MATLAB. Next, Each path is discretized to evenly spaced 
points. For each point and at each frequency, the slowness is computed as the 
bilinear interpolation between the slowness of the four adjacent model points. We 
then compute the path-averaged synthetic slowness as the mean slowness of all 
discretized points along the path at each frequency as:  

𝑃(𝑓)𝐴𝐵 =
∑ 𝑃𝑖(𝑓)𝑛

𝑖=1

𝑙𝐴𝐵
,        (7.1) 
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where 𝑃𝑖 is the computed slowness for the discretized point i . The n is the number 
of discretized points along the straight path AB with length of 𝑙𝐴𝐵. The synthetic 
DC computation is performed similarly for the higher surface modes. 

7.2.3.3 Inversion scheme 

The experimental DCs are transformed to slowness and assembled in a single vector 
as: 

𝐩𝐨𝐛𝐬  =  [𝐩𝐟𝐮𝐧𝐝.;  𝐩𝐡𝐢𝐠𝐡.],                                    (7.2) 

where 𝐩𝐟𝐮𝐧𝐝. and 𝐩𝐡𝐢𝐠𝐡. are the estimated slowness relevant to the fundamental and 
the 1st higher modes. The penetration depth of the surface waves is directly related 
to the wavelength. The non-uniform sampling of the DC data in terms of 
wavelength usually drives the inversion algorithms to the shallowest parts of the 
subsurface (Khosro Anjom and Socco, 2019). We associate a wavelength-based 
weight to each DC data point, correcting this non-uniformity in depth. For the 𝑗th 
DC, we compute the weights of the 𝑖th data point as:  

𝑤𝑖,𝑗 = 
∆𝜆𝑖,𝑗

∆𝜆𝑗,𝑚𝑎𝑥
,                                                         (7.3) 

where the ∆𝜆𝑖,𝑗  is the wavelength distance from the closest data point to data point 
𝑖. The larger the wavelength distance of the data points, the higher the weight will 
be. The weights of each DC are normalized to the maximum registered weight 
∆𝜆𝑗,𝑚𝑎𝑥. The normalization of the weights assures an equal rank of the various DCs 
in the inversion process. For each DC's computation, if many shots from different 
source locations are stacked, the individual shots can be used to compute a standard 
deviation for each data point, representing the uncertainty. The data uncertainties 
are important in inversion algorithms as they can limit the impact of the erroneous 
data points. We define the covariance matrix corresponding to the data points 𝐩𝐨𝐛𝐬 
as the diagonal matrix: 
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𝐂𝐨𝐛𝐬 = 

[
 
 
 
 
 
 
 
 
 
𝜎1,1

2

𝑤1,1
0 0 0 ⋯ 0

0
𝜎2,1

2

𝑤2,1
0 0 ⋯ 0

0 0 ⋱ 0 ⋯ 0

0 0 0
𝜎1,2

2

𝑤1,2
⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0
𝜎𝑖,𝑗

2

𝑤𝑖,𝑗]
 
 
 
 
 
 
 
 
 

,                       (7.4) 

where the 𝜎𝑖,𝑗 and 𝑤𝑖,𝑗 are the standard deviation and the normalized wavelength-
based weights of the ith data point of the jth DC.  

We use a weighted least-square method to invert the estimated DCs, which involves 
minimizing the misfit function 𝑄: 

𝑄 =  [(𝐩𝐨𝐛𝐬 − 𝐩(𝐦))𝐓 𝐂𝐨𝐛𝐬
−𝟏  (𝐩𝐨𝐛𝐬 − 𝐩(𝐦)] + [(−𝐑𝐩𝐦)

𝐓
𝐂𝐑𝐩

−𝟏(−𝐑𝐩𝐦)],      (7.5) 

where the first term is related to the data misfit and the second term is the spatial 
regularization. The spatial regularization helps to retrieve consistent results (Auken 
and Christiansen, 2004; Boiero, 2009) and is obtained by imposing constraints on 
the variations between the 𝑉𝑆 of the adjacent 1D models (Boiero, 2009). 𝐑𝐩 is the 
spatial regularization matrix, which relates the model parameters of the adjacent 
model points, and the 𝐂𝐑𝐩 the regularization covariance matrix defines the strength 
of the spatial constraints. The 𝐦 is the vector of the model parameters, and  𝐩(𝐦) 
is the vector of the synthetic path-averaged DCs, corresponding to the experimental 
data points 𝐩𝐨𝐛𝐬. The 𝐂𝐨𝐛𝐬

−𝟏  is the reciprocal of the covariance matrix shown in 
equation (7.4). We use the weighted damped least-square method (Marquart, 1963) 
to iteratively update the model as: 

𝐦𝐧+𝟏 = 𝐦𝐧 + ([𝐆𝐓𝐂𝐨𝐛𝐬
−𝟏 𝐆 + 𝐑𝐩

𝐓𝐂𝐑𝐩
−𝟏𝐑𝐩 +  𝛌𝐈 ]

−𝟏

×  [𝐆𝐓𝐂𝐨𝐛𝐬
−𝟏 (𝐩𝐨𝐛𝐬 − 𝐩(𝐦)) + 𝐑𝐩

𝐓𝐂𝐑𝐩
−𝟏(−𝐑𝐩𝐦𝐧)]),                   (7.6) 

where 𝐆 the Jacobian matrix, evaluates the sensitivity of the DCs to the model 
parameters. 𝐦𝐧 and 𝐦𝐧+𝟏 are the previous and updated model vectors, 
respectively.  
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We follow the same approach explained in section 6.2.3 to select the constraints 
levels. 

7.2.3.4 Synthetic example: The impact of higher modes and wavelength-based 
weights on SWT 

Here, we show the application of the surface wave tomography (SWT) to a synthetic 
2D model to evaluate the effect of including 1st higher mode, as well as the impact 
of imposing the wavelength-based weights on the tomographic inversion. In Figure 
7.3, we show the true synthetic model, which consists of 101 1D models, evenly 
spaced. Along the 1 km line, we defined 612 DC paths with lengths ranging from 
10 to 60 m.  

 

Figure 7.3: The true 𝑉𝑆 model of synthetic model.  

We computed the synthetic DCs corresponding to each path within the frequency 
range of 5 to 30 Hz. Figure 7.4a shows the computed path-averaged surface wave 
fundamental and the 1st higher modes in blue and red, respectively. In Figure 7.4b 
and c, we show the wavelength distribution corresponding to the data points of the 
fundamental and 1st higher modes, respectively. The fundamental mode 
wavelengths are limited to 200 m of wavelength, while the 1st higher mode has 
wavelength coverage up to 300 m of wavelength.  



111 
 

 

Figure 7.4: (a) The 612 computed fundamental and the 1st higher modes 
along the 1 km of the 2D synthetic example in Figure 7.3. All DCs are computed 
between 5 to 30 Hz. (b) The wavelength distribution of the computed fundamental 
mode DCs. (c) The wavelength distribution of the computed 1st higher mode DCs. 

In Figure 7.5a, we show the initial model used for the tomographic inversion. In 
Figure 7.5b, we show the results of the inversion using only the fundamental mode 
and without imposing weights to the inversion. The results show a reasonable 
estimation of the first 70 m; however, the lateral and vertical variations are not fully 
recovered within the first 70 m of depth. 

Next, we inverted the data using both the fundamental and 1st higher modes, again 
without imposing weights to the data points (Figure 7.5c). The inversion result 
shows much more accuracy in recovering the first 70 m. Also, the investigation 
depth is enhanced with respect to the fundamental mode inversion in Figure 7.5b. 
In Figure 7.5d, we show the result of the inversion using the fundamental and the 
1st higher modes and by imposing wavelength-based weights, where it shows the 
successful recovery of the model up to 140 m in depth. 
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Figure 7.5: The results of the tomographic inversion performed on the 
synthetic model in Figure 7.3. (a) The initial model. (b) The estimated 𝑉𝑆 model 
from the non-weighted fundamental mode inversion. (c) The estimated 𝑉𝑆 model 
from the non-weighted multi-modal inversion. (d) The estimated 𝑉𝑆 model from 
weighted (wavelength-based) multi-modal inversion. 

7.3 Application to field data sets 

In this section, we show the application of the SWT to three industry data sets. For 
the PNG data set, we estimate and use the fundamental and 1st higher modes, while 
for Aurignac, we use only the fundamental mode to estimate the 𝑉𝑆 and 𝑉𝑃 models. 
Finally, we show the SWT application to oil and gas exploration data set to estimate 
the near-surface 𝑉𝑆 model.  
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7.3.1 PNG 

7.3.1.1 Local DCs: Velocity limit and Poisson's ratio estimation 

We estimated local DCs using various sets of sources and receivers of the data set. 
Figures 7.6a and b show the frequency-velocity spectrum corresponding to two 
different sources and receivers' deployment geometries. The estimated fundamental 
mode and the 1st higher mode are shown in blue and red, respectively. 

In Figure 7.6c, we show all estimated fundamental and 1st higher modes of surface 
waves using the multi-channel analysis. We selected the reference fundamental and 
1st higher modes amongst local DCs based on the frequency band. For the reference 
fundamental mode, we considered the broadband DC that also contained low-
frequency elements. In Figure 7.6c, we show the reference fundamental and 1st 
higher modes with dashed blue and red lines, respectively. We used these DCs to 
manually design a velocity limit that separates the fundamental and 1st higher modes 
of the data (Figure 7.6c, in black). We will use the velocity limit in the SWT 
processing step to separate the modes of surface waves.  

 

Figure 7.6: The multi-channel analysis of the PNG data set applied to the 
recordings of various receiver spreads. (a) The spectrum used to compute the 
reference fundamental mode. (b) The spectrum used to compute the reference 1st 
higher mode. (c) All estimated fundamental (in blue) and 1st higher modes (in red) 
using the multi-channel method, and the dispersive velocity limit (in black). 
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In Figure 7.7, we show the W/D method’s steps (section 4.4) applied to the 
reference fundamental mode (Figure 7.6a). Considering variable Poisson’s ratio in 

a wide range (0.1 to 0.45), we inverted the reference fundamental mode using the 
Monte Carlo inversion. We used the statistical Fisher test with a low level of 
confidence (0.05) to select all models that belong to the best-fitting model 
population. In Figures 7.7a and b, we show the selected DCs and the corresponding 
𝑉𝑆 models. In Figure 7.7c, we show the selected and the reference 𝑉𝑆𝑍 models. 
The estimated 𝑉𝑆𝑍 and the reference DC were used to compute the experimental 
W/D relationship (Figure 7.7d). We then assessed the W/D relationship’s sensitivity 

to Poisson’s ratio, which led to 𝑉𝑃𝑍 estimation. Next, we used equations (4.9) and 
(4.10) to transform the 𝑉𝑆𝑍 and 𝑉𝑃𝑍 into interval 𝑉𝑆 and 𝑉𝑃 (Figure 7.7e). Finally, 
having estimated the 𝑉𝑆 and the 𝑉𝑃 model, we computed the averaged 1D 
Poisson’s ratio (the blue curve in Figure 7.7f) corresponding to the investigation 

area. 

 

Figure 7.7: W/D method to obtain the reference Poisson's ratio 
corresponding to the investigation area of the PNG site. (a) the reference 
fundamental mode with the DCs of the selected models. (b) The 𝑉𝑆 of the selected 
model. (c) The 𝑉𝑆𝑍 of the selected models, with the reference 𝑉𝑆𝑍 shown in black. 
(d) The estimated W/D relationship shown with the synthetic W/D relationships, 
each obtained from a constant Poisson's ratio. (e) The estimated 𝑉𝑆 and 𝑉𝑃 models. 
(f) The estimated Poisson's ratio corresponding to the reference fundamental mode 
in blue and the adopted Poisson's ratio (averaged and extrapolated) for the 
tomographic inversion in red. 
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7.3.1.2 Path-averaged DCs 

In total, 505 possible paths were registered for the data set. We used the velocity 
limit obtained in Figure 7.6c to isolate the fundamental and 1st higher mode of the 
surface wave. Figure 7.8 shows two examples of the processing method applied to 
the same receiver recordings from the data, for picking the fundamental mode 
(Figure 7.8a and b) and 1st higher mode (Figure 7.8c and d). We only picked the 
data points relevant to wavelengths smaller than twice the receiver pair's distance 
(half-wavelength rule, Heisey et al., 1982; Nazarian et al., 1983; Yao et al., 2006). 
In Figures 7.8a and c, we show the half-wavelength line in white. We also show the 
reference fundamental and 1st higher modes obtained from the multi-channel 
analysis; we used the reference DCs to locate the correct trend when picking the 
path-averaged DCs. 

 

Figure 7.8: Example fundamental and 1st higher mode estimations from the 
PNG data set. The dashed lines are the reference DCs obtained in the multi-channel 
analysis of the PNG data set (Figure 7.6). (a) The fundamental mode cross-
multiplication matrix, where the white line is the half-wavelength limit. (b) The 
estimated fundamental mode from the cross-multiplication matrix in (a). (c) The 1st 
higher mode cross-multiplication matrix, where the white line is the half-
wavelength limit (d) The estimated 1st higher mode from the cross-multiplication 
matrix in (c). 
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In total, we computed 198 fundamental modes and 168 1st higher modes. The 
remaining paths presented a noisy cross-multiplication matrix. As a result, they 
were discarded from the data. In Figures 7.9a and b, we show all estimated DCs and 
the corresponding data coverage (paths). In Figure 7.9c, we show the azimuthal 
illumination of the estimated DCs as a polar plot; most of the paths show the 
azimuth angles between 0 to 25° and 150 to 179°. 

 

 

Figure 7.9: (a) The estimated path averaged DCs for the PNG data set. (b) 
The observed paths of the estimated DCs in (a). (c) The azimuthal illumination. In 
(c), the numbers around the greatest circle are the angles, and the smaller circles 
show the number of available paths. 

The resolution and investigation depth of the inversion is directly related to the 
wavelength coverage of the estimated DCs. The wavelength coverage for 3D data 
can be evaluated as pseudo-slices (Da col et al., 2019), in which, for a wavelength 
range, the available paths are plotted with a color corresponding to the average 
phase velocity (apparent phase velocity). In Figures 7.10a to f, we show the 
fundamental modes’ pseudo-slices corresponding to six wavelength ranges. The 
pseudo-slices are useful tools to locate possible lateral variations or outliers that do 
not corroborate with the apparent phase velocity of similar paths. For example, in 
Figure 7.10d, a significant velocity contrast is observed, indicating a considerable 
lateral variation. Figure 7.10a shows inadequate coverage for the wavelength range 
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of 0-20 m; thus, a low resolution should be expected in recovering the first few 
meters of the model. The wavelength coverage shows the highest number of paths 
between 20 to 150 m (Figures 7.10b to d), while the coverage vanishes for the 
wavelengths greater than 200 m (Figure 7.10f). 

 

Figure 7.10: The data coverage of the estimated surface wave fundamental 
modes of the PNG data set (Figure 7.9a) as pseudo-slices corresponding to 
different wavelength intervals between: (a) 0-20 m. (b) 20 to 50 m. (c) 50 to 100 m. 
(d)  100 to 150 m. (e) 150 to 200 m. (f)  200 to 300 m. 

In Figures 7.11a to f, we show the pseudo-slices corresponding to the 1st higher 
modes within the same six wavelength ranges as we used for the fundamental mode 
(Figure 7.10). Similar to fundamental modes, for the wavelength range between 0 
to 20 m, the wavelength coverage of the 1st higher mode is limited to a few paths 
(Figure 7.11a). The coverage reaches its maximum between 20 to 100 m of 
wavelength (Figures 7.11b and c), and it declines afterward. Unlike fundamental 
modes, the 1st higher mode shows coverage up to 300 m of wavelength (Figure 
7.11f). 
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Figure 7.11: The data coverage of the estimated surface wave 1st higher 
modes of the PNG data set (Figure 7.9a) as pseudo-slices corresponding to 
different wavelength intervals between: (a)  0-20 m. (b) 20 to 50 m. (c) 50 to 100 
m. (d) 100 to 150 m. (e) 150 to 200 m. (f) 200 to 300 m. 

7.3.1.3 The reference model 

We defined the 3D model consisting of 152 1D models. Each 1D model was 
consisting of 9 layers overlying the half-space with a constant thickness of 10 m.  
The initial model corresponds to 1520 𝑉𝑆 unknowns. The initial 𝑉𝑆 model was 
selected from the estimated 𝑉𝑆 model of the MCI (Figure 7.7e). The W/D method 
provided the Poisson’s ratio for every 10 cm depth interval between 10 to 70 m 

from the surface. The values were averaged within 10 m intervals to obtain 
Poisson’s ratio corresponding to each model layer. We extrapolated the Poisson’s 

ratio to cover the full 90 m required for the inversion. In Figure 7.7f, we show the 
adopted Poisson’s ratio for the tomographic inversion in red. Geological properties 

of the very shallow sub-surface of a forest suggest very loose and unconsolidated 
soil. As a result, we considered a low density of 1,400 kg/m3 for the first layer of 
the model. The density of the rest of the layers and the half-space was set at 1,800 
kg/m3. 
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We computed the number of DC paths crossing each model point, disregarding the 
wavelength range of the DCs. In Figure 7.12, we show the obtained data coverage 
on the model, where the white color stands for zero path crossing the model points. 
The maximum data coverage is obtained in the center of the model. Except for the 
north-west, the data coverage on the model’s edges is minimal, suggesting a lower 

resolution in recovering the 𝑉𝑆 of these model points. 

 

Figure 7.12 The data coverage on the selected reference model for the 
tomographic inversion of the PNG data set. 

7.3.1.4 Results 

We imposed 100 m/s lateral constraints to the inversion, which did not significantly 
impact the residual misfit of the DCs compared to the unconstrained inversion. In 
Figure 7.13, we show the horizontal slices of the estimated 𝑉𝑆 model corresponding 
to the different layers. In Figures 7.13d to g, the estimated 𝑉𝑆 model shows a 
velocity contrast between the east and the west.  

We used the reference Poisson’s ratio (blue curve in Figure 7.7f) to transform the 

estimated 𝑉𝑆 model into the 𝑉𝑃 model (Figure 7.14). The estimated 𝑉𝑃’s depth 

range depended on the estimated 𝑉𝑆 from SWT and the reference Poisson’s ratio 

from the W/D method. The estimated Poisson’s ratio was available in a shorter 
depth range (10 to 70 m) compared to the estimated 𝑉𝑆 (0 to 90 m). As a result, the 
estimated 𝑉𝑃 in Figure 7.14 is limited to 10 to 70 m of depth. The shallow aquifers 
are very common in the investigation area, given the intense rain in the region, 
which is usually more than 6000 mm per year (McAlpine et al., 1983). The shallow 
saturated media are the main reason for the high 𝑉𝑃 between 10 to 30 m of the 
subsurface (Figures 7.14a and b). Then, following the drop in Poisson’s ratio 

(Figure 7.7f), the 𝑉𝑃 decreases (Figure 7.14c). This drop in Poisson’s ratio and 𝑉𝑃 
can be due to clay-rich soil below the aquifer, creating an unsaturated environment 
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below 30 m. Afterward, the 𝑉𝑃 gradually increases until it reaches the maximum 
velocity (Figure 7.14f) at depth 60 to 70 m, which we believe coincides the era bed 
formations. This formation is mainly composed of sandstone, siltstone, mudstone, 
conglomerates with P-wave velocity of about 2000 m/s (Craig and Warvakai, 
2009). We estimated a single reference Poisson’s ratio by assuming negligible 
lateral variations. As a result, the lateral variations of the estimated 𝑉𝑃 were solely 
related to the estimated 𝑉𝑆, and the lateral variations of the Poisson’s ratio were not 
accounted for in the 𝑉𝑃 estimation.   

 

Figure 7.13 The estimated 𝑉𝑆 model for the PNG data set at depth: (a) 0 to 
10 m. (b) 10 to 20 m. (c) 20 to 30 m. (d) 30 to 40 m. (e) 40 to 50 m. (f) 50 to 60 m. 
(g) 60 to 70 m. (h) 70 to 80 m. (i) 80 to 90 m.   
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Figure 7.14 The estimated 𝑉𝑃 model for the PNG data set between 10 to 70 
m using the estimated 𝑉𝑆 model in Figure 7.13 and the reference Poisson's ratio in 
Figure 7.7f. (a) 10 to 20 m. (b) 20 to 30 m. (c) 30 to 40 m. (d) 40 to 50 m. (e) 50 to 
60 m. (f) 60 to 70 m. 

The laterally constrained tomographic inversion well converged, and the synthetic 
DCs showed a proper fitting compared to the experimental ones. Figure 7.15 shows 
example comparisons between the synthetic DCs from the last iteration of the 
inversion and the experimental DCs, where the four fundamental modes and three 
1st higher modes are displayed with distinct markers and colors. 
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Figure 7.15 The example comparison between the experimental path-
averaged and synthetic DCs from the tomographic inversion of the PNG data set. 
Different markers represent different DCs, while the different colors separate the 
synthetic and experimental data, as well as the fundamental and the 1st higher 
modes. 

To better evaluate the impact of the wavelength-based weights on the DC fittings, 
we computed the residual misfit as: 

𝐫 =  𝐜𝑠𝑦𝑛 −  𝐜𝑒𝑥𝑝,                             (7.7) 

where 𝐜𝑠𝑦𝑛 and  𝐜𝑒𝑥𝑝 are the vectors of synthetic (last iteration) and experimental 
phase velocities. In Figures 7.16a and b, we show the boxplot of the residuals for 
the non-weighted and weighted SWT, respectively. A full description of the boxplot 
figure was given in section 5.2.2. We divided the residuals based on the 
wavelengths of the experimental data points to analyze the misfit within different 
ranges of wavelengths.  

 

Figure 7.16: The box plot showing the residuals at the last iteration of SWT 
applied to the PNG data set within different wavelength ranges for: (a) non-
weighted inversion, and (b) inversion with wavelength-based weights 

For data points with wavelengths between 0 to 50 m, the non-weighted inversion 
(Figure 7.16a) shows slightly lower residuals compared to the weighted inversion 
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(Figure 7.16b); however, for the rest of the data points with wavelengths larger than 
50 m, the weighted inversion shows considerably lower misfit. Also, the negative 
distribution of residuals (over-estimation) for the non-weighted inversion is 
significantly damped when weighted inversion is used. The outliers in both cases 
are mainly from the paths close to the model’s edges, where inadequate data 

coverage was available (Figure 7.12). 

7.3.1.5 Checkerboard Test 

We performed the checkerboard test to assess the spatial resolution of the final 
model. We perturbed the estimated 𝑉𝑆 model (Figure 7.13) 10%, negatively and 
positively. In Figures 7.17a and b, we show the horizontal sections of the 
perturbations. The pattern of the perturbation alternated every 40 m. So, the first 40 
m and the last 10 m (80-90 m) of the model were perturbed using the pattern in 
Figure 7.17a; the portion of the model between 40 to 80 m of depth was perturbed 
by the pattern in Figure 7.17b.  

 

Figure 7.17 The checkerboard test's perturbation patterns applied to the 
estimated model for the PNG using the SWT method. (a) The pattern used to perturb 
the model between depth 0 to 40 m and 80 to 90 m. (b) The pattern used to perturb 
the model at depths 40 to 80 m. 

In Figure 7.18a to d, we show the recovered perturbations at various layers. In the 
shallowest part of the model, the perturbations are better estimated (Figures 7.18a 
and b); however, the geometry of the perturbations (squares) are poorly recovered. 
This issue is mainly related to the acquisition scale, the obtained data coverage 
(Figure 7.9b), and the non-uniform azimuthal illumination (Figure 7.9c). The 
directionality of the azimuths is mainly due to the limited number of available 
receivers and the source deployment’s geometry. The latter could be overcome 
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when more sparse locations of shots, covering multiple sides of the receivers, are 
available.  

 

Figure 7.18: Horizontal sections of recovered perturbations for the 
checkerboard test on the PNG model at depth: (a) 10 to 20 m. (b), 30 to 40 m., (c) 
50 to 60 m., and (d) 70-80 m. 

To show this, we performed another checkerboard test, adding 10 hypothetical 
source locations to the PNG acquisition geometry. In Figure 7.19, we show the 10 
hypothetical source locations in green.  

 

Figure 7.19: Hypothetical geometry of the PNG acquisition, where 10 
hypothetical source's locations are added to the observed geometry in Figure 3.5a. 
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We computed the additional synthetic path-averaged DCs using the model from the 
last iteration of the inversion and added them to the observed ones. We repeated the 
checkerboard test on the new data. In Figure 7.20, we show the checkerboard test 
results, where the perturbations are better recovered compared to the checkerboard 
test in Figure 7.18, both in terms of the values and geometry of the perturbation. 

 

Figure 7.20 The checkerboard test performed to the hypothetical geometry 
of PNG acquisition in Figure 7.19.  The horizontal sections showing the recovered 
perturbations  at depths: (a) 10 to 20 m. (b) 30 to 40 m. (c) 50 to 60 m. (d) 70 to 80 
m. 

7.3.2 Aurignac 

The Aurignac data showed a very complex propagation of the surface wave (Figure 
3.8b), where multiple modes of the surface wave were excited contemporarily. The 
modes' indexing was very challenging, as often a merged version of the modes 
(effective DC) was observed. Here, we perform the SWT only to the fundamental 
modes of the north-west part of the data set (blue subset in Figure 3.6b). 
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7.3.2.1 Path-averaged DC estimations 

We performed an automatic search of the receiver couples aligned with sources 
within 250 m offset. 4710 possible receiver couples and source settings were 
identified. We used the local DCs (4.19a) from the phase-shift analysis as 
references to locate the correct trend of the path-averaged fundamental mode DCs; 
for each path between the receiver couples, the local DC (Figure 4.19a) closest to 
the path was used as the reference DC. In total, 1301 DCs were estimated. The rest 
of the possible settings resulted in very noisy or inconsistent cross-multiplication 
matrices; as a result, they were discarded. In Figure 7.21a and b, we show the 
estimated path-averaged DCs and the obtained azimuthal illumination. The data 
show uniform data coverage with most paths showing angles between 0 to 40 and 
140 to 180 degrees.  

 

Figure 7.21: (a) The estimated path-averaged DCs corresponding to north-
west part of the Aurignac site. (b) The obtained azimuthal illumination. 

We computed the wavelength coverage of the estimated DCs. In Figure 7.22a to f, 
we show the data coverage within different wavelength ranges, where the color 
scale shows the apparent phase velocity. The data exhibits very high data coverage 
for wavelengths between 40 to 220 m. However, the wavelength coverage decreases 
substantially beyond this range. The pseudo-slices show sharp velocity contrast 
between the east and west of the investigated area, which was also observed in the 
estimated local DCs (Figure 4.20). 
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Figure 7.22: Pseudo-slices of the estimated DCs from the north-west of the 
Aurignac site shown within the wavelength ranges: (a) 0 to 40 m. (b) 40 to 80 m. 
(c) 80 to 120 m. (d) 120 to 160 m. (e) 160 to 220 m. (f) 220 to 280 m. 

7.3.2.2 Reference model 

We considered a 9-layer 3D reference model, consisting of 300 1D model points. 
Each layer's thickness was fixed at 15 m, except for the first layer (20 m), giving an 
investigation depth of about 140 m. We used the reference Poisson’s ratio from the 

W/D method (section 6.3.2; red curves in Figures 6.2c and d). We defined a constant 
density of 2400 kg/m3, except for the first layer (2200 kg/m3). We considered the 
estimated reference 𝑉𝑆 models from the W/D method (section 6.3.2; Figures 6.2a 
and b). 

7.3.2.3 Results 

In Figure 7.23, we show the horizontal slices of the estimated 𝑉𝑆 from the 
unconstrained tomographic inversion. The unconstrained inversion resulted in non-
realistic abrupt velocity variations (equivalence issue).  
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Figure 7.23: The horizontal slices of estimated 𝑉𝑆 model for the north-west 
of the Aurignac site using SWT method without imposing spatial constraints. The 
𝑉𝑆 models within the depths: (a) 0 to 20 m. (b) 20 to 35 m. (c) 35 to 50 m. (d) 50 to 
65 m. (e) 65 to 80 m. (f) 80 to 95 m. (g) 95 to 110 m. (h) 110 to 125 m. (i) 125 to 
140 m. 

To reach a smoother and more realistic model, we gradually increased the spatial 
constraints, taking into account the residual misfit of the DCs (equation 6.1). The 
50 m/s constraints resulted the maximum level of constraints that did not 
significantly impact the residual misfit. In Figure 7.24, we compare the residuals of 
the unconstrained and constrained (50 m/s) inversions. The misfit shows similar 
values, and the average residual misfits of the two inversions are very similar 
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(6.64% for unconstrained and 6.7% for constrained inversion), showing that the 
selected constraints did not introduce over-smoothing in the model.   

 

Figure 7.24: The residual misfit between the experimental and synthetic 
path-averaged DCs of the north-west Aurignac at the last iteration using: (a) 
unconstrained inversion, and (b) constrained inversion (50 m/s). 

In Figure 7.25, we show the horizontal slices of the estimated 𝑉𝑆 of the constrained 
inversion at the last iteration (15). The estimated 𝑉𝑆 well-maps the lateral variation 
between the east and the west previously observed by the 𝑉𝑆 model from W/D 
method (Figure 4.23) and LCI (Figure 6.4) methods.  
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Figure 7.25: The horizontal slices of the estimated 𝑉𝑆 model for the north-
west part of the Aurignac dataset using SWT with spatial constraints equal to 50 
m/s. The 𝑉𝑆 models within the depths: (a) 0 to 20 m. (b) 20 to 35 m. (c) 35 to 50 m. 
(d) 50 to 65 m. (e) 65 to 80 m. (f) 80 to 95 m. (g) 95 to 110 m. (h) 110 to 125 m. (i) 
125 to 140 m. 

We used the Poisson's ratio of the two clusters shown in Figure 6.2c and d in red to 
transform the estimated 𝑉𝑆 model into 𝑉𝑃. In Figure 7.26, we show the estimated 
𝑉𝑃 model at different layers. The estimated Poisson’s ratio of cluster A and B were 
limited to 20 to 128 (Figure 6.2c) and 20 to 140 (Figure 6.2d). The estimated 𝑉𝑃 is 
also bounded to the same depth range.  
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Figure 7.26: The horizontal slices of the estimated 𝑉𝑃 model for north-west 
part of the Aurignac site computed by applying the reference Poisson’s ratios from 

W/D method (Figure 6.2c and d) to the estimated 𝑉𝑆 model from SWT (Figure 
7.25). The 𝑉𝑃 model at depths: (a) 0 to 20 m. (b) 20 to 35 m. (c) 35 to 50 m. (d) 50 
to 65 m. (e) 65 to 80 m. (f) 80 to 95 m. (g) 95 to 110 m. (h) 110 to 125 m. (i) 125 to 
140 m. 

7.3.2.4 Checkerboard tests 

We perturbed the estimated 𝑉𝑆 model in Figure 7.25 by 10% negatively and 
positively. The pattern used to perturb the first layers of the models is shown in 
Figure 7.27a. The negative and positive perturbation values were alternated at each 
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layer. In Figure 7.27b, we show the vertical section of the perturbations at y-plain 
equal to 250 m. 

 

Figure 7.27:The perturbation pattern used for the application of the 
checkerboard test to estimated 𝑉𝑆 model of north-west Aurignac using the SWT 
method. (a) The pattern at the surface (1st layer). (b) The vertical section of the 
model perturbation at y-plain equal to 250 m. The negative and positive values are 
alternated for each layer. 

The inversion automatically stopped at iteration 32. In Figure 7.28, we show the 
recovered perturbations at different layers. The geometries of the perturbations are 
entirely recovered for all layers. Also, the recovered values of the perturbations are 
satisfactory for the whole depth range. 
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Figure 7.28: The recovered perturbations at various depths from the 
application of the checkerboard test to the result of the Aurignac north-west. (a) 0 
to 20 m. (b) 35 to 50 m. (c) 80 to 95 m. (d) 125 to 140 m. 

7.3.3 Oil and gas exploration data set 

We show the application of the SWT to the oil and gas exploration data set for 𝑉𝑆 
estimation (Tawil, 2019). The SWT is applied to the 2 km out of the 12 km seismic 
line, between positions 1 to 3 km. The previous applications of the W/D method 
and surface wave 1D inversion (Figure 4.31) suggested a considerable lateral 
variation for shallow layers at position 2 km. Given the data set is 2D, the target of 
the SWT is a quasi 2D estimated model.  
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7.3.3.1 Path-averaged DC estimations 

All receivers were aligned with the source (2D line), leading to 180,300 possibilities 
for receiver couple selection. Since the path-averaged DCs were picked manually, 
a criterion should have been adopted to reduce the time required without 
significantly affecting the data coverage. We selected the paths between 60 to 140 
m with the scheme shown in Figure 7.29. 

 

  

Figure 7.29: The schematic view of the DC path selection for the oil and gas 
exploration data set. Paths between 60 to 140 m were considered, and they were 
shifted by two receivers. 

240 possible paths were analyzed, and the corresponding path-averaged DCs were 
estimated. In Figure 7.30a and b, we show the estimated DCs as a function of 
frequency and wavelength, respectively. The data are available mainly between 24 
to 100 m of wavelength. We show the estimated curves spatial and wavelength 
coverage in Figure 7.30c, where the location of the paths are presented in the x-
axis. The data are compartmentalized in the y-axis, showing the coverage within 
various wavelength ranges. The color of each path corresponds to the average phase 
velocity within the wavelength range. The estimated DCs show a velocity contrast 
between the left and right sides of the investigated line, with the transition zone at 
an approximate position of 2 km. 
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Figure 7.30 The estimated path-averaged DCs and data coverage for the 2 
km (position 1 to 3 km) of the oil and gas exploration data set. (a) Estimated DCs 
as a function of frequency. (b) Estimated DCs as a function of wavelength. (c) The 
data coverage shown within various ranges of the wavelength. The color scale is 
the apparent phase velocity within each wavelength range. 

7.3.3.2 The Reference Model 

We defined a 12-layer 2D model overlying the half-space, consisting of 30 1D 
models. Since the data coverage is limited for wavelengths shorter than 24 m, we 
considered 12 m thickness for the first layer. The other layers were set at 3 m, giving 
an investigation depth of about 50 m. The constant density and Poisson’s ratio of 

1800 kg/m3 and 0.33 were considered for all layers. We considered laterally and 
vertically invariant 𝑉𝑆 equal to 1100 m/s.  

We evaluated the data coverage on the model by computing the paths crossing each 
model point. In Figure 7.31a and b, we show the model coverage as a function of 
frequency and wavelength, respectively. The model points at the two edges of the 
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model show the lowest coverage. The maximum data coverage is registered for the 
wavelengths 50 to 80 m.   

 

Figure 7.31 The coverage on the defined reference model for the 
tomographic inversion of the oil and gas exploration data set shown as a function 
of: (a) frequency, and (b) wavelength. 

7.3.3.3 Results 

We performed the inversion considering 100 m/s spatial constraints, which did not 
significantly impact the misfit compared to unconstrained inversion. The inversion 
automatically stopped at iteration 28. In Figure 7.32, we show the estimated 𝑉𝑆 
model. Similar to estimated 𝑉𝑆 from the W/D method and 1D surface wave 
inversion (Figure 4.31), the estimated 𝑉𝑆 from SWT shows significant variations 
between the left and right sides of the position 2 km (Figure 7.32).  

 

Figure 7.32 The estimated 𝑉𝑆 model for the 2 km of the oil and gas 
exploration data set using the SWT. 
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7.4 Conclusions 

We developed a multi-modal SWT workflow that can be applied to data sets 
acquired with irregular acquisition geometries. We used the surface wave 
tomography to estimate the 𝑉𝑆 model and considered the W/D method to obtain the 
Poisson’s ratio and transform the 𝑉𝑆 model into the 𝑉𝑃. We provided a method to 
automatically separate the various modes of surface wave, avoiding the surface 
wave modal analysis for every receiver couple aligned with a source. In the 3D 
application of the SWT, such as the one applied to Aurignac and PNG data sets, the 
azimuthal illumination and data coverage are important factors that significantly 
affect the estimated models' resolution. The checkerboard tests proved that high-
resolution models can be obtained when a large number of DCs with uniform 
azimuthal distribution are available. 
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8. Method Comparison 

In this section, we analyze the velocity models estimated from the application of 
the W/D, LCI, and SWT methods to the Aurignac data set. We also perform a 
quantitative comparison between the models of the three methods. Finally, we 
compare the estimated models with the geological map of the area. 

8.1 Model parameters 

The results of the three applied methods were 1D 𝑉𝑆 and 𝑉𝑃 models corresponding 
to various locations. In Table 8.1, we describe the location of 1D estimated models 
and their characteristics in depth according to each method. The LCI algorithm was 
set to update also the layer thicknesses in addition to the 𝑉𝑆 model. So, the 
thicknesses of the obtained 1D models were various at the last iteration of the 
inversion, while the thicknesses of the SWT models were based on the reference 
model. 

Table 8.1: The spatial and depth parameters of the estimated models from 
W/D, LCI, and SWT methods. 

Method Position of 1D 
models 

Property in depth  

W/D at DC locations Every 0.1 m 

LCI  at DC locations Layered model 
(various 

thickness) 

SWT Defined: 
reference model  

Layered model 
(fixed thickness) 

The model points for the W/D and LCI methods were determined by the location 
of the local DCs. We used a receiver spread over an area of 100×100 m2 to estimate 
the local DCs. The receiver selection square was shifted by one receiver at a time, 
giving the maximum possible number of DCs. For the SWT method, a reference 
model consisting of 300 model points was adopted. The checkerboard test we 
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performed showed a good recovery of perturbations at all model points, eliminating 
the possibility of over-defined number of model points (Figure 7.28). 

The W/D method directly estimated the 𝑉𝑆 and 𝑉𝑃 models and was performed 
separately to the two zones (east and west of the site). For each zone, based on the 
wavelength range of the reference DC, the depth range was obtained for the 
estimated models. In LCI and SWT scheme, the estimated 𝑉𝑆 model's investigation 
depths were defined by the reference model. A priori Poisson’s ratio from the W/D 

method was used to transform the estimated 𝑉𝑆 models of LCI and SWT methods 
to the 𝑉𝑃 model. As a result, the estimated 𝑉𝑃's depth range also depended on the 
depth range of a priori Poisson’s ratios from W/D method. Table 8.2 provides the 
depth ranges obtained for the estimated 𝑉𝑆 and 𝑉𝑃 according to each method.  

Table 8.2:The depth range of the estimated 𝑉𝑆 and 𝑉𝑃 models from the methods. 

 𝑉𝑆 depth 
west (m) 

𝑉𝑆 depth 
east (m) 

𝑉𝑃 depth 
west (m) 

𝑉𝑃 depth 
east (m) 

W/D 20 to 128 20 to 140 20 to 128 20 to 140 

LCI 0 to 140 0 to 140 20 to 128 20 to 140 

SWT 0 to 140 0 to 140 20 to 128 20 to 140 

The W/D and LCI methods' spatial resolution is the same as one obtained for 
estimated local DCs. The dimension of the receiver spreads used for the DC 
estimations can be considered as the spatial resolution (100×100m2). The model's 
spatial resolution from the SWT method depends on the data coverage and 
azimuthal illumination, which can be recovered from the checkerboard test (in 
section 7.3.2.4; Figure 7.28). The tomographic inversion well recovered the 75 × 
150 m2 perturbations.  

The resolution of the methods in depth is related to the sampling of the DCs in the 
processing step. The multi-channel DCs were used for the W/D and LCI method, 
while two-station DCs were the input of the SWT. In Figure 8.1a, we show the 
wavelength distribution of the estimated DCs from the multi-channel and two-
station processing in blue and gray, respectively. Even though, the total number of 
DCs from multi-channel analysis was less than the two-station ones, the datapoints 
related to large wavelengths (>120 m) were more than the ones obtained with the 
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two-station analysis (Figure 8.1b), giving a better chance to retrieve the deeper 
portion of the model. As it was explained in section 7.2.3, to resolve this issue in 
scheme of SWT, we introduced wavelength-based weighting system to increase the 
score of large wavelength data points aiming at enhancing the resolution in depth. 
The checkerboard test that we performed confirmed the good recovery of the 
deepest layer of the model (Figure 7.28d). 

 

Figure 8.1: Comparison between the wavelength distributions from multi-
channel and two-station processing of the Aurignac data set. (a) The distribution 
of the wavelength shown separately for each estimated DC. (b) The histogram 
showing the wavelength distribution of all DCs within 20 m wavelength bins. 

8.2 Model Comparison 

We interpolated the estimated models from the three methods to obtain comparable 
velocity models with the same spatial and depth elements. We first discretized the 
estimated models from LCI and SWT at every 0.1 m, matching with the depth 
elements of the models from W/D method. Then, we used linear interpolation to 
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obtain the velocity models at voxels of 10×10×0.1 m3. In Figure 8.2 and 8.3, we 
show the quasi 3D estimated 𝑉𝑆 and 𝑉𝑃 models from the three methods after the 
interpolation. The significant lateral variation between the west and east is observed 
in all estimated models. 

 

Figure 8.2: Quasi 3D estimated 𝑉𝑆 model (left panel) and corresponding 
slices at plains x=600 m, y=0 and 400 m, and z=70 and 125 m (right panel), for 
the Aurignac data using the methods: (a) W/D. (b) LCI. (c) SWT. 
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Figure 8.3: Quasi 3D estimated 𝑉𝑃 model (left panel) and corresponding 
slices at plains x=600 m, y=0 and 400 m, and z=70 and 125 m (right panel), for 
the Aurignac data set using the methods: (a) W/D. (b) LCI. (c) SWT. 

At each voxel, we compute the difference between estimated 𝑉𝑆 and 𝑉𝑃 of every 
two methods as: 

.1 .2

.1 .2

( , , ) ( , , )1( , , ) ,
2 ( , , ) ( , , )

method method

method method

V i j k V i j ki j k
V i j k V i j k


 −

=  
+ 

                   (8.1) 

where i , j and k  are the indices of the voxels in x, y, and depth directions, 
respectively. In Figure 8.4, we show the boxplots of the normalized differences 
within different depth intervals. A description of the boxplot figures was previously 
given in section 5.2.2. The boxplots in Figure 8.4 are all limited to the depth 
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between 20 and 140 m, except for the 𝑉𝑆 comparison of LCI and SWT methods 
(Figure 8.4e), which also includes the first 20 m (for the information about depth 
range of each method see Table 8.2). The significant differences of the outliers (red 
“+”) are mainly due to the methods’ different resolution in depth; the W/D method 
provided interval velocities every 10 cm, while the SWT and LCI provided layered 
models. Although we defined similar reference models for the LCI and SWT 
methods, the LCI was set to change also the thicknesses at each iteration, leading 
to different parameterization in depth compared to SWT. 

 

Figure 8.4: The difference between the 𝑉𝑆 (left panel) and 𝑉𝑃 (right panel) 
models obtained from the three methods applied to the Aurignac data set using 
equation (8.1). (a) W/D versus LCI. (b) W/D versus SWT. (c) LCI versus SWT. 
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The difference between the estimated 𝑉𝑆 and 𝑉𝑃 from W/D and LCI methods are 
small and uniform within different depth (Figure 8.4a). However, for the deepest 
layers, a slight over-estimation of the 𝑉𝑃 from the W/D method is registered 
compared to the 𝑉𝑃 from LCI (left panel in Figure 8.4a). The differences are 
increased in depth when the 𝑉𝑆 and 𝑉𝑃 of the W/D and SWT methods are compared 
(Figure 8.4b). The difference obtained for the estimated 𝑉𝑆 and 𝑉𝑃 using the LCI 
and SWT (Figure 8.4c) are very similar as the 𝑉𝑃 models of both methods were 
obtained from the estimated 𝑉𝑆 and same a priori Poisson’s ratios; the differences 

show limited variations within each depth interval and are maintained within 5%. 

To reflect the differences in space, we average the differences in depth as: 

1

1( , ) ( , , ),
n

k
i j i j k

n
 

=

=             (8.2) 

where n  is the index of the deepest voxel at each location. In Figure 8.5, we show 
the difference at each location, comparing the models from every two methods. The 
difference between the 𝑉𝑆 of the W/D and LCI method is less than 4% in most areas 
(left panel Figure 8.5a). This difference slightly increases when the estimated 𝑉𝑃 
of the same methods (right panel in Figure 8.5b) are compared. Higher differences 
are registered when the estimated 𝑉𝑆 and 𝑉𝑃 models from SWT are compared to 
W/D and LCI models (Figures 8.5b and c). This is expected since the same DCs 
were considered as inputs of the W/D and LCI methods, while the path-averaged 
DCs from two-station processing were used for the SWT method. The differences 
obtained for the estimated 𝑉𝑃 of the W/D and SWT (right panel in Figure 8.5b) are 
slightly higher than those obtained for the 𝑉𝑆 (left panel in Figure 8.5b), but they 
are still less than 5% for most of the area. 



145 
 

 

Figure 8.5: The averaged difference (in-depth)  between the 𝑉𝑆 (left panel) 
and 𝑉𝑃 (right panel) models obtained from the three methods applied to the 
Aurignac data set using equation (8.2). (a) W/D versus LCI. (b) W/D versus SWT. 
(c) LCI versus SWT. 

In Figure 8.4 and 8.5, we compared the results of the different methods both in 
depth and space. We also compute the overall differences between the estimated 
models of every two methods as: 
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where m  and q are the number of indices in x and y directions, respectively. In 
Table 8.3, we provide the total difference values obtained comparing the models 
from the three methods.  

Table 8.3: The total difference between the estimated 𝑉𝑆 and 𝑉𝑃 models 
obtained for Aurignac data set using W/D, LCI, and SWT methods. 

Total difference 𝑉𝑆’s tot  𝑉𝑃’s tot  

WD vs. LCI 3.3% 4.67% 

WD vs. SWT 6% 7.06% 

LCI vs. SWT 4.74% 4.52% 

8.3 Estimated models vs. geology of the site 

Similar to the estimated 𝑉𝑆 models (Figure 8.2), the estimated 𝑉𝑃 models (Figure 
8.3) from all three methods (W/D, LCI and SWT) exhibited a significant variation 
between the west and east. We obtained the geological map of the area from the 
French Geological Survey (BRGM). In Figure 8.6, we show the geological map 
superimposed with the satellite view of the area. Since the W/D method was 
involved in the 𝑉𝑃 estimation from all three surface wave methods, in Figure 8.6, 
for interpretation purposes, we plot also the horizontal slice of the estimated 𝑉𝑃 
model from W/D for the depth interval of 35-50 m. The interpretation of the 
estimated 𝑉𝑃 model from W/D method above this depth cannot be comprehensively 
performed since the estimations were available for no or limited locations of the 
site (Figures 4.24a and b). The two diagonal and vertical faults at the north-west of 
the investigated area separate the east from the west. In the region between the two 
faults, a gap within the estimated model from the W/D method is observed: The 
complex propagation of surface waves passing through these discontinuities 
resulted in inadequate spectral coverage for DC estimations. The west of the area is 
characterized by loose materials from recent deposits (outcrop 5 in Figure 8.6). The 
rest of the region is known for much stiffer materials, mainly composed of 
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limestone and marl. The estimated 𝑉𝑃 also shows a higher velocity in the eastern 
region. The fastest 𝑉𝑃 is registered in the correspondence of the Sparnecian 
formation (outcrop 4 in Figure 8.6).  

The estimated 𝑉𝑃 models from all three surface wave methods show values of 4000 
to 4500 m/s at depths below 100 m (Figure 8.3). We believe the Danian formation 
is reached at depth below 100 m of the investigated area. The Danian formation is 
characterized by dense limestone with seismic P-wave velocity of approximately 
5000 m/s.  

 

Figure 8.6:  The geological  map of the Aurignac site, obtained from French 
Geological Survey (BRGM), superimposed with the area's satellite view and the 
estimated 𝑉𝑃 for depth interval of 35-50 m below the surface using the W/D method.  

8.4 Computational costs 

The three methods involved a processing stage for DC estimation, and an inversion 
(for LCI and SWT) or data transformation stage (for W/D) to estimate the models. 
In Table 8.4, we provide the approximated computational costs for each part of the 
methods. The most time-consuming step of all methods is the DC estimation, which 
also involves expert user intervention. Compared to W/D and LCI, the SWT usually 
requires more DCs to reach adequate data coverage for the tomographic inversion. 
We estimated 1307 DCs for SWT of the north-west zone of Aurignac data set, while 
we obtained only 545 DCs for the W/D and LCI methods application to both zones 
of the data set. 
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Table 8.4: The approximated computational costs for each method. 

 Processing 
(DC 

estimation) 

Common 
W/D steps for 
the methods 

Model 
estimation 

W/D 1 min/DC 24 hrs 5 s/1D model 

LCI 1 min/DC 24 hrs 5 hrs 

SWT 1 min/DC 24 hrs 48 hrs 

 

The inversion running times (for LCI and SWT) given in Table 8.4 are for a single 
inversion trial using 10 CPU cores. Usually, in addition to an unconstrained 
inversion, several constrained inversions are performed to reach a satisfactory 
model. 

8.5 Conclusion 

The estimated 𝑉𝑆 and 𝑉𝑃 models of the Aurignac data set from the three surface 
wave method applications were similar, with 4.7% and 5.4% difference on average. 
The information from the geological map of the area well supported the estimated 
models. The three methods' computational cost is mainly due to the DC estimation, 
which is usually higher for the SWT method.   

 

 

 

 

 



149 
 

9. Conclusions 

9.1 Final Remarks 

We investigated four surface wave methods to estimate near-surface S-wave and P-
wave velocity models (𝑉𝑆 and 𝑉𝑃). We evaluated the performance of the methods 
using five data sets, out of which 3 were industry data sets, and 2 data sets were 
recorded in small-scale controlled sites. We provided a detailed description of the 
data sets in chapter 3. 

In chapter 4, we introduced the W/D direct transformation method. The method is 
based on a wavelength-depth relationship (W/D) composed of the wavelength-
depth couples corresponding to equal phase velocity and time-average 𝑉𝑆 (𝑉𝑆𝑍). 
The W/D relationship is sensitive to Poisson’s ratio, which enables retrieving the 
apparent Poisson’s ratio required to transform 𝑉𝑆𝑍 models into time-average 𝑉𝑃 
(𝑉𝑃𝑍). The method directly provides the 𝑉𝑆𝑍 and 𝑉𝑃𝑍 models at the location of 
the local dispersion curves (DCs). We reformulated the relationship between time-
average velocity and interval velocity, and with introducing regularization to the 
derivative term of this relationship, we provided a stable scheme to transform 𝑉𝑆𝑍 
and 𝑉𝑃𝑍 models into interval 𝑉𝑆 and 𝑉𝑃. The clustering of the data and separate 
application of the W/D method to different zones of the sites enabled the application 
of the method to laterally varying sites. The method's application to the CNR data 
set showed less than 5% 𝑉𝑃 difference from P-wave tomography. We provided an 
uncertainty propagation workflow based on W/D steps to transfer the uncertainty 
of the input DCs to the estimated 𝑉𝑆 and 𝑉𝑃 models. The uncertainty assessment 
of the CNR and Aurignac data set showed low normalized standard deviations (less 
than 5%) in estimating the 𝑉𝑆 and 𝑉𝑃 models in most of the areas. Similarly, the 
method was successfully applied to the oil and gas exploration data set, even though 
the data were acquired with group receivers aiming to eliminate the surface waves. 
The obtained velocity models from the application of the method to the remaining 
surface waves in the data well depicted the previously registered variations along 
the investigation line. We also developed a method to estimate an averaged 
Poisson’s ratio corresponding to the area of each cluster, which we then used as 
prior information for the laterally constrained inversion (LCI) and surface wave 
tomography (SWT) methods.  
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We developed a joint inversion method in the scheme of Monte Carlo to estimate 
high-resolution 𝑉𝑆 and 𝑉𝑃 models (Chapter 5). The method considers both the W/D 
relationship and surface wave DC as minimization objectives. We successfully 
applied the method to two synthetic examples and a real data set (La Salle). The 
synthetic example 2 included saturated loose sand layers, which led to high 
Poisson’s ratio for these layers. The application of the method to this example 
improved both 𝑉𝑆 and 𝑉𝑃 estimations compared to the DC Monte Carlo inversion. 
However, less accurate estimated 𝑉𝑃 for high Poisson’s ratio layers were obtained, 
which is due to the abrupt variation of 𝑉𝑃/𝑉𝑆 ratio at high Poisson’s ratios (>0.45).  
The estimated 𝑉𝑃 model for La Salle data set showed a satisfactory resemblance to 
the benchmark high-resolution reflection and P-wave tomography surveys from 
other studies.  

The LCI of the surface wave DCs is a well-established method to estimate a 
consistent near-surface 𝑉𝑆 model. Providing the Poisson’s ratio from the W/D 

method, we were able to estimate both 𝑉𝑆 and 𝑉𝑃 models in the context of LCI. 
The estimated 𝑉𝑆 and 𝑉𝑃 models from the application of the LCI to the Aurignac 
data set showed a good correlation with the estimated models from the W/D and 
SWT applications. 

We also developed a SWT workflow that allowed the estimation and use of multi-
modal path-averaged DCs (chapter 7). We used an automatic muting strategy to 
isolate and estimate the desired modes and modified the tomographic inversion 
algorithm to support multi-modal DCs. We defined a data weighting strategy for 
the inversion based on the wavelength of the DCs. The application of the method 
to a synthetic example revealed the impact of wavelength-based weights and the 
higher modes of DCs in enhancing the vertical resolution and in increasing the 
investigation depth of the estimated model. Using the Poisson’s ratio from the W/D 

method, enabled estimation of both 𝑉𝑆 and 𝑉𝑃 models from the SWT applications. 
In the context of exploration usually large data sets are available and SWT applied 
to the estimated DCs along straight paths can fully retrieve the lateral variation. The 
significant retrieved lateral variation from the application of the method to Aurignac 
data set was also observed by other methods (W/D and LCI), confirming the 
validity of straight path assumption of surface wave propagation. However, despite 
the higher computational time, obtaining the curved paths for the propagation of the 
surface waves at different frequency can improve the accuracy of the estimated 
model. We successfully applied the method to the PNG data set, which was 
recorded with innovative acquisition methods. The applied checkerboard tests on 
the real and hypothetical geometry of the PNG data set showed that sparse location 
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of the sources can significantly enhance the azimuthal data coverage, and as a result, 
improves the resolution of the obtained models. Finally, we showed the application 
of the SWT method to the 2 km line of the oil and gas exploration data set to 
estimate the 𝑉𝑆 model. The sharp lateral variations in the shallow layers previously 
seen by the W/D method were also registered in the estimated 𝑉𝑆 model of the 
SWT.  

In chapter 8, we compared the LCI, W/D, and SWT methods using the models from 
the application of these methods to the Aurignac data set. The methods provided 
similar spatial resolution of the model (100×100 m2 for W/D and LCI; 75×150 m2 
for SWT). However, the SWT required a greater number of DCs (more working 
time) to reach the adequate data coverage for the obtained resolution. The resolution 
of the models in depth was related to the wavelength distribution of input DCs. The 
multi-channel DCs used for the W/D and LCI method provided greater number of 
large wavelength (>120 m) data points compared to the two-station DCs used for 
the SWT. To improve the resolution of the SWT models in depth, we introduced 
wavelength-based weights to the tomographic inversion; the checkerboard test that 
was performed on the SWT results of the Aurignac data set showed a good recovery 
of the perturbations for the whole investigation depth. The quantitative comparison 
of the methods showed, on average less than 4.7% total difference between the 𝑉𝑆 
models and less than 5.4% between the 𝑉𝑃 models. The information available about 
the geology of the site suggested a contrast between the west and east of the site, 
which was recovered by all three surface wave methods. 

According to different acquisition layouts and expectations, different methods can 
be adopted. The W/D method is considered a stand-alone method, providing 
estimated 𝑉𝑆 and 𝑉𝑃 models that can be used in various conditions. For important 
locations where a high vertical resolution of the estimated 𝑉𝑆 and 𝑉𝑃 models is 
required, the joint Monte Carlo inversion is a suitable option. Despite the high 
computational expectation of the method, it provides an accurate estimation of 𝑉𝑆 
and 𝑉𝑃. The LCI method is the other alternative method that provides a smooth and 
laterally consistent 𝑉𝑆 model with a similar spatial resolution to the W/D method. 
For data sets recorded in the scheme of full 3D acquisitions, the SWT provides a 
significant advantage. Usually, excellent data coverage with uniform azimuthal 
illumination and multiple cross-paths can be expected, which leads to high-
resolution quasi 3D 𝑉𝑆 model. In the loose saturated environment, the application 
of the W/D method and Monte Carlo joint inversion are more challenging in 
estimating precise 𝑉𝑃 model, even though the methods still provide accurate 
estimation of the Poisson’s ratio. 
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The investigation depth of the proposed surface wave methods is directly related to 
the maximum achievable wavelength (minimum frequency) for dispersion data. As 
a result, similar to what was observed for Aurignac, oil and gas exploration, La 
Salle and PNG data sets, the estimated models from these methods can reach much 
deeper portion of the subsurface compared to what is usually perceived as near-
surface (first 30 m). On the contrary, lack of large wavelength dispersion data can 
limit the investigation depth to a few meters (e.g., CNR data set). 

9.2 Future prospects 

The total variation regularization parameter to transform the estimated time-average 
velocities into interval velocities is currently selected manually. We have already 
studied the relationship between the noise level and the required level of 
regularization for noisy synthetic data (Gomes, 2020). We are planning to expand 
this study to the real data and provide a data-driven procedure to select the 
regularization parameter based on each DC's noise level. 

The proposed surface wave methods' main kernel is the estimation of the local DCs 
(for W/D and SWT) or path-averaged DCS (for SWT). Depending on the user’s 

skill and experience, each DC estimation takes 1 to 3 minutes. The automation of 
the DC estimations is considered to be revolutionary to the surface wave methods. 
In literature, there are a few applications of Deep Learning algorithms for this 
purpose. However, the successful automation of the DC estimations using Deep 
Learning algorithms requires comprehensive synthetic and real training data sets, 
covering different geological settings.  
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