
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Experimental Characterization of Raman Amplifier Optimization through Inverse System Design / De Moura, U. C.; Da
Ros, F.; Rosa Brusin, A. M.; Carena, A.; Zibar, D.. - In: JOURNAL OF LIGHTWAVE TECHNOLOGY. - ISSN 0733-8724.
- ELETTRONICO. - 39:4(2021), pp. 1162-1170. [10.1109/JLT.2020.3036603]

Original

Experimental Characterization of Raman Amplifier Optimization through Inverse System Design

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/JLT.2020.3036603

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2902932 since: 2021-05-27T14:50:44Z

Institute of Electrical and Electronics Engineers Inc.



1

Experimental characterization of Raman
amplifier optimization through inverse system

design
Uiara C. de Moura, Francesco Da Ros, A. Margareth Rosa Brusin, Andrea Carena, and Darko Zibar

Abstract—Optical communication systems are always
evolving to support the need for ever–increasing transmis-
sion rates. This demand is supported by the growth in
complexity of communication systems which are moving
towards ultra–wideband transmission and space–division
multiplexing. Both directions will challenge the design,
modeling, and optimization of devices, subsystems, and full
systems. Amplification is a key functionality to support this
growth and in this context, we recently demonstrated a
versatile machine learning framework for designing and
modeling Raman amplifiers with arbitrary gains. In this
paper, we perform a thorough experimental characteriza-
tion of such machine learning framework. The applicability
of the proposed approach, as well as its ability to accurately
provide flat and tilted gain–profiles, are tested on several
practical fiber types, showing errors below 0.5 dB. More-
over, as channel power optimization is heavily employed
to further enhance the transmission rate, the tolerance of
the framework to variations in the input signal spectral
profile is investigated. Results show that the inverse design
can provide highly accurate gain–profile adjustments for
different input signal power profiles even not considering
this information during the training phase.

Index Terms—optical communications, optical ampli-
fiers, machine learning, neural networks.

I. INTRODUCTION

OPTICAL amplifiers are key devices in optical com-
munication systems, with the erbium–doped fiber

amplifier (EDFA) as the most deployed technology in
commercial systems [1]. EDFAs were responsible for
the multi–channel transmission revolution on the 90’s
and now are one of the main bottlenecks to realize
transmission systems beyond C and L bands. Raman
amplifiers have been investigated as an alternative to
realize such systems since they are naturally broadband
and able to provide gain at any wavelength [2]. Most
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importantly, they are flexible to shape the gain–profile
by properly adjusting the pump power and wavelengths
when operating in multi–pump configuration. This is a
critical property for future ultra–wideband systems, since
the channel power profiles that maximize the achievable
information rate (AIR) are not necessarily flat due to
increased levels of Kerr nonlinearity and stimulated
Raman scattering [3], [4].

Therefore, a problem that have gained renewed inter-
est is the Raman amplifier inverse design. It consists
in finding the laser pump configuration (power and
wavelength) for a desired Raman gain spectral profile.
Conventionally, the Raman amplifier inverse design re-
quires solving a set of nonlinear ordinary differential
equations (ODEs) that govern the complex pump–signal,
signal–signal and pump–pump interactions during their
propagation in the optical fiber. Therefore, it is a time–
consuming and complex optimization process, especially
for counter–propagating pump scheme, which is a better
approach in terms of noise figure [5]. Over the years,
this problem has been addressed by global optimization
algorithms such as evolutionary algorithms [6]–[9] and
particle swarm optimization [10], [11]. They are fastened
by analytical [6], [7], numerical [10], [11] or even artifi-
cial neural network [8], [12] models that approximate the
Raman amplifier’s ODEs solution. Some proposals break
the design problem into two simpler inverse problems:
firstly finding the pump wavelengths using genetic algo-
rithm and secondly finding the pump powers iteratively
solving the ODEs [9]. Others reduce the parameters to
be adjusted aiming at simplifying the inverse design
problem by adjusting groups of laser pumps instead of
each one individually [13], [14].

All these approaches completely rely on optimization
loops that, even fastened by approximations and simpli-
fications, require several iterations to provide the pump
configuration. Moreover, such optimizations need to be
restarted for every new target gain–profile. Therefore,
the development of new tools to reduce the Raman
amplifier inverse design complexity is essential for dy-



namic optical networks targeting near–real–time adapta-
tion against physical layer changes [15].

To avoid time–consuming optimization loops, an in-
verse system design based on machine learning has
been recently applied to the Raman amplifier case [16]–
[21]. These works demonstrated that an artificial neural
network (NN) can learn the inverse mapping of the
Raman amplifiers. This inverse mapping provides the
pump configuration (power and wavelength) as a func-
tion of the Raman gain spectral profile. Once properly
trained, the same inverse mapping NN can be applied
for any new target gain–profile, promptly providing
the respective pump configuration. This approach has
also been extended to few–mode Raman amplifiers, to
simultaneously flatten the gain–profiles and reduce the
mode–dependent gain [22].

In this paper, we extend our recent work [19], where
the machine learning (ML) framework proposed by [16],
[17] is experimentally evaluated in many practical sce-
narios. In [19], the ML framework was extensively inves-
tigated over distributed and discrete counter–propagating
Raman amplifiers with different fiber types and lengths.
Results show maximum errors between target and de-
signed gain–profiles below 0.5 dB for 80% of the eval-
uated cases. As a complementary result for [19], in this
work we test the ML framework ability in achieving
flat and tilted gain–profiles. Results show a maximum
of 0.5 dB of deviation from target gain–profiles for all
investigated Raman amplifiers.

Additionally, we evaluate the impact of different input
power profiles on the NN models that build the ML
framework. This is done by training these models in a
data–set with constant input signal power spectral den-
sity (PSD) profiles and validate them over different input
signal PSDs. This analysis is performed over a 100-km
standard single mode fiber (SSMF) distributed Raman
amplifier. Although we do not expect high gain–profile
dependence for different input signal PSD due to the low
inter-signal stimulated Raman scattering (SRS) inside the
C–band, results show that the inverse mapping NN is
quite sensible to the input signal PSD. In fact, the results
show some degradation in predicting the pump powers,
with a maximum error of 90 mW, when evaluated over
different input signal PSDs. Results also show that this
degradation can be overcome by either applying the
gradient descent (GD)–based fine–optimization routine
or considering the information on the input signal PSD
as an additional input on the NN models.

The paper is organized as follows. Section II presents
the experimental setup for the Raman amplifier that
provides the data–set to train and validate the NN models
of the ML framework. Section III describes the machine

learning framework for the inverse system design, detail-
ing the proposed modification to consider input signal
PSD information. Section IV presents and discussed the
experimental results for the ML framework validation
when trying to achieve arbitrary, flat and tilted gain–
profiles for the different fiber types. Section V concludes
this work.

II. EXPERIMENTAL SETUP

The experimental setup for the Raman amplifiers is
depicted in Fig. 1(a). It is also used for evaluating
the performance of the ML framework. An amplified
spontaneous emission (ASE) source generates the input
signal covering the entire C–band (192-196 THz). A
wavelength selective switch (WSS) is used to shape
the input signal PSD profile. Some examples of input
signal linear PSD profiles are illustrated in Fig. 1(b)
for different slopes. The Raman amplifier is composed
of an optical fiber and a commercial Raman pump
module with four pump lasers. Pump frequencies (shown
in Table I) are fixed and able to amplify the full C–
band. Pump powers are remotely controlled and their
maximum values into the optical fiber are also shown in
Table I. Pumps and signals are combined in a counter–
propagating scheme using a wavelength division mul-
tiplexer (WDM). At the Raman amplifier output, an
optical spectrum analyzer (OSA) measures the signal
PSD at a resolution of 0.1 nm. The Raman on–off gain
profile is calculated by the difference between the output
signal PSDs with the pump lasers turned on and off. This
will be the metric used throughout the paper to represent
the amplifier gain.

TABLE I
Pump lasers frequency and maximum powers

Pump P1 P1 P1 P1

Frequency (THz) 206.1 207.5 209.0 210.6
Maximum power (mW) 145 158.5 180 152.5

Five optical fiber types with different characteristics
shown in Table II are considered: 7.5 km of highly non-
linear fiber (HNLF), 4.8 km of dispersion compensating
fiber (DCF), 15 km of inverse dispersion fiber (IDF),
50 and 100 km of standard single mode fiber (SSMF),
and 50 km of ultra–low loss fiber (ULLF). HNLF, DCF
and IDF are special highly nonlinear fibers used for
discrete Raman amplifiers [23]. DCF and IDF present the
advantage to also compensate for chromatic dispersion.
IDF is being used for discrete Raman amplifiers as an
alternative to DCFs due to its lower attenuation [23].
SSMF is widely deployed in terrestrial systems while
ULLF is used for submarine and unrepeatered links due
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Fig. 1. (a) Experimental setup to capture the data–set for the NN training and further validations showing the measured on–off gain–profiles
for each fiber types/length; (b) some examples of input signal power spectral density (PSD) profiles; (c) normalized Raman gain coefficients
for each pump laser; and measured gain–profiles for (d) HNLF, (e) DCF, (f) IDF, (g) SSMF (50 km), (h) SSMF (100 km), and (i) ULLF.

to its lower loss and wider effective area. These are
transmission fibers and they are used to demonstrate the
distributed Raman amplification. Total signal power does
not exceed 9 dBm at the optical fiber input for the SSMF
and ULLF cases and 3 dBm for the HNLF, DCF, IDF
cases.

TABLE II
Optical fibers parameters

Fiber HNLF DCF IDF SSMF ULLF
α1550 (dB/km) 1.0 0.5 0.23 0.2 0.16
α1450 (dB/km) 1.2 0.8 0.31 0.25 0.2
Aeff (µm2) 10 15 31 80 153

gR (W−1km−1) 6.3 3 1.3 0.8 0.52
α: attenuation, Aeff : effective area, gR: Raman gain coefficient.

Fig. 1(c) shows approximations for the normalized Ra-
man gain coefficients for each pump laser. More accurate
curves should be scaled according to [24]. Fig. 1(d-i)
shows the measured gain–profiles for each fiber type
and different pump powers. High frequency signals in
Fig. 1(d-i) have higher gains due to the additive contribu-
tion of each pump laser, as illustrated in Fig. 1(c). This
is because on the C–band, channels are close enough
(< 4THz) and therefore they are not strongly affected
by the stimulated Raman scattering (SRS) power transfer
from high to low frequency channels.

III. RAMAN GAIN–PROFILE CONTROL

In this work, we validate and modify the machine
learning framework introduced by [16], [17] for the in-
verse Raman amplifier design. The modification consists
in adding information about the input signal PSD profile
into the NN models of the ML framework. Therefore,
we characterize the robustness of the framework testing

it experimentally for different Raman amplifier configu-
rations and analyzing if the proposed modification will
actually increase its accuracy. The new ML framework
scheme is illustrated in Fig. 2(c) and works as following
described.

The inverse design is performed by a neural net-
work referred as NNinv and illustrated in Fig. 2(a).
NNinv has previously learned the inverse mapping of
the Raman amplifier. This inverse mapping is given
by P = f−1(G,Pin) or P = f−1(G,∆Pin), where
P = [P1, . . . , Pn]T is a vector with n pump powers,
G = [G1, . . . , GN]T and Pin = [Pin,1, . . . , Pin,N]T

are vectors with N channelized points taken over the
gain–profile curve and the input signal PSD profile,
respectively, and ∆Pin is the difference between the
powers of the highest and lowest frequencies of the chan-
nelized input signal PSD profile (∆Pin = Pin,N−Pin,1).
Therefore, ∆Pin is a scalar value associated with the
input signal PSD slope and it is useful when considering
linear PSDs. After being properly trained, NNinv can
instantly estimate the pump powers needed to achieve
the target gain–profile (given a certain input signal PSD
profile).

The NNinv output (pump power configuration) is
tested using another NN, referred as NNfwd and il-
lustrated in Fig. 2(b). NNfwd has learned the forward
mapping of the Raman amplifier. This mapping is given
by G = f(P,Pin) or G = f(P,∆Pin). If the mean
squared error (MSE) between target (NNinv input)
and predicted (NNfwd output) gain–profiles is above a
defined threshold, the pump powers can be fine–tuned
by means of a gradient descent (GD) routine, as shown
in Fig. 2(c). The convergence time of the GD fine–
optimization routine is reduced since NNinv provides
a good initialization point and NNfwd is a fast gain–
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Machine learning framework and its modification (dashed lines) to support the input signal power spectral density (PSD) profile information in
terms of Pin = [Pin,1, . . . , Pin,N]T or just the scalar value ∆Pin = Pin,N − Pin,1 for a linear PSD. GD: gradient descent, MSE: mean
squared error.

profile predictor [25].
Regarding the input signal PSD profile awareness,

henceforth, the NNinv and NNfwd models are referred
as Pin–aware when considering the additional input
Pin; ∆Pin–aware when considering the additional input
∆Pin; and Pin–unaware when none of these inputs are
considered.

A. Experimental data–set generation

To generate the experimental data–sets to train and
test the NN models considered in this work, we measured
M gain–profiles on the experimental setup in Fig. 1(a).
These profiles correspond to different pump configura-
tions drawn from uniform distributions. A pump config-
uration is associated to a single and linear input signal
PSD profile. If this PSD profile is random, defined by
∆Pin ∼ U [−5,+5] dB, the data–set is referred as DS–
∆Pin–var. Instead, if the input signal PSD profile is the
same for all pump configurations, the data–set (DS) is
referred as DS–∆Pin–fixed.

DS–∆Pin–var is considered only for the distributed
Raman amplifier using SSMF. In this data–set, the total
input power varies from 7 to 9 dBm, depending on the
considered slope ∆Pin. For the DS–∆Pin–fixed, the
total input power remains constant, being around 9 dBm
for SSMF, and ULLF and 3 dBm for HNLF, DCF and
IDF.

To evaluate the ML framework performance over
different fiber types, only the Pin–unaware models
are considered. These models are trained and tested
over DS–∆Pin–fixed data–set without the input sig-
nal PSD information. In this case, the data–sets are
given by DM×(n+N) = {(P i

1, ...P
i
n, G

i
1, ..., G

i
N)|i =

1, ...,M}, with n= 4 and N = 40. On the other
hand, the input profile impact over the ML frame-
work considers all input signal PSD awareness mod-
els. Pin–unaware models are trained as before. Pin–

aware and ∆Pin–aware models are jointly trained
over DS–∆Pin–fixed and DS–∆Pin–var data–sets.
These data–sets are given by either DM×(n+2N) =
{(P i

1, ...P
i
n, P

i
in,1, ...P

i
in,N, G

i
1, ..., G

i
N)|i = 1, ...,M} or

DM×(n+1+N) = {(P i
1, ...P

i
n,∆P

i
in, G

i
1, ..., G

i
N)|i =

1, ...,M}, depending on whether the entire Pin or just
∆Pin is considered as the input signal PSD information,
respectively. All these models are separately tested over
DS–∆Pin–fixed and DS–∆Pin–var.

Regarding the data–sets sizes, for each fiber type
(except SSMF 100–km), a different DS–∆Pin–fixed
data–set with M = 3000 cases is generated. For SSMF
100–km, DS–∆Pin–fixed data–set has M = 6000 and
DS–∆Pin–var data–set has M = 10000 cases. The exper-
imental data–sets are split in two halves, referred as D1

and D2. D1 is used to train, test and validate the neural
network models. D2 is used to experimentally evaluate
the final overall performance of the ML framework.
D2 is also used to retest the individual NN models in
Sections III-C and III-D.

B. Model selection and training

All NNinv models are trained using random pro-
jection (RP) (also known as extreme learning machine,
ELM) [26]. This is a fast training algorithm that opti-
mizes only the last layer weights by regularized least
squares (regularization parameter λ). The hidden layers
are randomly assigned according to a normal distribution
(zero mean and a pre–defined standard deviation σNN ).
A hyperparameter optimization is performed to achieve
good generalization properties. It considers a grid search
procedure applying 10-fold cross validation where 90%
of D1 is reserved for training and 10% for validation.
The hyperparameters optimized in this work are the
activation function (fact), the number of hidden nodes
(NHN ), the number of hidden layers (NHL), σNN

and λ. The impact of the randomly initialized weights
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is reduced by training NNN parallel and independent
NNinv . Therefore, the pump configuration prediction
will be the average of the NNN distinct NNinv out-
puts [17]. NNfwd models, on the other hand, are trained
using the Levenberg-Marquadt (LM) method. In this
case, D1 was split in three parts with 70%, 15% and
15% of the data used for training, validation and test,
respectively. All the hyperparameters for NNinv and
NNfwd are summarized in Table III.

C. Inverse models performance

The inverse models accuracy in predicting the pump
powers are shown in terms of maximum error between
true and predicted power values for each pump laser over
the test data–sets D2. The results in Table IV are for
different fiber types considering the Pin–unaware mod-
els tested over DS–∆Pin–fixed data–set only. Table V
presents the results for SSMF 100–km considering all
input signal PSD awareness models: Pin–unaware, Pin–
aware and ∆Pin–aware, where each model is separately
tested over DS–∆Pin–fixed and DS–∆Pin–var data–
sets.

In Table IV, errors higher than 50 mW (but below
100 mW) are observed just for HNLF and IDF (P3 and
P4). These errors can lead to gain variations from 1
to 2 dB. The other fiber types have accurate prediction
performance with maximum errors below 50 mW. These
pump errors correspond to low gain variations of up to
1 dB. The worse performance for HNLF and IDF might
be related to their higher measured gains when compared
to the other fiber types as shown in Fig. 1(d-i).

For the SSMF 100–km, the results in Table V show
that by training without the information of the signal
input PSD profile, Pin–unaware NNinv model can only
have accuracy when tested over the DS–∆Pin–fixed
data–set (errors below 50 mW). Its performance over
DS–∆Pin–var data–set can reach 90 mW of error for
P2. These results are not intuitive since it is expected
that input signal PSD variations should not affect the
gain–profile since signal–signal and pump–pump SRS
interactions are not so strong in the C–band. However,
the inverse model proved to be very sensitive even for
small SRS effects. Pin–aware and ∆Pin–aware NNinv

models, on the other hand, are able to maintain the
same accuracy for both DS–∆Pin–fixed and DS–∆Pin–
var data–sets since they consider the information of the
signal input PSD profile.

This is also shown in Fig. 3, which illustrates the
inverse model performance when predicting pump laser
P2 (the pump with the lowest accuracy for the Pin–
unaware over DS–∆Pin–var). The similar performance

for Pin–aware and ∆Pin–aware is promising since it
indicates that for this specific analysis of linear input
signal PSD–profiles, the ∆Pin information is sufficient
to provide highly accurate pump predictions. However,
more arbitrary input signal PSD shapes (nonlinear)
would still need the entire vector Pin since a single
scalar value is not able to define a more general input
signal PSD shape.
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Fig. 3. Inverse model performance in terms of predicted and target
pump power (pump 2) over DS–∆Pin–fixed and DS–∆Pin–var test
data–sets.

D. Forward models performance

To evaluate the prediction accuracy of the forward
models, the maximum absolute error ENNfw

MAX between
target and predicted gain–profiles along the frequency
is calculated for the cases on the test data–sets D2. A
statistical analysis of ENNfw

MAX in terms of probability
density function (PDF) is performed for each evaluated
case. The PDF curves are shown in Fig. 4(a) for the
models of different fiber types and in Fig. 4(b) for the
SSMF 100-km considering different input signal PSD
awareness models. Mean (µ) and standard deviation (σ)
values are also reported as µ± σ.

As observed for the NNinv , the forward models for
HNLF and IDF present the worst prediction performance
when compared to the other fiber types. However, all
forward models in Fig. 4(a) are highly accurate, with
mean (µ) of ENNfw

MAX below 0.32 dB and maximum values
lower than 1.25 dB.

The results for the SSMF 100-km shown in Fig. 4(b)
are also similar to the inverse model performance. Again,
the Pin–unaware model present a worse prediction per-
formance over the DS–∆Pin–var when compared to the
DS–∆Pin–fixed data–set. However, this degradation is
negligible, with a mean ENNfw

MAX decrease of only 0.17 dB
and a maximum E

NNfw

MAX going from 0.6 to 0.8 dB.
Therefore, different for the inverse model, the forward
model seems to be more robust the small SRS effects
between signals on the C–band. Pin–aware and ∆Pin–
aware models, again, are able to provide highly gain–
profile prediction accuracy for both DS–∆Pin–fixed and
DS–∆Pin–var data–sets.
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TABLE III
Neural network parameters for the different models

Models Input signal PSD awareness Optical fiber Training algorithm fact NHL NHN NNN σNN λ
NNinv Pin–unaware all fibers1 RP tanh 2 600 10 5e-2 1e6
NNinv Pin–unaware SSMF 100-km RP logsig 1 1300 20 5e-2 1e-8
NNinv Pin–aware SSMF 100-km RP sine 1 1000 20 7e-3 1e-8
NNinv ∆Pin–aware SSMF 100-km RP sine 1 1000 20 2.5e-2 1e-8
NNfwd (all Pin awareness) all fibers LM tanh 2 10 1 See2 See3

1 Except SSMF 100-km; 2 Nguyen-Widrow initialization algorithm [27]; 3 Dynamically modified during training according to [28].

TABLE IV
NNinv Pin–unaware performance: maximum error between

target and predicted pump powers for different fiber types over
their respective DS–∆Pin–fixed data–set

Fiber HNLF DCF IDF SSMF ULLF
Length (km) 7.5 4.8 15 50 50
P1 (mW) 28.6 17.2 31.2 19.3 50.3
P2 (mW) 45.8 19.9 47.7 38.4 47.7
P3 (mW) 96.5 19.8 60.7 22.1 39.4
P4 (mW) 98.5 29.4 93.3 25.5 9.6

TABLE V
NNinv SSMF 100–km performance: maximum error between
target and predicted pump powers over DS–∆Pin–fixed and

DS–∆Pin–var data–sets for different input signal PSD
awareness

Pin–unaware Pin–aware ∆Pin–aware
DS–∆Pin– fixed var fixed var fixed var
P1 (mW) 15.1 41.5 11.8 15.4 13.5 26.5
P2 (mW) 22.6 90.2 17.6 27.9 21.3 39.0
P3 (mW) 33.6 55.9 27.1 20.8 22.0 23.7
P4 (mW) 41.1 60.8 38.2 27.9 31.7 41.6

IV. RESULTS AND DISCUSSIONS

To validate the ML framework on designing/achieving
a target Raman gain profile, a new set of measurements is
taken. The procedure consists in feeding the target gain–
profile into the ML framework in Fig. 2(c), configuring
the pump powers provided by it on the experimental
setup in Fig. 1(a), and measuring the gain. Target and
measured gain–profiles are compared by means of max-
imum absolute error EMAX over frequency.

Two sets of target gain–profiles are investigated: arbi-
trary and flat/tilted. The gain profiles on the test data–set
D2 are used as the target arbitrary gains. These gains
are achievable profiles for the considered experimental
setup. By using them as target gains it is possible to
evaluate the ML framework for both: generalization
(since these gains were not used on the NN models
training stage) and accuracy in terms of how close it
can provide feasible gain–profiles. Flat and tilted gain–
profiles realization, on the other hand, are not guaran-
teed on the available experimental setup. This way, the
ML framework is tested on its handling of a broader
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Fig. 4. Forward model performance in terms of probability density
function (PDF) for the maximum error E

NNfw

MAX when predicting the
gain-profile for (a) different optical fibers Pin–unaware models over
DS–∆Pin–fixed test data–set and (b) SSMF 100-km with different
input signal PSD awareness over DS–∆Pin–fixed and DS–∆Pin–var
test data–sets. Dots report the maximum E

NNfw

MAX values.

generalization problem, where the target may only be
approximated.

Fig. 5 shows EMAX PDFs and cumulative distri-
bution functions (CDF) over the arbitrary gains and
for each evaluated fiber type. Two curves are shown:
NNinv (dashed lines), when only applying NNinv , and
NNinv +NNfwd (solid lines), when employing the GD
fine–optimization routine using the NNfwd estimation.
Mean (µ) and standard deviation (σ) values are also
reported. Only HNLF (Fig. 5(a)) has cases with EMAX

higher than 2 dB. But since these cases are just a few
(0.47% of the cases), the x–axis limit is set to 2 dB for
all evaluated fiber types.

The results in Fig. 5 show that for highly nonlinear
fibers such as HNLF (Fig. 5(a)) and IDF (Fig. 5(c)), the
design applying NNinv can only provide a moderate
accuracy in experimentally realizing the target gain–
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Fig. 5. Probability density function (PDF) and cumulative distribution function (CDF) of the maximum absolute error (EMAX ) between target
and measured arbitrary gain–profiles (DS–∆Pin–fixed test data–set) for the Pin–unaware models.

profiles. For these fibers, just 50% and 59% of the cases
have EMAX < 0.5 dB, according to their CDF curves
in Fig. 5(f). These results are expected since these fibers
present the worse inverse model performance as shown
in Section III-C.

Although DCF (Fig. 5(b)) is also a highly nonlinear
fiber, it provides overall lower gain (see Fig. 1(e)) and
the NNinv presents a significantly better accuracy with
91% of the cases with EMAX below 0.5 dB as shown
in Fig. 5(d). High design accuracy is also observed for
SSMF (Fig. 5(d)) and ULLF (Fig. 5(e)) when applying
NNinv . For these two fibers, the CDF curves have
EMAX below 0.5 dB for 98% (SSMF 50 km) and 100%
(ULLF) of the cases. Again, all these fibers have a better
inverse model accuracy (Section III-C), which explains
why their inverse designs have a better performance
when comparing to HNLF and IDF.

By considering the GD fine–optimization routine
(NNinv + NNfwd curves), the performance for HNLF
and IDF significantly increase. Their CDF curves in
Fig. 5(f) shows that now 80% (HNLF) and 83% (IDF)
of the cases have EMAX < 0.5 dB. Recall that their
NNfwd (Section III-D) have high accuracy and, there-
fore, are able to optimize the pump powers provided
by NNinv . For the other fiber types (DCF, SSMF and
ULLF), on the other hand, the GD fine–optimization
routine does not introduce important changes. This is
because, for these cases, the NNinv outcome is already
on a local minimum and the GD just add random
deviations around it due to NNfwd prediction errors.

The results for SSMF 100-km are separately shown
in Fig. 6. Fig. 6(a-d) consider DS–∆Pin–fixed data–sets
and Fig. 6(e-f) consider DS–∆Pin–var data–sets. When
only applying NNinv (dashed lines), highly accurate

performance are observed for all models and data–sets,
except for Pin–unaware model tested over DS–∆Pin–
var data–set (Fig. 6(e)). For this case, EMAX values
are up to 2.2 dB. CDF curves in Fig. 6(g) shows that
around 70% of the cases have errors below 0.5 dB
for the Pin–unaware model, while for all the other
models it occurs for 80% of the cases. This is expected
since the pump prediction is more degraded according to
the results presented in Section III-C for Pin–unaware
inverse model NNinv .

When applying the GD–based fine–optimization (solid
lines), a significant improvement is observed only for the
Pin–unaware model over the DS–∆Pin–var data–set, as
shown in Fig. 6(e). Instead, for all the other models and
data–sets, GD fine–optimization does not provide sig-
nificant improvements. Again, for these cases, the pump
configuration provided by NNinv might be already on
a local minimum. Thus, the GD fine–optimization only
randomly disturb it. Moreover, the best performance
of Pin–unaware against Pin–aware and ∆Pin–aware
models when applying the GD fine–optimization might
be related to its lower input dimension. Recall that larger
neural networks have more parameters and get easily
trapped in a local minimum [29].

Overall, when designing arbitrary gain—profiles, no
matter the fiber type or the input signal PSD condition
when training the NN models, the ML framework is
able to maintain more than 80% of the cases with
errors below 0.5 dB by just considering the Pin–unaware
models. Moreover, for DCF, SSMF and ULLL this high
accuracy is achieved by just applying NNinv , leading
to a non–iterative gain–profile adjustments relying on
matrix multiplications. This is also true for the Pin–
aware and ∆Pin–aware models. With the last being a
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Fig. 6. SSMF 100-km: probability density function (PDF) and cumulative distribution function (CDF) of the maximum absolute error (EMAX )
between target and measured gain–profiles over the test DS–∆Pin–fixed and DS–tilt for the Pin–unaware, Pin–aware and ∆Pin–aware
models.

very interesting and low complex approach that increases
the NN dimension by just one additional input when
considering linear PSD profiles.

Next, the ability of the ML framework to provide
accurate flat and tilted gain–profiles for the different fiber
types is investigated. This analysis is taken using Pin–
unaware models trained over constant input signal PSD
(DS–∆Pin–fixed data–set). Flat and tilted gains–profiles
ranging from 1 to 6 dB are evaluated in steps of 1 dB.
For the tilted profiles, negative and positive slopes of
1 dB over the C–band are considered.

Fig. 7 summarizes the results for all evaluated fiber
types also in terms of EMAX . These results are ob-
tained after applying the GD–based fine–optimization
(NNinv + NNfwd), since it presents a better perfor-
mance in achieving flat/tilted profiles when compared to
just applying the NNinv .

For the flat gain–profiles in Fig. 7(a), EMAX values
are kept below 1 dB for all fibers, except for the ULLF.
Notice that, due to its lower Raman gain coefficient,
ULLF can provide gains of up to 4 dB on the low
frequency region according to the measured gains over
the data–set (see Fig. 1(i)). Therefore, it is not possible to
have flat gains higher than 4 dB given our pump power
limits constraint. Recall the ULLF 50-km is the fiber
with the best performance in achieving arbitrary gains.
This is because the arbitrary gains are taken from the
test data–set, being achievable considering the available
pump powers.

Tilted gain–profiles with a positive slope (Fig. 7(b))
present a better performance when compared to the flat
slope. An almost equally spaced pump configuration
(in frequency), as the one used in this work, tends to
provide a negative gain–profile slope due to the power

transferred from high to low frequencies channels [30].
However, for the narrow C–band considered in this work,
SRS between channels (and also between pumps) are
not so strong to provide a negative gain slope due to
the wide Raman peak (∼ 13 THz). Thus, the final gain
profile resulted from these pumps are more influenced
by the superposition of the Raman gain curves of each
individual pump lasers, which leads to a positive, rather
than a negative gain–profile slope (see Fig. 1(c-i)). This
also explains the worse performance observed for the
negative gain–profile slope (Fig. 7(c)) when compared
to the positive ones (Fig. 7(b)). Therefore, positive gain–
profile slopes have a better performance because they
benefit from the pump frequency distribution. Positive
slopes have EMAX below 0.5 dB for all fibers, while for
negative slopes EMAX can reach 1.5 dB. This discussion
excludes again the ULLF. The ULLF-based RA oper-
ating under high gain suffers from significantly higher
error values, due to the higher pump power that would
be required compared to the power available in our
experimental setup (referred to as “power limitation”).

Fig. 8 shows target and measured gain–profile curves
for three fiber types. Fig. 8(a-c) is for HNLF with the
highest Raman gain coefficient and the best performance
in achieving flat/tilted gain–profiles; Fig. 8(d-f) is for
SSMF 100-km, which is the most commonly used for
distributed Raman amplifiers; and Fig. 8(g-i) is for
ULLF, with the lowest Raman gain coefficient and the
worst performance in achieving flat/tilted gain–profiles.
The pump power configurations provided by the ML
framework are also reported.

The HNLF has the best performance, with just three
pumps (P1, P3 and P4) being necessary to achieve a
highly accurate flat and tilted gain–profiles. The errors
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Target Design

Fig. 8. Target and measured gain–profiles after fine–optimization showing the pump power values [P1, P2, P3, P4] for HNLF with (a) flat,
(b) positive– and (c) negative–slope tilted gain–profiles; SSMF 100–km with (d) flat, (e) positive and (f) negative slopes tilted gain–profiles;
and ULLF with (g) flat, (h) positive and (i) negative slopes tilted gain–profiles.

are more related to our available Raman amplifier, in
terms of number of pumps and their fixed wavelengths
than to pump power limitations, since no pump power
has reached its limit (Table I).

For SSMF 100-km, again the same three pumps are
needed to achieve most target gain–profiles. For 6 dB
of target flat gain–profile (Fig. 8(d)), P1 achieves its
maximum power. At this point, to compensate for P1

power limitations, the ML framework starts to turn P2 on

(although with a very low power that does not influence
the final gain). The same occurs for the two highest
negative gain–profile slopes (Fig. 8(f)). For these cases,
a higher deviation from the target is observed for low
frequency signals, the region where P1 should provide
gain. Thus, in these cases, the errors are associated to
pump power constraints, which affect more the high gain
levels.

More intense consequences of the pump power limi-
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tation are observed for the low Raman gain coefficient
ULLF, showing high limitations in manipulating the gain
shape given our experimentally limited pump powers.
For this fiber, all pumps are needed to achieve gain–
profiles higher than 2 dB. For flat and negative gain–
profile slopes, P1 already reaches its limits for 2 dB
of target gain, and P2 for 4 dB. For positive slopes,
these limits are achieved for slightly higher gains. But
for all cases, the need for higher pumps powers limits
the performance in providing flat/tilted gain–profile for
higher gain levels.

In Fig. 7, the positive slope gains have a better perfor-
mance than the negative ones: this is mainly because the
pump frequency distribution and the C–band operation
(low inter–signal SRS) tends to provide a positive gain
profile rather than negative. This can be verified by the
gains mismatch in Fig. 8(c,f,i) for the gain cases where
the pump limits are not reached (all cases in Fig. 8(c),
first 4 cases in Fig. 8(f) and first case in Fig. 8(i)).
For these cases, the gain shape is controlled mostly by
adjusting P1 only. The other pumps are turned off or
with a low power because they will increase the gains
of the high frequency channels as well. P1 cannot be
increased because it will also increase the gain on the
middle of the spectrum (from 193 to 195 THz).

Therefore, when operating under pump power limits,
the ML–FM is able to generalize and experimentally
provide gain–profiles really close to completely new
targets. The performance in this region is limited just by
total number of pump lasers and their fixed wavelengths,
presenting errors of up to 0.5 dB.

V. CONCLUSION

In this work, the machine learning framework for
the Raman amplifier inverse design was extensively
tested. The ability to provide arbitrary, flat and tilted
gain–profiles was evaluated for different experimental
realizations of the Raman amplifier, considering different
optical fiber types, and both discrete and distributed
amplifiers. For this analysis, results showed that more
than 80% of the 1500 target arbitrary gain spectra were
achieved with a maximum error below 0.5 dB. For the
flat/tilted gain profiles, maximum errors are up to 0.5 dB
for all cases allowed by the available pump power within
our experimental setup.

Moreover, we also evaluate the machine learning ro-
bustness over different input power spectral distributions.
Results show that the worse performance of the machine
learning framework in this new scenario can be improved
in two ways. One possibility is by considering the al-
ready proposed fine–design routine based on a gradient–
descent optimization on a model not requiring the signal

profile information. Another option is to incorporate this
information on the training phase, creating input signal
aware models as the ones developed in this work, and
avoiding the iterative optimizations.

Overall, this experimental analysis has proven that
the machine learning framework is a versatile tool able
to experimentally provide highly accurate designs for
different and practical scenarios covering a wide range
of target gain–profiles.
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