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Cells and organisms follow aligned structures in their environment, a process that can

generate persistent migration paths. Kinetic transport equations are a popular modelling

tool for describing biological movements at the mesoscopic level, yet their formulations

usually assume a constant turning rate. Here we relax this simplification, extending to

include a turning rate that varies according to the anisotropy of a heterogeneous envi-

ronment. We extend known methods of parabolic and hyperbolic scaling and apply the

results to cell movement on micro-patterned domains. We show that inclusion of orien-

tation dependence in the turning rate can lead to persistence of motion in an otherwise

fully symmetric environment, and generate enhanced diffusion in structured domains.

Key Words: Cell migration, Boltzmann equation, persistence, direction dependent turning

rate, macroscopic limits.
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1 Introduction

Movement of cells through tissues is critical during both healthy and pathological pro-

cesses. Embryonic development relies on cells migrating from origin to final tissue des-

tination, repair processes necessitate movement of fibroblasts and macrophages into the

wound site, and migration of cancerous cells, unhappily, leads to tumour invasion and

metastasis dissemination. Consequently, there is clear reason to understand the factors

that guide cells with one such process, contact guidance, defining the movement of cells

along linear/aligned tissue features, for example blood vessels, white matter brain fibres,

or the collagen fibres of connective tissue.

The influence of contact guidance on cell movement has been considered via a variety

of mathematical approaches [15, 14, 47], with kinetic transport equations proving partic-

ularly popular [24, 36, 26, 7]. Transport equations account for the microscopic features
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of movement, describing a migration path according to its statistical properties (turning

rate, movement speed and movement direction), and such models for contact guidance

have been successfully applied to, for example, glioma invasion [37, 28, 51]. Yet these

studies have been simplified through taking turning rates to be independent of orienta-

tion, whereas experiments indicate considerably more complexity (e.g. [45, 44, 43]).

Here we extend the known theory of scaling limits for transport equations in biology to

cases where the turning rate is direction-dependent. In the physical context, our model

can be seen as a non-homogeneous linear Boltzmann equation with a micro-reversible

process in which the cross-section is factorised into a turning kernel and a direction-

dependent turning rate [41, 13]. The direction dependence of the turning rate augmenta-

tion presents mathematical challenges, requiring reflection on how the involved function

spaces should be modified for a Fredholm alternative argument to be constructed. We

obtain expressions for the macroscopic diffusion and advection that incorporates the

influence of sophisticated turning rate choices. We apply the model to the movement

data of cells on oriented microfabricated surfaces generated by Doyle et al. [16], showing

that strong alignment can lead to persistence of movement and, at a macroscopic level,

enhanced diffusion.

The outline of this paper is as follows. We use the remainder of this introduction to

provide background on contact guidance and detail experimental investigations of cell

movements on micro-pattern domains. We also review pertinent modelling literature,

particularly using kinetic transport equations. In Section 2, we introduce the model,

explain the basic assumptions, and introduce statistical meaningful quantities such as

mean velocity, runtimes along fibres, directional variance, and persistence. In Section 3

we consider two scaling limits, the parabolic limit (Theorem 3.1) and the hyperbolic limit.

In particular, we generalise the technique proposed in [24] to the case of a direction-

dependent turning rate and obtain a macroscopic diffusive limit with a distinctive struc-

ture. Section 4 is used to discuss pertinent special cases, with Section 5 illustrating how

the new dynamics can result from a direction-dependent turning rate. Extending the

analysis to a particularly relevant form, Section 6 is used to demonstrate the utility of

the model for describing cell migration paths on microfabricated surfaces. We close with

a discussion in Section 7.

1.1 Background

The extracellular matrix (ECM) is a fundamental ingredient of connective tissues and

constitutes the major non-cellular component of tissues and organs. Cell migration through

ECM can occur individually or collectively, with individual further classified into amoe-

boid and mesenchymal forms [53]. Mesenchymal migration is typically slower, with a cell

secreting degrading enzymes (e.g. MMPs) that create space for movement. Thus, mes-

enchymal migration can significantly alter the local ECM structure. Amoeboid migration

is often faster, with frequent turns and shape changes allowing a cell to squeeze through

matrix gaps; contacts are fleeting, leading to moderate and transient changes to the ECM

architecture. Cells may switch between migration modes, for example in response to the

biomechanical resistance of the ECM. This mesenchymal-amoeboid transition [56] may
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potentially optimise tumour invasion [23] in complex heterogeneous micro-environments

[52].

Regardless of migration type, the architecture of the ECM is a major determinant of

movement. ECM is formed from various proteins, with collagen often the principal con-

stituent [2]. Individual collagen proteins are organised into cable-like fibres, collectively

creating a network. Adhesive attachments between cells and matrix-binding sites anchor

the cell and provide the focal points for exerting the forces needed for forward propul-

sion. Consequently, by protruding and pulling itself along fibres, cells follow the local

topology of the matrix (contact guidance) [17]. The mesh formed from collagen therefore

offers an example of a bidirectional anisotropic network, bidirectional in the sense that

movement preferentially follows fibres but no specific direction is favoured. Anisotropic

bidirectional tissues extend to other environments, a particular relevant example being

the brain’s white matter. Here it is the long and bundled neuronal axons that generate

the network and its arrangement is believed to be a key determinant in the anisotropic

invasion of gliomas [20, 21].

The question of how an anisotropic environment influences cell migration is highly

suited to modelling and various approaches have been developed. Agent-based models

that incorporate contact guidance include lattice-free particle approaches (e.g. [12, 32,

46]) and those based on the Cellular Potts Model (e.g. [49, 47, 48]) and other automata

(e.g. [52]); the individual-level description is clearly advantageous for incorporating mi-

croscopic structure. Continuous models, though, have also been developed, for example

the anisotropic biphasic theory (ABT) developed in [15] and transport equations studied

in [14]. A transport equation developed in [24] describes the contact-guided migration of

mesenchymal (and amoeboid) cells in evolving anisotropic networks of unidirectional or

bidirectional type, with this model extended and subjected to numerical exploration in

[36]. Transport models have a ‘stepping-stone’ nature, lying at a point between an indi-

vidual and macroscopic model: they sit at a mesoscopic level, describing the statistical

distribution of the individual microscopic velocities and positions through density distri-

bution functions. Subsequent up-scaling can generate a fully macroscopic model, typically

of drift-diffusion nature, and capable of capturing movement at a large-tissue level. In

the study of [24] the author employed such scaling techniques to recover macroscopic

limits.

The transport equation in [24] is predicated on an underlying stochastic velocity-

jump model of migration [34], i.e. fixed-velocity runs interspersed with velocity changes.

The transitional probability for switching velocities (from a pre-reorientation to post-

reorientation velocity) can be decomposed into two elements: a turning rate function

that dictates the rate at which switches occur, and a turning kernel that describes the

selection of the new velocity/direction. The latter was taken to be an angular distribution

(potentially space and time varying) that encodes the oriented ECM network structure.

Thus, contact-guided migration was included through an increased likelihood of a cell

choosing the dominating local fibre orientation. Consequently, the model captures the

anisotropic spread of a population in an aligned bidirectional network and simulations in

[36] demonstrate that the environment can substantially impact on spatial structuring, for

example trapping populations inside or outside regions of high anisotropy or dictating

pathways of invasion. Various real world applications have been considered, including
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Figure 1. Micropatterning surfaces with fibronectin stripes allow construction of con-

trolled anisotropic environments, for example in the above quasi one-dimensional ar-

rangement of parallel stripes/fibres interrupted by either (a) a completely isotropic re-

gion (Case A), or (b) a region of criss-crossing perpendicular stripes (Case B), see [16].

For a cell whose turning frequency drops when migrating in a direction of dominating

orientations decreases, two very distinct behaviours are conceivable as a cell crosses from

the quasi-1D to 2D region.

predicting the spatial spread of glioma (e.g. [37]) or wolf movement along seismic lines

(e.g. [28]).

The turning rate in [24], however, was taken to be independent of orientation. To

understand a consequence of this simplification, consider the migration paths of cells

subjected to manufactured environments, such as surfaces subjected to micropattern-

ing (e.g. [16, 54], see Figure 1) or constructed anisotropic collagen networks [45, 44].

In [16] the precise micropatterning of fibronectin on a two-dimensional surface enabled

fabrication of controlled anisotropic environments, with the schematics in Figure 1 (a–

b) demonstrating two such arrangements. Here, cells can move from an effectively 1D

region (stripes, replicating highly aligned parallel fibres) to a 2D region where the 2D

regions are both isotropic, but either (a) uniformly isotropic (Case A), or (b) featuring

criss-crossing perpendicular stripes (Case B). As we will explicitly show in Section 6, the

earlier transport model of [24] is unable to discriminate between these scenarios.

If, instead, cells modulate their turning frequency by turning infrequently when mov-

ing along fibres, we can expect very distinct behaviours. Under the uniformly isotropic

case, cells would be expected to meander significantly in the uniformly isotropic region,

adopting short runs in any orientation. On the other hand, criss-crossing stripes could

allow significant translations in either of the two dominating axial directions, hastening

rediscovery of the quasi-1D regions. Indeed, evidence is found of this in the experiments

of [16], cf. Supplementary Movie 7. We will explicitly show in Section 6 that direction-

dependent turning can lead to enhanced effective diffusion.
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2 Model with direction-dependent turning rate

2.1 Model formulation

Let p = p(t, x, w) denote the cell density distribution, defined at time t > 0, position

x ∈ Ω ⊆ Rd and velocity w ∈ V . We typically assume V to be a compact set as in [26],

and in particular consider V = [s1, s2]× Sd−1 ([24]), where Sd−1 is the set of all possible

directions ŵ ∈ Rd and the hat-symbol indicates unit vectors. The limits s1, s2 denote the

minimal and maximal speed (|w|) of the cells, with 0 6 s1 6 s2 < ∞. Note that if the

speed is approximately constant we simply set V = sSd−1.

The governing transport equation for describing cell movement is

∂p(t, x, w)

∂t
+ w · ∇p(t, x, w) = Lp(t, x, w) , (2.1)

where the operator ∇ denotes the spatial gradient. The turning operator L is a linear

operator that models the change in velocity of individuals per unit of time at (x,w) that

is not due to the free particle drift. L is generally defined as an integral operator on L2

spaces [26]:

L : L2(V ) 7−→ L2(V ) ,

p(t, x, w) 7−→ Lp(t, x, w) ,

where (t, x) are independent parameters and

Lp(t, x, w) = −µ(t, x, w)p(t, x, w) +

∫
V

µ(t, x, w′)q(t, x, w,w′)p(t, x, w′)dw′ . (2.2)

This operator describes the velocity scattering. As noted earlier, the key determinants

of the migration path are the turning rate function, µ(t, x, w), and the turning kernel,

q(t, x, w,w′). Viewed in this light, the first term on the right hand side of (2.2) models

particles switching away from velocity w and the second one takes into account the

particles switching into velocity w from all other velocities.

The turning kernel, q(t, x, w,w′), denotes the probability measure of switching veloc-

ity from w′ to w, given that a turn occurs at location x and time t. Here we adopt

the same reasoning as in [24], by assuming that reorientation is dominated by the fi-

brous/anisotropic environmental structure, such as collagen matrix fibres or white mat-

ter tracts. The choice of new direction is therefore derived directly from this structure

(rather than, say, incoming velocity) and, for simplicity, we assume that q is directly

proportional to the distribution of the oriented environmental fibres. As such, we inter-

changeably use “turning kernel” or “fibre distribution” when referring to q throughout

this manuscript. Based on the above, for q we assume:

A1 q(t, x, w,w′) = q(t, x, w) depends only on the post-turning orientation;

A2 q(t, x, w) > 0 ∀w ∈ V, a.e. x ∈ Ω, ∀t > 0;

A3 q(t, x, ·) ∈ L1(V ) and

∫
V

q(t, x, w)dw = 1 a.e. x ∈ Ω, ∀t > 0.

The simple assumption adopted in [24] was to directly link a probability measure de-

scribing the directional distribution of fibres, q̃(t, x, ŵ), defined on R+ × Ω × Sd−1 and
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satisfying q̃ > 0,

∫
Sd−1

q̃dŵ = 1, to the turning kernel

q(t, x, w) =
q̃(t, x, ŵ)

ω
, ω =

∫
V

q̃(t, x, ŵ)dw.

Note that q(t, x, w) assumes w ∈ V while q̃(t, x, ŵ) is defined for unit vectors only, but

their only difference lies in a constant scaling factor that accounts for the difference

between V and Sd−1. Given this, we will interchangeably call q the turning kernel or

the distribution of fibre orientations. As a consequence of A1-A3, the operator (2.2)

simplifies to

Lp(t, x, w) = −µ(t, x, w)p(t, x, w) + q(t, x, w)

∫
V

µ(t, x, w′)p(t, x, w′) dw′ . (2.3)

The turning rate function, µ(t, x, w), gives the rate at which velocity switches are made

for a particle located at x at time t, moving in direction w. It is at this point where we

substantially diverge from [24], lifting the assumptions on µ and allowing w-, x-, and

t-dependence. Significantly, this allows the turning rate µ to depend directly on the fibre

orientation q, for example allowing a cell to continue movement with the same velocity

if it is moving in the direction of highly aligned fibres. Note that as µ = µ(t, x, w) is a

turning rate, 1/µ(t, x, w) defines the mean time spent by a cell running along a linear

tract with velocity w between two consecutive turns performed at time t, location x. We

assume:

M1 µ(t, x, ·) ∈ L1(V ), ∀t > 0, x ∈ Ω ;

M2
q(t, x, ·)
µ(t, x, .)

∈ L1(V ), ∀t > 0, x ∈ Ω .

2.2 Statistical properties

To analyse (2.1) under (2.3) we make use of a number of statistical properties of the

corresponding fibre and turning distributions, such as expectations and variances. A

summary of these expressions is given in Table 1.

(1) Distribution of new directions. We consider the distribution of newly chosen

directions, q, with expectation

Eq(t, x) =

∫
V

q(t, x, w)w dw. (2.4)

This is also the the mean new velocity after a turn and has the variance-covariance

matrix

Vq(t, x) =

∫
V

q(t, x, w) (w −Eq)⊗ (w −Eq) dw . (2.5)

(2) Cell mean velocity and variance. We introduce similar macroscopic quantities

for the cell population, although we stress p is not itself a probability measure.

First we define the macroscopic density of the population p at time t and position

x as

p̄(t, x) =

∫
V

p(t, x, w)dw , (2.6)
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and the total mass of the population in Ω,

m(t) =

∫
Ω

p̄(t, x)dx .

Note that, with no population kinetics and assuming suitably lossless boundary

conditions, the total mass will be conserved in time. With these definitions in

place we can introduce the moments of the normalized cell distribution p̂(t, x, w) =
p(t, x, w)

p̄(t, x)
, which will be a probability measure for all t and x. In particular we can

introduce the expectation

Ep̂(t, x) =

∫
V

p̂(t, x, w)wdw ,

which is the mean velocity of the normalized population, and the variance (variance-

covariance matrix)

Vp̂(t, x) =

∫
V

p̂(t, x, w) (w −Ep̂)⊗ (w −Ep̂) dw .

The latter provides information on the width of the distribution p̂ in different

directions. This tensor is symmetric, but can be anisotropic, i.e. the level sets of

ŵ 7→ ŵTVp̂ŵ are ellipsoids. With this we can identify the mean velocity of the cell

population as ∫
V

p(t, x, w)wdw = p̄(t, x)Ep̂(t, x)

and the variance-covariance of the population velocity as∫
V

p(t, x, w) (w −Ep)⊗ (w −Ep) dw = p̄(t, x)Vp̂(t, x).

(3) Turning part of the population. The turning operator definition (2.3) reveals

a new macroscopic quantity,

pµ(t, x, w) = µ(t, x, w)p(t, x, w). (2.7)

pµ can be interpreted as the part of the cell population that moves in direction w

and is currently turning. Then, the total turning population per unit time is

p̄µ(t, x) =

∫
V

µ(t, x, w)p(t, x, w)dw, (2.8)

which is the expression in (2.3). The turning operator (2.3) can then be re-written

as

Lp(t, x, w) = p̄µ(t, x)q(x,w)− µ(t, x, w)p(t, x, w). (2.9)

By normalising pµ we can define the mean incoming velocity of the turning popu-

lation as

Epµ(t, x) =

∫
V

µ(t, x, w)p(t, x, w)wdw

p̄µ(t, x)
,

and its variance-covariance matrix accordingly.
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(4) Run times along the fibres. We discover later that the stationary distributions

are proportional to the ratio q/µ. In fact, the corresponding distribution arises in

many forthcoming calculations. Hence, we introduce

C(t, x) =

∫
V

q(t, x, w)

µ(t, x, w)
dw

and the normalised distribution

T (t, x, w) =
1

C(t, x)

q(t, x, w)

µ(t, x, w)
. (2.10)

Since µ(t, x, w) is a turning rate, the function

τ(t, x, w) =
1

µ(t, x, w)

is the mean time spent moving in direction w. Then, T (t, x, w) is the distribution

of run times along the fibres of the network and its expectation,

ET (t, x) =
1

C(t, x)

∫
V

q(t, x, w)

µ(t, x, w)
w dw , (2.11)

is the average velocity along the fibre distribution. Note that this quantity dis-

criminates between the choice of a parabolic scaling (leading to a diffusive limit,

for ET ≈ 0) or a hyperbolic scaling (for ET 6= 0). With this interpretation we can

regard the following normalisation constant

C(t, x) =

∫
V

τ(t, x, w)q(t, x, w)dw

as the mean run time between turns. We can further define the displacement vector

and the mean displacement vector, respectively

χ(t, x, w) = wτ(t, x, w) , χ̄(t, x) =

∫
V

χ(t, x, w)q(t, x, w)dw , (2.12)

such that

ET (t, x) =
χ̄(t, x)

C(t, x)

becomes the ratio of the mean displacement vector over the mean run time on the

fibre network.

(5) Persistence. Persistence, ψd, is a measure of a random walker’s tendency to main-

tain direction during directional changes. It has values ψd ∈ [−1, 1], where ψd = 1

denotes perfect persistence (continuing with the previous direction), ψd = 0 de-

notes uniform turning and ψd = −1 indicates a switch into the opposite direction

[34, 35]. Persistence is often computed as the mean cosine along a particle trajec-

tory, however in our abstract framework we define it as the mean velocity of the

equilibrium distribution T , i.e.

ψd(w) =
ET · w
|ET ||w|

. (2.13)
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Table 1. Summary of the key probability distributions used during our analysis
.

distribution meaning expectation variance

q̃(t, x, ŵ) distribution of fibre orientations
q(t, x, w) distribution of newly chosen directions Eq(t, x) Vq(t, x)
p̄(t, x) =

∫
p(t, x, w)dw macroscopic cell density

p̂(t, x, w) = p(t,x,w)
p̄(t,x)

normalized cell density Ep̂(t, x) Vp̂(t, x)

pµ(t, x, w)=µ(t, x, w)p(t, x, w) turning part of the population Epµ(t, x) Vpµ(t, x)

T (t, x, w) = 1
C(t,x)

q(t,x,w)
µ(t,x,w)

distribution of run times along the fibres ET (t, x) VT (t, x)

Explicit use of the vector product shows that ψd does indeed arise as a mean cosine,

as

ψd = cos(^(ET , w)),

where ^(ET , w) denotes the angle between ET and w. We have not yet shown that

T is the equilibrium distribution, but do so in the next Section. Observe that if µ

does not depend on w, Eq. (2.13) becomes

ψd(w) =
Eq · w
|Eq||w|

, (2.14)

as defined in [34]. Hence, for turning rates that do not depend on the direction, the

persistence will vanish for a bi-directional tissue (i .e. Eq = 0). Our extension to

w-dependence in µ lifts this limitation, allowing non-vanishing persistence even for

a bi-directional tissue with ET 6= 0. In other words, Eq. (2.1) with (2.3) is capable

of generating a persistent random walk even under a fully symmetric configuration.

We return to the turning operator (2.9). As expected, due to assumption A2, we observe

that the total cell density during turning will be conserved:∫
V

Lp(t, x, w)dw =

∫
V

p̄µ(t, x)q(t, x, w)dw −
∫
V

µ(t, x, w)p(t, x, w)dw

= p̄µ(t, x)− p̄µ(t, x)

= 0.

The average outgoing velocity of the total turning population, meanwhile, changes:∫
V

Lp(t, x, w)w dw =

∫
V

p̄µ(t, x)q(t, x, w)w dw −
∫
V

µ(t, x, w)p(t, x, w)w dw

= p̄µ(t, x)Eq(t, x)− p̄µ(t, x)Epµ(t, x)

= p̄µ(t, x)
(
Eq(t, x)−Epµ(t, x)

)
. (2.15)

Therefore, the mean velocity of the turning population, Epµ , relaxes towards the average

post-turning velocity, Eq, imposed by the fibre network.

For much of the analysis we assume fibre orientations and turning rates are time

independent, i.e. q(x,w) and µ(x,w). Similar arguments apply for the time dependent

case, yet the notation becomes clumsier.
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2.3 Equilibrium state of the transport equation

As a first step towards finding equilibrium distributions, we compute the kernel of the

turning operator L. A function φ(w) belongs to ker(L) if and only if it satisfies

Lφ(w) = 0

⇐⇒ −µ(x,w)φ(w) + q(x,w)

∫
V

µ(x,w′)φ(w′)dw′ = 0

⇐⇒ µ(x,w)φ(w) = q(x,w)

∫
V

µ(x,w′)φ(w′)dw′.

We can write

φ(w) =
q(x,w)

µ(x,w′)
φ̄µ(x) ,

where φ̄µ is a w-independent function

φ̄µ(x) =

∫
V

µ(x,w)φ(w)dw,

which is the fraction of turning cells of the population φ̄. The w-dependence of elements

of ker(L) is given by the ratio q(x,w)/µ(x,w), i.e. it is given by the run-time distribution

along the fibres, T (x,w), which we introduced in (2.10). Then

φ(x,w) = φ̄(x)T (x,w), and ker(L) = 〈T (x,w)〉.

Hence a stationary state of the equation (2.1)-(2.3) has the form

M(x,w) = β(x)T (x,w) (2.16)

which we call the Maxwellian. We remark that (2.1) with (2.3) is the linear Boltzmann

equation. In particular, the quantity

σ(t, x, w,w′) = q(t, x, w)µ(t, x, w′)

is the cross section and the equilibrium probability density (normalized to 1) given by

L(T ) = 0 is (2.10). The function T will be non-negative, since q and µ are non-negative,

and it is an L1(V ) function via assumption M2. Therefore, the stochastic process ruled

by σ satisfies micro-reversibility, i.e.

σ(x,w,w′)T (x,w′) = σ(x,w′, w)T (x,w).

Consequently, existence and uniqueness of a non-negative solution p ∈ L1(Ω × V ) of

(2.1),(2.3) with initial condition p0 ∈ L1(Ω×V ) and non-absorbing boundary conditions

[6] is a classical result of kinetic theory (see, for example, [40]). We consider, in partic-

ular, a special class of non-absorbing boundary conditions, given by no-flux boundary

conditions [42].

Arguing as in [41, 3], we can prove a linear version of the classical H-Theorem for the

linear Boltzmann equation (2.1), (2.3) with initial condition p0 = p(0, x, w) ∈ L1(Ω×V ).

Let us introduce the entropy S = −H where, for any given convex function Φ : R+ → R+,

HΦ[p|M ](t) =

∫
Ω

∫
V

p(t, x, w)Φ

(
p(t, x, w)

M(x,w)

)
dw dx, p(t, ·, ·) ∈ L1(Ω× V ) .
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In the above, M is the Maxwellian satisfying∫
Ω×V

M(x,w) dxdw =

∫
Ω

p̄ 0(x)dx

where we assume that p0 has finite mass

∫
Ω

p̄ 0 dx and entropy HΦ[p0|M ](0). Hence, β(x)

is such that

∫
Ω

β(x)dx =

∫
Ω

p̄0(x) dx and, in particular, if a stationary state p∞(x,w)

exists, then β(x) = p̄∞(x), so that

p∞(x,w) = p̄∞(x)T (x,w).

Under non-absorbing boundary conditions, via exactly the same procedure followed in

[41] it is possible to prove that

dHΦ[p|M ]

dt
(t) 6 0 for t > 0

and
dHΦ[p|M ]

dt
(t) = 0, iff p(t, x, w) = M(x,w),

where p(t, x, w) is the unique L1 solution to (2.1),(2.3) with initial condition p0 and non-

absorbing boundary conditions. Furthermore, continuing to argue as in [41], it can be

proved that provided

∫
Ω

∫
V

(
1 + w2 + | log p0|

)
dwdx <∞, then

lim
t→∞

∫
Ω

∫
V

|p(t, x, w)−M(x,w)| dw dx = 0.

3 Macroscopic limits

In this section we consider two distinct scalings for the transport equation: i) the parabolic

scaling, and ii) the hyperbolic scaling. The former applies in a diffusion-dominated case

while the latter corresponds to the drift-dominated case. The cases differ through the

relative scaling of time and space in a suitably small parameter ε.

In the parabolic scaling we consider a small parameter, ε� 1, and assume macroscopic

time and space scales (τ,X) that scale according to

τ = ε2t, X = εx.

A paradigm for scaling in this manner can be found by comparing the microscopic scales

of run and tumble movements of E. coli bacteria and the experimental scales at which

population-level phenomena form, such as travelling bands [1] or cellular aggregates [4].

Runs are characterised with a movement speed typically around 10-20 µm/s with a

tumble taking place every second or so. Large scale patterning phenomena typically arise

after a few hours, i.e. O(104) seconds. Hence, ε2 = mean run time/experimental time

= 10−4 and, in turn, ε = 10−2. Given the micron spatial scale of individual movement,

the corresponding macroscopic scale is 102× 10µm = 1mm, which is the scale of the cell

aggregates that typically form.

This scaling therefore demands a sufficiently slow time scale over which diffusion can
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begin to dominate or, equivalently, when cells have large speeds and turning rates. Rescal-

ing (2.1),(2.3) gives

ε2 ∂p

∂τ
(τ,X,w) + εw · ∇p(τ,X,w) =

−µ(X,w)p(τ,X,w) + q(X,w)

∫
V

µ(X,w′)p(τ,X,w′)dw′ ,

(3.1)

where the gradient ∇ is now applied with respect to X. We assume that the rescaled

turning frequency and kernel are such that µ(X,w), q(X,w) ∼ O(1). Thanks to classical

results (see e.g. [40]), we have existence and uniqueness of the solution of (3.1) with initial

condition p0 ∈ L1(Ω× V ) and non-absorbing boundary conditions. We now consider an

asymptotic expansion of p in orders of ε,

p(τ,X,w) = p0(τ,X,w) + εp1(τ,X,w) + ε2p2(τ,X,w) +O(ε3), (3.2)

and we are particularly interested in the leading order term p0.

3.1 Diffusion-Dominated Case

In the diffusion-dominated case we assume that the macroscopic drift term ET = 0. We

consider this case first to introduce the necessary technical notations.

Theorem 3.1 Let assumptions A1-A3 be satisfied and assume

ET = 0. (3.3)

Consider equation (3.1) with expansion (3.2). The leading order term, p0(τ,X,w), of

equation (3.2) satisfies

p0(τ,X,w) = p̄0(τ,X)T (X,w),

where p̄0(τ,X) solves the macroscopic anisotropic diffusion equation

∂

∂τ
p̄0(τ,X) = ∇ ·

∫
V

1

µ(X,w)
∇ ·
[
p̄0(τ,X)DT (X,w)

]
dw , (3.4)

with microscopic anisotropic diffusion tensor

DT (X,w) = w ⊗ wT (X,w).

Proof

We have seen that

ker(L) = 〈T 〉.
In order to invert L on the orthogonal complement of its kernel, we use a specific weight

for the inner product in L2
η(V ), with

η(X,w) =
µ(X,w)

T (X,w)
, (3.5)

i .e. given f, g ∈ L2 the weighted scalar product is defined by

(f, g)η =

∫
V

f(w)g(w)η(X,w) dw.
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We observe that φ(X,w) ∈ 〈T 〉⊥ if and only if

0 =

∫
V

φ(X,w)T (X,w)
µ(X,w)

T (X,w)
dw =

∫
V

φ(X,w)µ(X,w)dw = φ̄µ(X).

The range of L is given by all functions that integrate to zero, since∫
V

Lφ(X,w)dw = Lφ = 0

from mass conservation. Then, this range, as subset of L2
η(V ), can be written as

Range(L) = 〈η−1〉⊥,

since

0 =

∫
V

φ(X,w)dw =

∫
V

φ(X,w)η−1(X,w)(η(X,w)dw) = (φ, η−1)η.

Then

L⊥ : 〈T 〉⊥ → 〈η−1〉⊥, with L⊥ = L|〈T 〉⊥
and this restricted operator L⊥ is the operator we would like to invert. Given ψ ∈ 〈η−1〉⊥,

we need to find φ ∈ 〈T 〉⊥ such that Lφ = ψ. Applying L from (2.9) we obtain (ignoring

arguments for clarity of presentation)

Lφ = φ̄µq − µφ = ψ.

Since on 〈T 〉⊥ we have φ̄µ = 0, we can solve for φ as

φ(X,w) = − 1

µ(X,w)
ψ(X,w).

Hence we can write (
L⊥
)−1

: 〈η−1〉⊥ → 〈T 〉⊥, ψ 7→ − 1

µ
ψ. (3.6)

We may observe that the pseudo-inverse depends on the microscopic velocity and on the

macroscopic space coordinate through µ(X,w).

We now substitute expansion (3.2) into equation (3.1) and match orders of ε.

• For ε0 we find

Lp0(τ,X,w) = 0,

hence p0 ∈ ker(L) and we can write

p0(τ,X,w) = p̄0(τ,X) T (X,w). (3.7)

• At order ε1 we have

∇ ·
(
w p0(τ,X,w)

)
= Lp1(τ,X,w) . (3.8)

To solve this equation for the next order correction term p1, we need to invert L.

We saw earlier in (3.6) that L is invertible on 〈η−1〉⊥. Hence we check the solvability

condition

∇ · (wp0(τ,X,w)) ∈ 〈η−1〉⊥.
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Using (3.7) this condition becomes

0 = (∇ · (wp0), η−1)η

=

∫
V

∇ · (wp̄0(τ,X)T (X,w))η(X,w)−1η(X,w)dw

= ∇ ·
[∫

V

wT (X,w)dw p̄0(τ,X)

]
= ∇ · [ET (X)p̄0(τ,X)] .

Hence in this step it is necessary to assume

ET (X) = 0. (3.9)

In words, we assume the distribution of run times along the fibre network has no

dominant direction. In this case we can invert (3.10) and find

p1(τ,X,w) =
1

µ(X,w)
∇ · (w p̄0(τ,X)T (X,w)) . (3.10)

• In ε2:
∂

∂τ
p0(τ,X,w) +∇ ·

(
p1(τ,X,w)w

)
= Lp2(τ,X,w) .

Integrating this equation over V we obtain∫
V

∂

∂τ
p0(τ,X,w)dw +∇ ·

∫
V

wp1(τ,X,w)dw = 0.

Using the expressions (3.7) for p0 and (3.10) for p1, we obtain

∂

∂τ
p̄0(τ,X)

∫
V

T (X,w)dw︸ ︷︷ ︸
=1

= ∇ ·
∫
V

1

µ(X,w)
w ⊗ w∇

[
p̄0(τ,X)T (X,w)

]
dw

= ∇ ·
∫
V

1

µ(X,w)
∇ ·
[
p̄0(τ,X)w ⊗ wT (X,w)

]
dw

= ∇ ·
∫
V

1

µ(X,w)
∇ ·
[
p̄0(τ,X)DT (X,w)

]
dw ,

with an anisotropic diffusion tensor

DT (X,w) = w ⊗ wT (X,w) .

DT is a macroscopic scale diffusion tensor, where

VT (X) =

∫
V

DT (X,w)dw

describes the variance of the run time distribution along the network fibres.

Lemma 1 The above parabolic limit equation (3.4) can be written as an anisotropic

drift-diffusion model

∂p̄0

∂τ
(τ,X) +∇ ·

(
a(X)p̄(τ,X)

)
= ∇ · ∇ ·

(
D(X)p̄0(τ,X)

)
, (3.11)
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with macroscopic diffusion tensor, D, and advection speed, a, given by

D(X) =

∫
V

w ⊗ w T (X,w)

µ(X,w)
dw (3.12)

a(X) = −
∫
V

w ⊗ w ∇µ(X,w)

µ(X,w)

T (X,w)

µ(X,w)
dw. (3.13)

Proof The proof relies on straightforward application of the quotient rule. Omitting

arguments for readability ,

∇ ·∇ ·
(
p̄0

∫
V

w ⊗ wT
µ
dw

)
= ∇ ·

∫
V

1

µ
∇ · (p̄0w⊗wT )dw−∇ ·

(
p̄0

∫
V

∇µ
µ2

w ⊗ wTdw
)
.

This representation allows some interesting physicobiological interpretations.

• In (3.5) earlier we defined the weight function η = µ
T . We can write the above macro-

scopic quantities in terms of η as

D(X) =

∫
V

w ⊗ w dw

η(X,w)
,

a(X) = −
∫
V

w ⊗ w∇ ln(µ(X,w))
dw

η(X,w)
.

D then appears as an anisotropy matrix related to the measure η−1dw, while a measures

the anisotropic logarithmic gradient with the same measure η−1dw.

• We can also relate the terms back to the original network structure given by q(X,w).

Recall that T = q
Cµ , where C(X) was a normalisation constant. By considering the

distance travelled in direction w we can write

D(X) =
1

C(X)

∫
V

χ(X,w)⊗ χ(X,w)q(X,w) dw ,

a(X) = − 1

C(X)

∫
V

χ(X,w)⊗ χ(X,w)∇ ln(µ(X,w)) q(X,w)dw ,

using the definition of χ from (2.12). D is then the scaled variance-covariance matrix of

the directed mean run-time along the fibre network and a is the scaled mean logarithmic

derivative of the turning rate, weighted by the mean run times along the fibre network.

• The equations simplify drastically when the turning rate µ does not depend on space.

In this case ∇µ = 0 and hence a = 0, i.e., we get a pure anisotropic diffusion equation.

Viewed this way, the advection velocity a clearly results from spatial variation in the

turning rate, µ(X,w), and relates to an anisotropic taxis term measuring the drift due

to the gradient of µ. Spatial dependence in µ(X,w) generates an advection pushing

cells towards decreasing values of the turning frequency.

Due to the fact that V and Ω are compact, we can directly apply a convergence result

of [13], giving us

Lemma 2 Suppose A1-A3 and M1-M2 hold and assume (3.3). Let us also suppose
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that ∃C1, C2 > 0 such that

|w · ∇q(x,w)| 6 C1µ(x,w), a.e. in Ω× V

and ∫
V

w2 q(x,w)

µ(x,w)2
dw 6 C2 a.e. in Ω.

Let the initial condition p0
ε(x,w) satisfy

∫
Ω×V

pε0(x,w)2

T (x,w)
dxdw < ∞ and p̄0

ε ⇀ p̄0 in

H−1(Ω). Let pε be the solution to (3.1). Then there exists a subsequence p̄ε ⇀ p̄ in

L2((0, T )× Ω) where p̄ satisfies (3.11) with initial condition p̄0(x).

3.2 Drift-Diffusion Case

The authors of [22] study the parabolic scaling also in the case where the macroscopic

drift ET 6= 0. The key lies in a transformation to moving spatial coordinates, shifting the

solution in the direction of ET as Z = X − ET t. This method also works here and we

introduce

p(τ,X,w) := u(τ,X −ET τ, w).

Then, the transport equation (2.1) transforms to

∂

∂τ
u+∇ · [(w −ET )u] = Lu.

Therefore, the scaled transport equation (3.1)

ε2 d

dτ
p+ ε∇ · (wp) = Lp

transforms to

ε2 ∂

∂τ
u+ ε∇ · [(w −ET )u] = Lu.

For this modified transport equation we perform the same scaling analysis as before. We

consider

u(τ, Z,w) = u0(τ, Z,w) + εu1(τ, Z,w) + ε2u2(τ, Z,w) + · · · .
Upon comparing orders of ε we find, to leading order, that

Lu0 = 0.

Hence, u0 is in the kernel of L and we can write

u0(τ, Z,w) = ū0(τ, Z) T (X,w).

The order ε terms are

∇ ·
[
(w −ET )ū0T

]
= Lu1.

To solve this equation for u1 we require the solvability condition

∇ ·
[∫

V

(w −ET )Tdw ū0

]
= 0 ,
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which is true since ∫
V

(w −ET )Tdw = ET −ET = 0.

Then

u1 = − 1

µ
∇ ·
[
(w −ET )ū0T

]
.

The terms of order ε2 are

∂

∂τ
(ū0T ) +∇ ·

[
(w −ET )u1

]
= Lu2.

We integrate this equation over V to obtain

0 =
∂

∂τ
ū0 −∇ ·

∫
V

(w −ET )

(
1

µ

)
∇ ·
[
(w −ET )ū0T

]
dw︸ ︷︷ ︸

(I)

. (3.14)

Generalising the previous definitions of the diffusion tensor (3.12) and the drift velocity

(3.13) we define now a macroscopic diffusion tensor Dh and macroscopic drift velocity ah
as

Dh(X) =

∫
V

(w −ET )⊗ (w −ET )
T

µ
dw , (3.15)

ah(X) =

∫
V

(w −ET )∇ ·
[
w −ET

µ

]
T dw . (3.16)

Note that for ET = 0 we return to the previous definitions (3.12) and (3.13) of the

diffusion-dominated case.

Therefore we have that

∇ · (Dhū0) =

∫
V

(−∇ ·ET )(w −ET )
T

µ
dw ū0 +

∫
V

(w −ET )
1

µ
∇ ·
[
(w −ET )ū0T

]
dw︸ ︷︷ ︸

(I)

+

∫
V

(w −ET )⊗ (w −ET )T∇
(

1

µ

)
dw ū0

= (I) +

∫
V

(w −ET )

[
∇ · (w −ET )

1

µ
+ (w −ET ) · ∇

(
1

µ

)]
Tdw ū0

= (I) + ahū0 . (3.17)

With these definitions we obtain from (3.14) a fully anisotropic drift-diffusion model for

ū0:

∂

∂τ
ū0 +∇ · (ahū0) = ∇ · ∇ · (Dhū0) . (3.18)

Finally, transforming back to p̄0(τ,X) = ū0(τ,X −ET τ) we find

∂

∂τ
p̄0 +∇ · ((ah + ET )p̄0) = ∇ · ∇ · (Dhp̄0) . (3.19)

If ET = 0 we get the same result as already shown in Theorem 3.1 and equation (3.11)

in Lemma 1.
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3.3 Hyperbolic limit

In drift-dominated phenomena we expect that nondimensionalisation leads to a scaling

in which the macroscopic time and space scales are of the form τ = εt,X = εx, ε � 1.

Effectively, cells do not have a large turning frequency, drift dominates and we can

perform a hyperbolic limit. The rescaled equation is

ε
∂p

∂τ
+ εw · ∇p = Lp . (3.20)

We consider the following expansion

p = p0 + εg +O(ε2), (3.21)

where we assume that the correction term g carries zero mass (ḡ = 0) and, therefore,

p̄0 = p̄. Substituting (3.21) into (3.20) we find that the leading order terms (ε0) are

Lp0 = 0, hence

p0(τ,X,w) = p̄(τ,X)T (X,w) . (3.22)

With this choice of p0 the remaining terms in (3.20) are

∂p

∂τ
+ εgτ + w · ∇p+ εw · ∇g = Lg +O(ε2). (3.23)

We integrate this equation over V , use the form of p0 from above (3.22), and assume the

O(ε2)-terms are negligible. Then

∂p̄

∂τ
+ ε

∫
V

gτdw +∇ ·
∫
V

wp̄Tdw + ε∇ ·
∫
V

wgdw = 0.

Since g carries no mass, we have ∂
∂τ ḡ = 0. Using the definition of the expectation of T

from (2.11) we obtain

∂p̄

∂τ
+∇ · (ET p̄) + ε∇ ·

∫
V

wgdw = 0 , (3.24)

which, to leading order, becomes the pure drift model

∂p̄

∂τ
(τ,X) +∇ ·

(
ET (X)p̄(τ,X)

)
= 0. (3.25)

The macroscopic drift velocity ET is the expected movement direction based on the

average time spent on the fibres. If ET is of order one then (3.25) is the leading order

model. However, for small or zero expectation ET , we can compute the next-order cor-

rection term g. Specifically, we use

∫
V

wg dw =

∫
V

(w − ET )g dw and rewrite equation

(3.24) as

∂p̄

∂τ
+∇ ·

(
ET p̄

)
= −ε∇ ·

[∫
V

(w −ET )gdw
]
. (3.26)

From the previous equation (3.23) we find to leading order that

Lg =
∂p

∂τ
+ w · ∇p =

∂p̄

∂τ
T + w · ∇(p̄T ) = −∇ · (ET p̄)T + w · ∇(p̄T ), (3.27)

where we used the drift model (3.25) in the last step. To solve for g we need to satisfy
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the solvability condition

0 =

∫
V

−∇ · (ET p̄)T + w · ∇(p̄T )dw

= −∇ · (ET p̄) +∇ ·
(∫

V

wTdwp̄

)
= −∇ · (ET p̄) +∇ · (ET p̄) , (3.28)

which is true since
∫
Tdw = 1. Hence the right hand side of equation (3.27) is in the

range of L. To solve an equation of the form Lg = R with R ∈ Range(L), we can use the

pseudoinverse of L⊥ and add a term which lies in the kernel of L, i.e. we write

g(τ,X,w) = − 1

µ(X,w)
R(τ,X,w) + α(τ,X)T (X,w),

where α(τ,X) is independent of w. Here we assumed the correction term has no mass,

ḡ = 0, and hence we choose α(τ,X) in such a way that ḡ = 0. We solve (3.27) for the

correction term, g, to obtain

g = − 1

µ

[
−∇ · (ET p̄)T + w · ∇(p̄T )

]
+ αT

with

α(τ,X) = −
∫
V

1

µ

[
−∇ · (ET p̄)T + w · ∇(p̄T )

]
dw. (3.29)

Note that if the turning rate is independent of velocity w (i.e. µ(X,w) = µ(X)), then

from (3.28) we note α = 0 and return to the standard case discussed in the introduction

(see [27]). We write g in the following form, more convenient for later manipulation:

g = − 1

µ

[
T (w −ET ) · ∇p̄+ p̄(w · ∇T )− p̄0((∇ ·ET )T )

]
+ αT

= − 1

µ

[
T (w −ET ) · ∇p̄+∇T · (w −ET )p̄+ ET · ∇T p̄+

[
∇ · (w −ET )

]
p̄T
]

+ αT

= − 1

µ

[
∇ ·
[
(w −ET )p̄T

]
+ ET · ∇T p̄

]
+ αT.

Then, the term in the square brackets of (3.26) becomes∫
V

(w −ET )gdw = −
∫
V

(w −ET )
1

µ
∇
[
(w −ET )p̄T

]
dw︸ ︷︷ ︸

(I)

(3.30)

−
∫
V

1

µ
(w −ET )ET · ∇T dw p̄+

∫
V

(w −ET )αT dw (3.31)

= −∇ · (Dhp̄) + ahp̄−
∫
V

(w −ET )ET ·
∇T
µ

dw p̄ . (3.32)

In the above we used the relation (3.17) between the integral (I) and the diffusion and

drift terms Dh and ah, respectively, as well as the fact that∫
V

(w −ET )αTdw = α

(∫
V

wTdw −ET

∫
V

Tdw

)
= 0.

Combining these calculations with the macroscopic limit equation (3.26), we obtain the
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hyperbolic limit equation with correction term as

∂p̄

∂τ
+∇ ·

(
(ET + εah)p̄

)
= ε∇ · ∇ ·

(
Dhp̄

)
+ ε∇ ·

(∫
V

(w −ET )ET ·
∇T
µ

dw p̄

)
. (3.33)

where Dh and ah are given by (3.15) and (3.16), respectively.

A particularly pleasing aspect of the above hyperbolic limit lies in its generalisation

of the earlier parabolic limit. Specifically, for the case ET = 0 we obtain the same

macroscopic quantities: (3.15) coincides with (3.12) and (3.16) coincides with (3.13).

Moreover, for ET = 0, the rather clumsy integral correction term vanishes and we obtain

a rescaled version of the parabolic limit equation (3.11):

∂p̄

∂τ
+ ε∇ ·

(
(ah)p̄

)
= ε∇ · ∇ ·

(
Dhp̄

)
. (3.34)

A further scaling of time with ε then reproduces the parabolic limit (3.11).

3.4 Time-dependent turning distribution

For time-varying tissues, q, µ and C will all depend on time. Rescaling (2.1),(2.3) with

X = εx, regardless of using time scale τ = ε2t or τ = εt, and comparing equal orders of

ε allows us to obtain the leading order function of (3.2), that is

p0(τ,X,w) = p̄(τ,X)T (τ,X,w)

where the equilibrium distribution is now also time dependent, T (τ,X,w) =
q(τ,X,w)

µ(τ,X,w)
.

The diffusive limit does not change, but the hyperbolic limit has different correction

terms. Proceeding as in the previous section, we find that the correction g is a solution

to

Lg =
∂

∂τ
(p̄T ) + w · ∇

(
p̄T
)

+O(ε). (3.35)

Let us suppose again that g is of the form

g = −R(τ,X,w)

µ(τ,X,w)
+ α(τ,X)T (τ,X,w)

where again α(τ,X) does not depend on w. Inverting (3.35), we find

g = − 1

µ

∂p̄

∂τ
T + p̄

∂T

∂τ
+ w · ∇

(
p̄T
)

+ α(τ,X)T (τ,X,w)

and then

g = − 1

µ

[(
wT −ETT

)
· ∇p̄+

(
w · ∇T −∇ ·ETT +

∂T

∂τ

)
p̄
]

+ α(τ,X)T (τ,X,w).

Since we assumed g carries no mass and have
∂

∂τ
T̄ = 0, we obtain the same α as in

(3.29). Concluding, equation (3.33) becomes in this case

∂p̄

∂τ
+∇·

(
p̄(ET+εah)

)
= ε∇·∇·

(
Dhp̄

)
+ε∇·

(∫
V

(w −ET )ET ·
∇T
µ

dw p̄

)
+ε∇·

( ∂
∂τ

ET p̄
)
.

(3.36)
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4 Diffusion equations for biological particles

To appreciate the power of the analysis, we use this section to consider special cases

relevant to various biological scenarios. First, consider the parabolic limit equation (3.11).

Applications often only consider the macroscopic model for p̄0, and we simplify the

notation by using u(t, x) instead of the cumbersome p̄0(τ,X). We rewrite the parabolic

limit (3.11) in a more standard Fickian form

∂u

∂t
(t, x) = ∇ ·

[
D(x)∇u(t, x)

]
+∇ ·

[
(a(x) +∇ · D(x))u(t, x)

]
. (4.1)

Therefore, the fully anisotropic advection-diffusion process described by the Fokker-

Planck equation (3.11) is revealed as a standard anisotropic Fickian diffusion with an

advective component given by the combination of drift velocity a(x) and the divergence

of the diffusion tensor ∇ ·D(x). We consider some special cases and simplify notation by

omitting dependencies when they are obvious.

4.1 Dependencies of turning rates and turning kernels

(1) Suppose µ does not depend on w. The run time distribution, T , then becomes

T (x,w) =
q(x,w)

C(x)µ(x)
, with C(x) =

∫
V

q(x,w)

µ(x)
dw =

1

µ(x)
.

Hence, in this case

T (x,w) = q(x,w)

and the model reduces to previously studied cases (e.g. see [24, 38]). The diffu-

sion matrix here is given by the variance-covariance matrix of the fibre network

distribution, q(x,w), divided by the turning rate

D(x) =

∫
V

w ⊗ w T (x,w)

µ(x)
dw =

1

C(x)µ(x)2

∫
V

w ⊗ wq(x,w)dw =
Vq(x)

µ(x)
.

The drift velocity (3.13), meanwhile, is

a(x) = −∇µ(x)

µ2(x)
Vq(x). (4.2)

In this case, if q is even and then ET vanishes, we obtain a parabolic limit equation

(3.11) as

∂u

∂t
−∇ ·

[
Vq
∇µ
µ2

u

]
= ∇ · ∇ ·

(
Vq
µ
u

)
. (4.3)

This can again be written in Fickian form, where we obtain

∂u

∂t
= ∇ ·

(
Vq
µ
∇u
)

+∇ ·
[
∇ · Vq
µ

u

]
. (4.4)

When µ is spatially heterogeneous, the diffusion process (4.3) is a fully anisotropic

process with advection given by the taxis term (4.2). This leads the dynamics to-

wards decreasing values of µ. The turning rate µ also scales the diffusivity, with

large diffusivity for small turning rates and vice versa. Hence, frequently turning
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particles will not show large diffusive spread compared to those turning less often.

The drift in the direction of the negative gradient of µ indicates a drift away from

regions of low diffusion towards regions of high diffusion.

(2) If we further assume that µ is constant and consider q = q(x,w), the Fokker-Planck

equation (3.11) leads to

∂u

∂t
=

1

µ
∇ · ∇ · (Vqu). (4.5)

When the oriented habitat is not spatially homogeneous, (4.5) describes a fully

anisotropic process where diffusion is again linked to an anisotropic environment

(which determines the direction of anisotropy) and to the frequency of reorienta-

tions (which determines the intensity of diffusion).

(3) Suppose now µ is constant and further assume q = q(w), i.e. the network is spatially

homogeneous but can still describe an oriented environment. Then the diffusion

equation (4.5) becomes

∂u

∂t
=

1

µ
∇ · (Vq∇u) . (4.6)

Equation (4.6) describes diffusion in a spatially homogeneous environment, where

anisotropy is due to the presence of a dominant alignment in the environment.

(4) Suppose both turning rates and turning kernels depend on w but not x, i.e. µ =

µ(w) and q = q(w). If we further assume ET = 0, as in this case ∇µ(X,w) = 0,

then the macroscopic drift from (3.13 ) satisfies a = 0 and the macroscopic diffusion

(3.12) is

D =

∫
V

w ⊗ wT (X,w)

µ(w)
dw. (4.7)

We use this case later to analyse the movement patterns of cells migrating on

fabricated anisotropic surfaces, such as the fibronectin stripe arrangements devised

in [16] (see the schematic in Figure 1 and the simulations in Figure 7).

(5) Finally, suppose a constant fibre distribution, i.e.

q = 1/2π, (4.8)

but µ = µ(w, x, t), i.e. the turning rate can depend on the orientation of the

environment. If we suppose ET = 0, we are again in the previous case, but the

eventual anisotropy will be the direction orthogonal to the dominant direction of

µ, as it is the orientation of cells that tend to turn more frequently.

4.2 Isotropy and anisotropy

Generally we observe an anisotropic diffusion process (3.12), a consequence of both cells

orienting with respect to the network alignment via q(x,w) and the direction-dependent

turning frequency µ(x,w). Specifically, diffusive anisotropy is encapsulated through the

second moment of the distribution

T (x,w)

µ(x,w)
=

q(x,w)

C(x)µ2(x,w)
.
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The nominator/denominator localisations of q and µ naturally suggest that turning di-

rection and turning rate might have opposing impact on macroscopic dynamics.

(1) For example, suppose that

q(x,w) ∼ µ2(x,w) . (4.9)

Here we have T (x,w) ∼ µ(x,w) and obtain a macroscopic drift term of the form

ET (x) ∼
∫
V
wµ(x,w)dw. The macroscopic diffusion tensor (3.12) in this case will

be isotropic

D ∼
∫
V

w ⊗ wdw = cI.

Hence, for
∫
wµ(x,w)dw 6= 0, the macroscopic regime will be isotropic and drift-

dominated.

(2) Suppose instead

q(x,w) ∼ µ(x,w) . (4.10)

Here, T (x,w) is constant and the macroscopic regime will always be diffusive with

ET = 0. The diffusion might be anisotropic, since

D ∼
∫
V

w ⊗ w 1

q(x,w)
dw.

(3) It is also relevant to consider the case in which

q(x,w) ∼ 1

µ(x,w)
, (4.11)

because in many biological cases cells are likely to both choose the fibre direction

and turn less frequently when moving in the direction of dominating alignment. In

this case we have both a drift-driven phenomenon, with ET =
∫
w 1
µ2(x,w)dw, and

the diffusion can be anisotropic according to

D ∼
∫
V

w ⊗ wq3(x,w)dw.

4.3 Comparison to diffusion of passive particles

The somewhat curious diffusive terms derived here arise due to the study of active movers:

biological particles, such as cells and organisms, generate their own movement energy

and are therefore unconstrained by energy and momentum conservation as demanded by

classical physics. For passive movers (movers simply transported by a fluid environment

or some other stream) the situation is different: in that context, an equation of the form

(4.6) corresponds to the equation describing diffusion in an anisotropic but homogeneous

environment, i.e. without spatial variation; equation (4.5) corresponds to the equation

derived in [8], describing particle diffusion in a heterogeneous environment; equation

(4.3) corresponds to the case in which µ depends on the position, and it is then the

only case in which the macroscopic equation has that particular mixed structure. Within

the diffusion theory of physical particles, this mixed structure arises when describing a

so-called thermal effect, i .e. when there is a temperature gradient [55]. Here, the variable
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turning rate can be viewed somewhat analogously to temperature in a system of physical

particles1, and the two factors influencing the dynamics are the spatial heterogeneity and

the adaptability to environmental heterogeneity.

An example of adaptability in a biological context is provided in [11, 10], addressing

starvation-driven diffusion. Here, starvation induces the organism to increase motility and

find a better environment, even if it is not known where that may be, i .e. the migration is

unbiased. We further note that the three forms of diffusion equation (4.3),(4.5),(4.6) can

be derived from space-jump processes, where variation in jumping depends on environ-

ment assessment of the current location, between locations or the destination [33, 11, 31],

with spatially homogeneous jumping times. When both the jumping time and length are

spatially heterogeneous, a mixed structure similar to (3.11) arises. We note that the coef-

ficients appearing in (4.3),(4.5),(4.6) may also depend on time, since both q and µ could

be time-dependent. This would be relevant, for example, in the context of mesenchymal

motion where there is significant ECM remodelling [24, 36].

5 Numerical examples

We present simulations to illustrate key model features, numerically integrating the ki-

netic transport equation (2.1),(2.9) to approximate the density distribution p and in turn

the corresponding macroscopic density via (2.6). For computational convenience we re-

strict to a 2D spatial setting, a rectangular 2D region Ω = [0, Lx] × [0, Ly], and restrict

the velocity space to V = S1, so that w = ŵ and the speed is set at unit value. In partic-

ular, we integrate Eq. (2.1),(2.9) as in [19], with the only difference lying in integrating

the relaxation step semi-implicitly, as p̄µ has to be computed from the p obtained from

the current time step.

Initially the population macroscopic density, p̄0(x) = p̄(0, x), is described by a tightly-

concentrated Gaussian distribution centred at location (x0, y0), e.g. see Figure 3(a), while

cell orientations are uniformly distributed over S1. At the boundaries we set diffusive

boundary conditions [29], yielding no-flux boundary conditions at the macroscopic level

[42, 30] both in the parabolic and hyperbolic limit.

The remainder of this section is divided into three core tests, designed to illustrate how

q and µ alter the macroscopic dynamics. Test 1 explores the extent to which anisotropic

or isotropic behaviour emerges with the relationship between q and µ. In Test 2 we

demonstrate the tactic effect induced by the spatial gradient of µ. Test 3 extends the

analysis to more complicated network structures.

5.1 Arrangements

We specify q and µ using bimodal von Mises distributions, a standard circular distribu-

tion with known analytical forms for the first and second moments (e.g. see [25]). For

notational convenience we introduce the following short-hand for a bimodal von-Mises

1 In a biological context, this ‘temperature’ should not be thought of in its everyday sense, but
the macroscopic temperature that arises from the movement of particles viewed as a mechanical
multi-particle system, like in the thermodynamic theory of gases.



European Journal of Applied Mathematics 25

distribution, with a given concentration parameter k > 0 and a given unit vector θ:

bvMk,θ(w) =
1

4πI0(k)

(
ekw·θ + e−kw·θ

)
. (5.1)

To further simplify notation we identify a unit vector by its angle, i.e. writing θ =

(cos θ, sin θ)T .

Fibres are arranged in two principal patterns, schematised in Fig. 2. We base q and

µ on (5.1), stipulating functions θq and kq for q and θµ and kµ for µ. kq = 0 therefore

corresponds to unaligned fibres and large kq generates highly aligned fibres along the

axis θq, θq + π. Tests are devised as follows.

• Test 1. Here we set θq = µq = π/4, kq = 50e−0.25((x−5)2+(y−5)2) and µ as one of

µ ∼ constant,∼ q,∼ q2,∼ 1/q.

• Test 2. We set θq, µq and kq as in Test 1, but shift kµ to 50e−0.25((x−4.5)2+(y−4.5)2).

• Test 3. Setting ΩXY = ΩX ∩ ΩY , where ΩX = {(x, y) : 4 6 x 6 6}, ΩY {(x, y) : 4 6
y 6 6}, we consider

q(x,w)=



1

2π
on Ω− ΩXY,

bvMkq,θq on ΩX,

bvMkq,θ⊥q
on ΩY,

1

2

(
bvMkq,θq + bvMkq,θ⊥q

)
on ΩXY,

µ(x,w)=



1

2π
on Ω− ΩXY,

bvMkµ,θµ on ΩX,

bvMkµ,θ⊥µ
on ΩY,

1

2

(
bvMkµ,θµ + bvMkµ,θ⊥µ

)
on ΩXY.

(5.2)

Specifically, we will set θq = π and kq = 50 to form the cross configuration on the right

of Fig. 2, where away from the cross fibres are isotropic and on the horizontal (vertical)

arm fibres are aligned in the horizontal (vertical) direction. At the centre, fibres cross.

For µ we consider related but subtly distinct forms, allowing distinct turning rate to

turning distribution behaviour.

5.2 Simulations

Test 1 was designed to explore the extent to which isotropic or anisotropic behaviour

arises with the choices of q and µ, for example related as in Eq. (4.9), (4.10) or (4.11).

Initialising according to Fig. 3(a), we plot the macroscopic density at T = 7.5 in Fig.

3(b-e) for (b) µ ∼ constant = 1, (c) µ ∼ q, (d) µ ∼ q2, (e) µ ∼ 1/q. In (f) we set q

constant but maintain anisotropy through kµ = 50e−0.25((x−5)2+(y−5)2) and θµ = π/4.

In particular, for Fig. 3(b) we recover the original model of [24] and observe anisotropic

diffusion according to the dominating fibre alignment. In Fig. 3(c) we set µ = q, i.e. situa-

tion (4.10). There is no drift, but anisotropy arises through the directional bias in q. This

generates a conflict in which cells preferentially choose the dominating fibre alignment

but, when facing those directions, turn more frequently. Consequently the anisotropy

becomes orthogonal to the dominating fibre alignment. In Fig. 3(d) we consider case

(4.9) by choosing µ =
√
q. Again, preferential movement along an axis is countered by

increased turning, but the weighting now generates isotropic diffusion. Further, there is
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Figure 2. Left: Arrangement and intensity of fibre orientation for Tests 1 & 2. The

maximum of µ is positioned at the red square for Test 1 and the green circle for Test 2.

Right: Arrangement and intensity of fibre orientation for Test 3. According to the precise

simulation, we again shift the position of the maximum of µ from the red square to the

green circle. Note that our model assumes that the fibre orientation directly informs the

turning kernel, q, as explained in Section 2.

a non-trivial drift ET . The dynamics are similar to those in Figure 3(c), yet the pattern

is more symmetric due to the isotropic diffusion. In Fig. 3(e) we consider case (4.11),

i.e. where µ = 1/q. Cells now turn less frequently along the directions of preferential

alignment and, intuitively, we should expect enhanced anisotropic diffusion along certain

axes. Simulations confirm this, with the cells remaining even more tightly aligned along

the dominating fibre orientation as compared to Fig. 3(b). Finally, in Fig. 3(f) the fibre

network does not impact on orientation, but cells oriented along the axis (π/4, 5π/4)

turn more frequently. Diffusion remains anisotropic as predicted by (4.8).

Test 2 was designed to show the taxis induced by the spatial variability of the turning

rate µ and simulation results are reported in Fig. 4. Specifically, we shift the peak of the

turning rate away from the centre of the domain, to the point represented by the green

dot. There is a subsequent tendency of cells to avoid this new location, coherent with

equation (4.2) indicating greater diffusion with higher values of the turning frequency

(Figure 4).

Test 3 extends these analyses to a more complicated environment, see Fig. 2. Fig.

5(a) plots the initial (macroscopic) cell distribution for the experiments (b) and (c),

while Fig. 5(d) shows the distribution used for (e) and (f). In Fig. 5(b), we set µ ∼ q

so that cells orient and migrate along fibres but this is counterbalanced by turning more

frequently when moving in those directions. Spread is subsequently inhibited by the cross

arrangement. In Fig. 5(c) we consider instead θµ = θ⊥q , so that particles both follow the

fibres and turn less frequently when moving in their direction. As expected, there is a

clear tendency of cells to follow the cross structure. The second row performs the same

simulations, but relocating the initial cell distribution (now centred at (4, 4)) and the peak

of kµ to (3, 3). The latter generates an advection away from this point, a consequence of

the decreasing gradient of µ experienced by cells. Fig. 5 (e) shows even more clearly the

inhibition resulting from fibres at the centre of the cross, while in (f) cells are seen to
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(a) (b) (c)

(d) (e) (f)

Figure 3. Test 1. Anisotropic/isotropic spread according to the choices of q and µ. See

text for details. (a) Initial macroscopic density p̄(0, x), (b-f) macroscopic density p̄(t, x)

at t = 7.5. The white curve in (b-f) is the level set defined by p̄(t, x) = 0.1. In (b-e) q

is as described in the text and the turning rate is given by: (b) µ = 1, (c) µ = q, (d)

µ =
√
q, (e) µ = 1/q. In (f) q = 1/2π while µ is given by (5.1), with θµ = π/4 and

kµ = 50e−0.25((x−5)2+(y−5)2).

(a) t = 2.5 (b) t = 5 (c) t = 7.5

Figure 4. Test 2. Taxis induced through variable turning rates. q is as described in the

left of Fig. 2 (see text for details), while the peak of the turning frequency µ is shifted

to centre on the green dot. Simulations plot the macroscopic density at successive times

t = 2.5, 5, 7.5.

spread rapidly along the arms once it has been reached. The different times in Fig. 5(c)

and Fig. 5(f) were chosen as to best represent the dynamics in the two different settings.
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(a) t = 0 (b) t = 7.5 (c) t = 15

(d) t = 0 (e) t = 7.5 (f) t = 7.5

Figure 5. Test 3. Dynamics for q given by the cross structure in Fig. 2 (left). (a) Initial

macroscopic density (centered at (5, 5)) for the simulations represented in (b,c); (d) Initial

macroscopic density (centered at (4, 4)) for simulations represented in (e,f). q is given by

(5.2), see text for details, while µ has a similar structure, but for (b,e) θµ = θq and for

(c,f) θµ = θ⊥q .

6 Application: movement on fabricated anisotropic surfaces

As an application-oriented investigation we return to the cell migration studies of Doyle

et al [16], illustrated in Figure 1. These experiments rely on a “photopatterning” tech-

nique, allowing fabrication of imprinted fibronectin micro-structures. Laying down par-

allel aligned stripes imitates aligned fibres and, confronted by such environments, migra-

tory cells (fibroblasts and keratinocytes) orient accordingly, extending protrusions and

forming the adhesive attachments that allows movement along the alignment axis. Signif-

icantly, highly aligned environments lead to a substantial increase in velocity, for example

two-fold (for fibroblasts) or three-fold (for keratinocytes) over corresponding movements

on an unaligned surface.

While the authors of [16] do not explicitly measure the turning rate µ(x,w), they do

measure net velocity and persistence. We note that the emphasis of the experiments in

[16] was on cell orientation and morphology, not so much turning rates, so available data

remains sparse. Subsequently, rather than a detailed attempt of model fitting, we perform

a qualitative comparison to explore how direction-dependent turning rates will impact

on the movement patterns of cells on different surfaces.

We specifically focus on the “transition” experiment, schematically illustrated in Fig-
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ure 1. Here quasi-1D regions were interrupted by two isotropic 2D forms: Case A (see

Figure 1 (a)), a uniformly isotropic region, or Case B (see Figure 1 (b)), a region of per-

pendicular and criss-crossing stripes. As indicated earlier, cells that enter the isotropic

region from a neighbouring quasi-1D region round-up and extend protrusions in multi-

ple directions. For Case A the cell’s net movement is dramatically reduced, losing its

direction and subsequently performing what appears as an unbiased random walk. In

Case B movement is also arrested and reorientation occurs, but there can be a subse-

quent significant movement along one of the two perpendicular directions, followed by

further reorientations. Overall, the translocations of the cell in Case B seem to be signif-

icantly longer. Here we will show that a direction-dependent turning rate can generate

this distinct behaviour.

We adopt a two-pronged approach for the analysis, computing first the macroscopic

diffusion tensor for cells migrating in the completely unaligned tissue of case A or the

criss-cross pattern of case B. While this is a macroscopic-level analysis (and the underly-

ing experiments are mesoscopic) it will provide valuable evidence of variation in critical

movement characteristics according to cell orientation/turning behaviour. We then pro-

vide simulations of the mesoscopic-level transport equation, indicating whether the model

can indeed recapitulate the observations. Note that for convenience we assume an a priori

rescaling that fixes the cell speed s, i.e. V = sS1.

6.1 Control Case

As a control consider a constant turning rate µ and, in turn, a constant mean travel time

τ . Here the macroscopic diffusion tensor is computed from formula (4.6) as

D =
1

µ
Vq.

Under Case A the middle region is completely non-oriented, hence q = 1
2π (the uniform

distribution). Then,

Vq =

∫
V

w ⊗ w 1

2π
dw =

2π

2
I

1

2π
=

1

2
I, (6.1)

where I denotes the identity matrix. The criss-cross configuration of Case B can be

described by combining two bi-modal von-Mises distributions, in perpendicular directions

e1 = (1, 0) and e2 = (0, 1) but with the same concentration parameter k:

q(w) =
1

2
(bvMk,e1 + bvMk,e2) . (6.2)

Following standard calculations (e.g. see [25]), we obtain

Vq =
1

2

(
1− I2(k)

I0(k)

)
I +

I2(k)

I0(k)

1

2

(
e1e

T
1 + e2e

T
2

)
.

Now,

e1e
T
1 =

(
1 0

0 0

)
, and e2e

T
2 =

(
0 0

0 1

)
,
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so

Vq =
1

2
I− I2(k)

2I0(k)
I +

I2(k)

2I0(k)
I =

1

2
I, (6.3)

which coincides exactly with the calculation for Case A, i.e. (6.1). Therefore, under a

constant turning rate there should be no macroscopic difference between Case A and

Case B, even if cells bias their orientation along the criss-crossed fibres.

6.2 Direction-dependent turning

We now consider w-dependence in the turning rate, i.e. µ(w). Specifically, we choose

µ such that the rate of turning is reduced if cells are migrating along the direction of

dominating alignment. For the analysis we focus only on the central region, so both Case

A and Case B can be regarded as spatially homogeneous (i.e. not depending on x) and

we can use equation (4.7):

D =

∫
w ⊗ wT

µ
dw, T =

q

Cµ
, C(x) =

∫
V

q

µ
dw.

We again choose q to be a combination of bimodal von-Mises distributions in the two

perpendicular directions e1 and e2, as given in (6.2). However, now we assume that

µ ∼ q−1, so that

µ =
1

2π

2

(bvMk,e2 + bvMk,e1)
.

where we chose the normalization constant to be (2π)−1 such that in the isotropic limit

of k → 0 we obtain

lim
k→0

µ =
1

2π

2
1

2π + 1
2π

= 1.

Then

T

µ
=
π2

2C
(bvMk,e2 + bvMk,e1)

3
. (6.4)

For this choice of µ and q we can compute the normalization constant C as

C(x) =

∫
V

q

µ
dw =

∫
V

π

2
(bvMk,e2 + bvMk,e1)

2
dw

=
π

2

1

(4πI0(k))2

∫
V

4πI0(2k)(bvM2k,e1 + bvM2k,e2) + 4

+8πI0(
√

2k)

(
bvM√

2k,
e1+e2√

2

+ bvM√
2k,

e1−e2√
2

)
dw

=
1

4I0(k)2

(
I0(2k) + 1 + 2I0(

√
2k)
)
. (6.5)

We note the isotropic limit limk→0 C(x) = 1, since I0(0) = 1.
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Next we compute the third power in (6.4)

T

µ
=
π2

2C

(
I0(3k)

I0(k)

[
bvM3k,e1 + bvM3k,e2

]
+ 3
[
bvMk,e1 + bvMk,e2

]
+3
[
bvMk,2e1+e2 + bvMk,2e1−e2 + bvMk,e1+2e2 + bvMk,e1−2e2

+2(bvMk,e1 + bvMk,e2)
])

Notably, vectors 2e2 + e1 etc are not unit vectors so we rescale:

ζ1 =
1√
5

(2, 1)T , ζ2 =
1√
5

(1,−2)T , ξ1 =
1√
5

(2,−1)T , ξ2 =
1√
5

(1, 2)T .

For the example 2e1 + e2 this gives

bvMk,2e1+e2 =
I0(
√

5k)

I0(k)
bvM√5k,ζ1

,

and similar for the other terms. With unit vectors everywhere which, moreover, are

pairwise perpendicular (ζ1 · ζ2 = 0, ξ1 · ξ2 = 0) we have

T

µ
=
π2

2C

(
I0(3k)

I0(k)

[
bvM3k,e1 + bvM3k,e2

]
+ 3
[
bvMk,e1 + bvMk,e2

]
+9(bvMk,e1 + bvMk,e2) + 3

I0(
√

5k)

I0(k)

(
bvM√5k,ζ1

+ bvM√5k,ζ2

)
+3

I0(
√

5k)

I0(k)

(
bvM√5k,ξ1

+ bvM√5k,ξ2

))
.

Noting that the second moment of bimodal von Mises distributions with pairwise per-

pendicular unit vectors is 1
2 I (see (6.3)), we find a diffusion tensor

D = d(k)I, d(k) =
π2

2C(4πI0(k))2

(
I0(3k)

I0(k)
+ 6

I0(
√

5k)

I0(k)
+ 9

)
.

Substituting the normalisation constant C from (6.5) we obtain

d(k) =
I0(3k) + 9I0(k) + 6I0(

√
5k)

8I0(k)(I0(2k) + 2I0(
√

2k) + 1)
.

Again we consider the isotropic limit

lim
k→0

d(k) =
1 + 9 + 6

8(1 + 2 + 1)
=

1

2
,

which has the correct scaling as for the isotropic case. The diffusion coefficient d(k) is

plotted in Figure 6, where we observe that for small k there is negligible change but for

k > 3 we see clear and sustained increase for the diffusion coefficient.

6.3 Transport model simulations

The above analysis indicates that a direction-dependent turning rate coupled to a criss-

cross fibre network substantially increases the diffusion, compared to either a constant
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Figure 6. Diffusion coefficient d(k) as function of k for k ∈ [0, 10] on the left and k ∈
[0, 100] on the right. The diffusion coefficient grows very slowly for small k, but then

grows more rapidly for k & 3. For large k the increase is approximately ∝
√
k.

turning rate or a completely isotropic network. To simulate this situation, we consider

a rectangular domain Ω = [0, 15] × [0, 5] with V = S1 (s = 1) and define local environ-

ments corresponding to those illustrated in Figure 1. Specifically, to describe the parallel

alignment in the left and right regions, we set q(x,w) = ekw·θ/2πI0(k) with k = 25 and

µ(x,w) = 1 when x < 5 or x > 10. To replicate the completely isotropic scenario of Case

A we define the central region (5 6 x 6 10) by q(x,w) = 1/2π while for the criss-cross

network of Case B we choose q(x,w) = (bvMk,e1 + bvMk,e2) /2 in the central region and

take the anisotropy constant k to be a variable model parameter. Consequently, for Case

A µ(w) = 1 for the full domain, while in Case B we chose µ(x,w) = 1/(2πq) if 5 6 x 6 10.

We initialise the density distribution as uniformly distributed in S1 with the initial macro-

scopic density (p̄0) as defined in 3(a), but centered at the coordinate (3.5, 2.5), i.e. inside

the left-most region of highly aligned fibres. Simulations of the corresponding transport

equation (2.1)-(2.9) are shown in Figure 7. The first row illustrates results for Case A,

while subsequent rows are for Case B with increasing values k = 0, 3, 10, 25, respectively.

Under Case A (Figure 7 first row), as cells reach the isotropic region we observe a

gradual diffusive-like spread, consistent with the earlier analysis. Under Case B, but

setting k = 0 (Figure 7 second row), generates equivalent behaviour: in line with the

prediction that isotropic criss-cross networks do not alter the macroscopic dynamics

when the turning rate is constant. For k > 0, however, we observe distinct behaviour.

This is minimal for small k (e.g. k = 3, Figure 7 third row) but becomes clear for large k,

e.g. k = 10 (fourth row) and k = 25 (fifth row), respectively. A noteworthy phenomenon

lies in the “droplet” detaching from the main swarm for high anisotropy parameter values

(k = 10, 25). Here, a fraction of invaders maintain the left to right direction on reaching

the central region, detaching from the main swarm. This observation is unexpected and

could be of interest to confirm experimentally.

As a final remark, we note that while the simulations have been performed within a

nondimensional setting, direct comparison with the data of [16] allows a more precise
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comparison of the spatial and temporal timescales of movements. Typical cell migration

speeds reported in [16] are of the order 1µm min−1, while the central square region is

of approximate side length 40µm. Based on these measurements, the frames at t =

7.5, 20 and 30 correspond to approximately 60 minutes, 160 minutes and 240 minutes,

respectively. Accordingly, for the Case B setting under higher k values, the majority of

cells traverse the central region within a few hours. This appears in line with the videos

of cell movements in [16].

Figure 7. Cell movement on fabricated anisotropic surfaces. For all simulations we set

q(x,w) = ekw·θ/(2πI0(k)) with k = 25 and µ(x,w) = 1 for x < 5 and x > 10. First row:

Case A with q(x,w) = 1/(2π) if 5 6 x 6 10 and µ(w) = 1 on the full domain. Second to

final row: q(x,w) = (bvMk,e1 + bvMk,e2) /2 and µ(x,w) = 1/(2πq) if 5 6 x 6 10, so that

s = 1. In particular: (second row) k = 0, (third row) k = 3, (fourth row) k = 10, (final

row) k = 25.

7 Conclusions

In this paper we have analysed a transport equation for cell migration along oriented

fibres, extending the model proposed in [24] to include a turning rate that depends on

the microscopic velocity of the cells and, in turn, on the anisotropic structure of their

environment. This key extension admits a more nuanced and realistic description for how

a migratory cell population responds to alignment of the environment, with several recent
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studies investigating the impact of oriented collagen fibre networks on the orientation,

speed and persistence of movement of cells (e.g. see [45, 44, 43]).

Formally, the resulting equation is a non-homogeneous linear Boltzmann equation with

a micro-reversible process in which the cross-section is factorised into the distribution

of the fibres and the direction-dependent turning rate. The dependence of the turning

rate on the orientation alters the entire mathematical set up with respect to [24]. First,

the equilibrium distributions of the system now depend on both the turning rate and on

the transition probability. Consequently, the null-space of the turning operator needs to

be equipped with a direction-dependent integration weight. Moreover, the average of the

equilibrium state, defined in Eq. (2.11), becomes linked to both the fibre distribution and

the turning frequency. This implies new solvability conditions for the parabolic and hy-

perbolic limits. We study many special cases, some of which are relevant for applications

while others provide a theoretical connection to previous results.

Further, the orientation-dependent turning rate permits the definition of a new adjoint

persistence (2.13), taking into account the cell persistence encoded in the turning rate.

Consequently, direction-dependent turning rates are capable of generating a persistent

random walk even under a symmetric configuration of fibres. In this framework, there

is no directional persistence if (2.11) vanishes. This holds true, for example, if Eq. (3.3)

holds true, which means that fibres are bi-directed and cells having a certain direction

have the same turning frequency regardless of the sense in which they are travelling on

that direction.

To illustrate the broader relevance of the extended framework, we considered an appli-

cation to cell migration across precisely engineered network arrangements, for example

as fabricated in the studies of [16]. Under the the original framework of [24] the two con-

figurations shown in Figure 1 generate equivalent behaviour, yet extending to direction-

dependent turning rates could result in a markedly different response. Specifically, under

the criss-cross network a markedly faster passage could be observed which, translated

to the macroscopic level, yielded enhanced diffusion. Clearly, such behaviour has poten-

tial to significantly alter the predictions from modelling invasion pathways in complex

anisotropic tissues, for example glioma invasion in the central nervous tissue [37, 18, 51].

We note that the numerical simulations here have focused on the transport equation

formulation, rather than the full macroscopic model. Given that the spatial and temporal

scales of cell movements on microfabricated surfaces lie at the mesoscale, the transport

equation provides a more appropriate description for these experiments. Nevertheless, it

would be of considerable interest to perform a careful study into the similarities and dis-

tinctions between the transport and macroscopic model. For example, are the “droplet”

phenomena observed in Figure 7 also captured in the macroscopic model? Numerical in-

vestigations of the macroscopic model would also be necessary to investigate phenomena

at a clear macroscopic scale, such as glioma invasion.

Within the current work we have restricted to movement under negligible modification

of the network, as in amoeboid movement or cell migration on engineered fibronectin

strips. Under in vivo mesenchymal migration, however, contact-guided movement can be

coupled to significant matrix remodelling, for example fibres becoming aligned along the

migratory path; simulations of the simpler transport model in this scenario revealed sym-



European Journal of Applied Mathematics 35

metry breaking behaviour, with cells forming and migrating along a network of aligned

“cellular highways” [24, 36].

The model here has focused on directional guidance from the ECM environment, but it

has not considered ECM density and density of cell-ECM adhesion bonds. Variations in

density, and in particular the distribution of ECM adhesion ligands, undoubtedly influ-

ence cell movement dynamics (see for example [39]). The adhesive properties of cells can

be included in macroscopic models of cell movement, for example through the inclusion

of non-local flux terms [9, 5]. Such a model would be significantly more complex than

the model studied here, and hence we leave this for future research.
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