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†KIOS CoE and Dept. Electrical and Computer Eng., University of Cyprus, Nicosia, Cyprus

Abstract—Trajectory prediction is crucial in assisting both
human-driven and autonomous vehicles. Most of the existing
approaches, however, focus on straight stretches of road and do
not address trajectory prediction at intersections. This work aims
to fill this gap by proposing a solution that copes with the higher
complexity exhibited for the intersection scenario, leveraging the
5G-MEC capabilities. In particular, the reduced latency and edge
computational power are exploited to centrally collect and pro-
cess measurements from both vehicles (e.g., odometry) and road
infrastructure (e.g., traffic light phases). Based on such a holistic
system view, we develop a Long Short Term Memory (LSTM)
recurrent neural network which, as shown through simulations
using a real-world dataset, provides high-accuracy trajectory
predictions. The encountered challenges and advantages of the
presented approach are analyzed in detail, paving the way for a
new vehicle trajectory prediction methodology.

Index Terms—LSTM Recurrent Networks, Trajectory Predic-
tions, Intelligent Transportation Systems

I. INTRODUCTION

As accidents on the worldwide road infrastructure cause
more than 1.35 million casualties annually [1], safety is of
the utmost concern for the automotive sector. Furthermore, a
new generation of (connected) autonomous vehicles is about
to enter the market and new, intelligent functionalities need
to be developed [2]. For both human-driven vehicles and
autonomous vehicles, trajectory prediction plays a crucial role;
in the former case, it represents an important tool for collision
avoidance and driver assistance, while in the latter it helps to
estimate the actions of surrounding vehicles and better plan
the mobility of autonomous vehicles.

Several solutions for vehicle trajectory prediction have been
proposed, based on: (i) map-based maneuver classification
and probabilistic trajectory estimation [3], (ii) exploitation of
contextual information, e.g., the movement of surrounding
vehicles [4], and (iii) non-linear regression techniques for
predicting the target vehicle’s future location, e.g., LSTM
Recurrent Neural Networks (RNNs) [5], [6]. In particular,
given their high accuracy, non-linear regression techniques
considering also contextual information have recently attracted
the interest of the research community [7].
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Most of these efforts focus on highway scenarios or straight
stretches of urban roads, without tackling the more challenging
scenario of road intersections. Unlike highways, where vehi-
cles tend to maintain a constant speed, at regulated intersec-
tions vehicle speed changes significantly depending on factors
such as distance from intersection, queue at traffic lights, and
traffic light status. Also, map-based maneuvers’ classification
and contextual information-based predictions suffer from the
large number of possible movements and interactions and from
intrinsic quantization errors.

This work aims to advance trajectory prediction in the pres-
ence of intersections, leveraging both Vehicle-to-Infrastructure
(V2I) and Infrastructure-to-Infrastructure (I2I) communica-
tions to collect relevant data at a centralized Intersection
Manager (IM). Such data, generated by both vehicles (e.g.,
location and speed) and smart city sensors (e.g., traffic light
phases), are processed at the 5G Multi-Access Edge Com-
puting (5G-MEC) platform to estimate the vehicles’ future
locations with low computational cost. The reduced latency
ensured by 5G-MEC and the holistic view available at the
IM ensure that the proposed framework promptly provides the
vehicles with accurate trajectory predictions. These predictions
are computed through our proposed Encoder-Decoder model,
which leverages past observations to learn habitual behaviors,
in a simple, yet effective manner. This approach is validated
through Simulation of Urban MObility (SUMO), using the
Luxembourg traffic dataset [8], and a real-world dataset ob-
tained via video captured by drones. The cumulative density
function (CDF) of the prediction error is used to showcase the
benefits of the proposed solution and the challenges faced in
the addressed scenario. To summarize, our main contributions
are as follows:

• unlike most of the previous work, we focus on road in-
tersections and design a novel framework for vehicle tra-
jectory prediction based on an enhanced LSTM Encoder-
Decoder model. The model takes as input a selected set
of vehicle and road infrastructure observations that lead
to a high accuracy trajectory prediction;

• we provide a detailed explanation of the advantages
and challenges encountered, analyzing the CDF of the
difference between predictions and ground truth;

• we validate our approach using both a SUMO and a real-
world mobility dataset representing a mid-sized city.
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II. RELATED WORK

As mentioned, several approaches have been presented
for vehicle trajectory prediction, and a useful survey thereof
can be found in [9]. Nevertheless, very few works address
road scenarios that include intersections. Specifically, early
studies have mainly addressed the problem of classifying the
vehicles’ movement intentions at an intersection. Based on the
measurements obtained from a test vehicle at a T-intersection
in Germany, the work in [3] is the first that introduces both a
categorization technique identifying vehicles turning, or pro-
ceeding straight, at an intersection, and a 1-second look-ahead
prediction through Monte Carlo simulation. Similarly, [10]
uses LSTM RNNs to detect whether vehicles turn or proceed
straight at an intersection, achieving a classification accuracy
of 85%. Although representing an important contribution, we
remark that [10] has a different scope than ours, and that
predicting driver intentions is much simpler than providing
full trajectory predictions, as we do in our work.

Full trajectory prediction, i.e., predictions not involving only
human driver future maneuvers, are reported in [6], [11],
[12]. In these works, a multi-modal probability distribution
for the vehicle’s future locations is obtained through a set
of concatenated neural networks, simplifying the environment
ahead of the ego vehicle (i.e., the vehicle under test): (i)
with a regular grid-map; (ii) with a finite set of possible
target locations; or (iii) with a schematic (rasterized) repre-
sentation of the road infrastructure. Although very relevant,
the presented solutions face inevitable discretization issues,
which become even more prominent in complex scenarios as in
those including intersections. To solve this issue, [13] derives
a multi-modal distribution of the vehicle’s future location
based on a finite set of possible maneuvers. This approach
can be easily applied when the possible choices of the ego
vehicle and of the surrounding vehicles are limited, i.e., at a
highway section, while its complexity becomes overwhelming
in urban environments. A further extension [14] introduces a
latent variable to learn from the data obtained by the different
possible actions that a vehicle may perform. In this case,
given the fact that possible maneuvers are obtained through
sampling, the final set of the driver’s intentions are difficult to
obtain and to interpret.

Better suited to intersections and dense environments are
the approaches that, instead of modeling driver intentions, they
evaluate vehicles’ interactions to improve trajectory prediction.
In [7], [15], interactions are modeled as: (i) a graph, where
edges represent a function of the distance between vehicles, or
(ii) a generative adversarial network, which outputs a possible
trajectory prediction depending on the forecasted coordination
between vehicles. On one hand, such approaches can exploit
the large number of vehicles present at intersections to improve
the accuracy of the predicted future locations. On the other
hand, complexity can grow exponentially, especially when full
mesh relationships among vehicles are considered.

Unlike previous approaches, this work presents a framework
exploiting a holistic view of the system, including information

obtained from the vehicles and the infrastructure, as well as the
extended capabilities of 5G-MEC. Furthermore, the encoun-
tered challenges for the proposed computationally inexpensive
trajectory prediction obtained with LSTM are presented and
analyzed, so as to help future research directions.

Fig. 1: A 5G-MEC based scenario, including an IM collecting data
generated by the vehicles and the road infrastructure.

III. SYSTEM MODEL

This work focuses on an urban intersection (Fig. 1), where
an IM is hosted in a 5G-MEC platform [16] in the proximity
of a gNodeB (gNB) covering the geographical area around
the intersection. Through integrated V2I and V2V communi-
cations, the IM can gather data from multiple sources, namely,
(i) onboard sensors measurements sent by the vehicles crossing
the intersection through Cooperative Awareness Messages
(CAMs), and (ii) contextual and environmental measurements
collected by the road infrastructure. Note that CAMs can in-
clude several information provided by the vehicle’s Controller
Area Network (CAN) bus, including speed, direction, steering
angle, acceleration, braking, yaw rate, and relative distances
with surrounding vehicles obtained through lidar. As for the
data collected by the road infrastructure, this can include traffic
light phases, vehicle lane information, and number of vehicles
in each lane. Among those, in this work, we identify which
information should be fed to our predictive model, ultimately
leading to high performance accuracy.

Further, the benefits of using a central entity at the 5G-
MEC for trajectory estimation are multifold: (i) at any time,
the IM has a significantly richer view of the intersection than
the individual vehicles; (ii) the IM can collect the CAMs from
the vehicles crossing the intersection in a local database, and
use such extended historical knowledge to train a model better
than a vehicle processing only its own data; (iii) unlike cloud
implementations, the IM can collect the required data so as to
infer the trajectory prediction of multiple vehicles in real time,
hence providing such additional knowledge to any safety or
path planning application that may be requiring it.

Given the aforementioned scenario, next we present our
solution for trajectory prediction, intended to run at the IM.

IV. VEHICLE TRAJECTORY ESTIMATION AT
INTERSECTIONS: AN LSTM APPROACH

Vehicle trajectory prediction is essentially a time-series
forecasting problem in which past observations are exploited
to predict one or more future observations. Capturing the
intrinsic non-linear nature of the trajectory estimation problem
and, because of their ability to scale over high-dimensionality
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datasets, deep learning models have been revolutionary for ML
in general, and for control and management of transportation
systems in particular. Among the various deep learning models
(e.g., feed forward NNs, recurrent NNs, convolutional NNs),
LSTM RNNs have gained considerable attention in the re-
search community as a possible candidate to solve the gradient
vanishing problem, i.e., the problem of storing long time-steps
in the learning memory [17]. Furthermore, LSTM RNNs have
proved to learn much faster than conventional RNNs.

To this end, in this work, an LSTM is applied to model
vehicle trajectories at intersections. Specifically, an encoder-
decoder LSTM model is adopted [18], as it is a model designed
for problems where an input sequence is mapped into an output
sequence of arbitrary length. This is precisely what happens in
trajectory prediction problems, where the historical data of the
vehicle’s movement and applied controls are used to project,
over a target time window, the vehicle’s future location. Such
information can be used by the IM, for example, to proactively
and timely act upon a possible (i.e., predicted) collision.

Fig. 2: The encoder-decoder LSTM architecture used for vehicle
trajectory estimation.

A. Problem Statement

In our use case, the objective of the encoder-decoder LSTM
model is to learn a non-linear function F (·) that, given the past
and present vehicle’s information,

x = [xt−T ,xt−T+1, · · · ,xt−1,xt] , (1)

accurately predicts the vehicle’s future location,

y = [yt+1,yt+2, · · · ,yt+L] , (2)

where T are the past and present observations, L is the
prediction window, and t is the present time instant. Each
xt−k ∈ Rd is a vector containing d measurements, on-
board and infrastructure-based, sampled at time instant t−kτ ,
k = 0, .., T . Each yt+k′ ∈ Rd′ is a vector describing the
trajectory values, longitude and latitude, at a future time instant
t+ k′τ , k′ = 1, ..., L. Therefore, past and future time instants
of interest are τ seconds apart, with x and y forming a time
series (i.e., being sequential in time). Vectors x and y are
formally defined in Sec. IV-C.

B. The Encoder-decoder LSTM Model

The encoder-decoder LSTM architecture we use is illus-
trated in Fig. 2. Note that, for simplicity, encoders and
decoders of one layer only are considered, but the model can
be extended to more hidden layers (i.e., stack of LSTM layers).
Both encoder and decoder components are formed by LSTM
cells and in Fig. 2 appear unfolded through time to depict their
operation over the input and output sequences. In reality, as
described later, inputs are processed sequentially, and outputs
are obtained one after the other (and reintroduced at the input
of the decoder for predicting the next time step).

Fig. 3: General LSTM cell structure.

As shown in Fig. 2, the basic components of the model
are the LSTM cells. Figure 3 shows a representation of the
LSTM cell when the information at a generic time instant t′ ∈
[t−T, ..., t, .., t+L] is processed. The key of LSTM is the cell
state ct′ , that acts as the cell memory, storing a summary of the
past input sequence. At the output, the LSTM cell combines
such accumulated memory with the input received, so as to
obtain the hidden state ht′ , also representing the output vector
of the LSTM cell. Note that ht′ is also passed to any upper
layer, if present. Furthermore, at the decoder cell, the output
ht′ is transformed to generate yt′−1.

An LSTM cell is composed of an input gate vector it′ ,
an output gate vector ot′ , and a forget gate vector ft′ . The
three gate vectors control the flow of information in and out
of the LSTM cell. Specifically, with the input gate vector the
LSTM cell decides whether to update the cell state or not,
with the forget gate vector the LSTM cell can erase cell state
memory, and with the output gate vector it decides whether to
make the output information available. The following recursive
equations describe in detail how the LSTM cell works:

it′ = σ(xt′Ui + ht′−1Wi), (3)
ft′ = σ(xt′Uf + ht′−1Wf ), (4)
ot′ = σ(xt′Uo + ht′−1Wo), (5)

c̃t′ = tanh(xt′Ug + ht′−1Wg), (6)
ct′ = ft′ ◦ ct′−1 + it′ ◦ c̃t′ , (7)
ht′ = tanh(ct′) ◦ ot′ , (8)

where xt′ is a generic input vector, σ(·) is the sigmoid
function, ◦ denotes the element-wise product, Wi∈Ru×u,
Wf∈Ru×u, Wo∈Ru×u, Ui∈Rd×u, Uf∈Rd×u, Ug∈Rd×u
are linear transformation matrices (i.e., unknown parameters
obtained during learning), and u is the number of hidden units.

In the encoder-decoder LSTM, the encoder reads each
vector {xt−k′}Tk′=0 of an input trajectory x sequentially. As
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it reads each vector, the cell state of the LSTM changes
according to Eq. (7) and the hidden state changes according
to Eq. (8). After reading the end of the trajectory, the encoder
summarizes the entire input sequence into the final vectors ct
and ht. The decoder is trained to generate an output trajectory
{yt+k}Lk=1 sequentially, given ct and ht as the initial cell and
hidden states (Fig. 2). The decoder is also initialized according
to a dummy input y0. The decoder recursively generates the
outputs yt+1, ..,yt+L. At every update k, the decoder feeds
each output yt+k−1 obtained in the previous update, to the
input of the current update. Nevertheless, the generic output
yt+k is not the output of the decoder cell, but it is obtained as
yt+k = g(ht+k), where g(·) can be the activation function of
the output layer and ht+k is given by Eq. (8). In our trajectory
prediction problem, the output of the decoder is followed by a
fully connected dense layer (in essence, a linear transformation
of the decoder output) to fit our regression task.

To summarize, the encoder-decoder LSTM model, param-
eterized by a set of parameters θ (i.e., all the unknown
parameters of the model), learns a nonlinear function that
predicts the current output value yt+k as:

yt+k = Fθ(yt+1,yt+2, · · · ,yt+k−1,xt−T , · · · ,xt−1,xt),
(9)

with the encoder providing the summary of the input trajectory
{xt−k′}Tk′=0 through the cell and hidden states ct and ht.

The two components of the LSTM encoder-decoder are
trained on a dataset D = {xj ,yj}nj=1 where n is the number
of labeled vehicle sequences, to minimize the mean squared
error (MSE) loss function. For training, the Adam optimization
algorithm [19] is used. The actual implementation of the
presented LSTM encoder-decoder model is available online
and can be found in https://github.com/krish-din/C-AVOID.

C. Trajectory Prediction Problem Formulation

In our work, each xt−k′ ∈ Rd in sequence x consists of
the following set of observations:

xt−k′ = {vt−k′ , χt−k′ , ψt−k′ , rt−k′ , s1t−k′ , ...., slt−k′}, (10)

where:
• vt−k′ is the velocity of the vehicle;
• χt−k′ is the longitudinal position of the vehicle;
• ψt−k′ is the lateral position of the vehicle;
• rt−k′ is the movement angle of the vehicle;
• sit−k′ is the status of the i-th traffic light at the intersec-

tion, where i = 1, .., l. Note that number of traffic lights
l, depends on the structure of the intersection.

For the output trajectories, each yt+k ∈ R2 in predicted
sequence y consists of the following observations:

yt+k = {χt+k, ψt+k}, (11)
where χt+k and ψt+k are the longitudinal and lateral position
coordinates of the vehicle, respectively.

It is worth mentioning that additional input features (i.e.,
acceleration, braking, and vehicle lane) were also tested during
model training and inference, without however contributing to
further improvements on model accuracy. The consideration

of additional features, e.g., the steering angle, is also possible.
However, such features were not available in the datasets used
for performance evaluation. Hence, in the rest of the paper,
only the aforementioned input features are considered. Even
though our model achieves an excellent accuracy, as shown
in the following section, a further analysis of input features
naturally present in CAM messages or at the infrastructure
constitutes an interesting future research direction.

V. PERFORMANCE EVALUATION

A. Data Collection and Pre-processing

We detail the characteristics of both the SUMO and the real-
world dataset below, and we describe how they have been used
to train and test the LSTM network.

SUMO dataset: We first consider the mobility traces of the
Luxembourg SUMO Traffic (LuST) Scenario [8] and simulate
them through SUMO. The TraCI SUMO library is used to
extract the vehicles’ movement at an intersection at peak hour,
i.e., 6-11 am, to create the SUMO dataset. The size of the
area monitored around the intersection is 500x250 m2 and all
vehicles traveling across such area are included in the SUMO
dataset. For each vehicle, TraCI allows obtaining all features
mentioned in Sec. IV-C, including traffic light information.
Each traffic light is described by a ternary variable (green,
orange, red), and we considered all 16 traffic lights that are
present at the intersection. The final SUMO dataset contains
the information of 6, 236 vehicles, out of which 2, 042 turn at
the intersection, while 4, 194 proceed straight.

Real-world (RW) dataset: This dataset, includes trajecto-
ries of multiple vehicles extracted from the videos captured
by a drone flying over an intersection of a mid-sized city, i.e.,
Nicosia, Cyprus, at peak hour, where the area containing the
intersection in the video footage is 250x150m2. Over a span
of 80 minutes, the trajectories of 5, 105 vehicles are captured,
with 2, 699 vehicles traveling straight and 2, 406 vehicles turn-
ing. Unlike other state-of-the-art datasets, apart from the vehi-
cles’ longitudinal and lateral locations, this dataset is enriched
with additional features through post-processing. Specifically,
using a Kalman filtering technique, vehicles are tracked in the
video footage and their velocity is computed by calculating the
approximated displacement over the last 25 frames (see [20]
for additional details). Furthermore, to account for the data
provided by the road infrastructure, traffic light phases are also
obtained from the video footage. Specifically, there are 6 traffic
lights in operation at the intersection under consideration,
having three possible states, namely red, green, and orange,
with the latter stored as a “TimeToGreen” feature. The final
enhanced real-word dataset is available online at [21].

In both datasets, as in current V2I and I2I communications,
vehicles and road infrastructure information are sampled every
τ = 100ms. Furthermore, features have values across different
magnitudes, range, and units. Therefore, we have used a
feature scaling technique, namely, standardization, to scale
the input features (except the traffic light phase), with zero
mean and unit standard deviation. For prediction, input data
of the last 3 s are considered, i.e., T = 30, with predictions
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performed at each time instant with a slide window approach,
i.e., consecutive predictions share 29 input data samples. The
presented LSTM network is designed to predict the future
vehicles’ location in the next 3 s, i.e., L = 30. With these
parameters, 3.7M and 2M sequences are obtained for the
SUMO and real-world (drone-based) datasets, respectively.

For training and testing the encoder-decoder LSTM model,
the dataset is partitioned into training and test datasets, with
the training dataset used to optimize the unknown parameters
θ, and the test dataset used to evaluate the performance
accuracy of the model. Specifically, the dataset is split in
such a way that 65% of the vehicle trajectories are randomly
selected for training, 15% for validation, and 20% for testing.

B. Performance Results - SUMO Dataset

To assess the additional value attained by infrastructure-
based information, we first tested the proposed approach using
the SUMO dataset, with and without traffic light signal (TLS)
features being considered. The system model architecture uses
a single encoder and a single decoder layer, in both cases
with u = 128 hidden units. The output of the decoder layer
is connected to a Time-Distributed (TD) dense layer with a
hidden layer of 128 units when TLS information is present,
and with 64 units otherwise. The output of the TD dense layer
has 2 units, to output the two features of interest, i.e., χt+k
and ψt+k, for each time instant in the prediction window.
Both model variations, with and without TLS information,
are trained according to a batch size equal to 64 and with
a learning rate of 0.0001. Training is stopped when the MSE
is less than 0.0001 on the validation test, lasting 3 epochs, with
and without TLS. The aforementioned configurations have
been selected as they reached the lowest MSE after several
hyperparameter tuning trials (e.g., on learning rate, units, etc.),
that resulted in over 30 different configurations trained.

To evaluate the model accuracy, we compare the χt+k and
ψt+k predictions against the true vehicle position, and we mea-
sure the Euclidean Distance (ED) between the predicted and
the actual vehicle position. Table I compares the performance
of both models, i.e., with and without TLS information con-
sidered. Results show that infrastructure-based features play
a crucial role, as they reduce the prediction error on average
by 8.3%, leading to a performance improvement, especially
when the prediction horizon increases. This improvement is
consistent both in case of vehicles traveling straight or vehicles
turning at the intersection. Table I also presents the MSE
of the prediction error, i.e., the actual function minimized
during training with our Encoder-Decoder LSTM approach,
with and without TLS. Even in terms of MSE, including TLS
information improves consistently the achieved performance
(of up to 14.85%). Finally, Table I also compares the re-
sults achieved with several state-of-the-art approaches. First,
several variations of LSTM have been tested on the SUMO
dataset without TLS information. Specifically, Vanilla, Stacked
Encoder-Decoder, and Bi-Directional LSTMs were tested (see
[22] for more details on these approaches). Results show that
in all prediction windows and both for vehicles turning or

proceeding straight at the intersection, our selected LSTM
model performs the best. Only the Stacked Encoder-Decoder
LSTM approach performs similarly to our approach, albeit
requiring additional complexity. Second, as suggested in [7],
the performance of Encoder-Decoder LSTM is compared with
the constant speed Kalman Filter technique, which performs
quite well in highways. The proposed comparison shows that,
assuming little to no modifications of the vehicles’ behavior
at intersections, leads to very large errors both in short and
long prediction windows, proving that intersections are a
completely different use-case scenario.
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Fig. 4: Mean error CDF for predicted trajectories (SUMO dataset).

Figure 4 showcases a more comprehensive view of the
achieved performance, presenting the distribution of the pre-
diction error (in terms of the ED between the predicted and
actual vehicle position) through its CDF. One can observe that,
in the challenging intersection scenario, not only the proposed
approach presents very small prediction errors on average, but
also in distribution. Specifically, 97.3% of the 1-s look-ahead
predictions exhibit an error of less than 1m, 96.91% of the 2-s
look-ahead predictions an error of less than 2m, while 97.54%
of the 3-s look-ahead predictions an error of less than 5m.

The CDF of the error also gives us the possibility to
identify critical cases where the prediction of a vehicle’s future
location is not as accurate. Indeed, we go one step further and
examine the source of these cases – a fundamental step to
further improve the performance of our approach. Analyzing
the tail of the error’s CDF, we can identify two main scenarios
were prediction errors arise. The first one is accentuated by
SUMO, since SUMO is an opportunistic simulator, that allows
vehicles to perform lane changes any time the destination
can be reached faster. Unfortunately, this simulator behavior
causes rapid (unrealistic) vehicle position changes between
lanes at the traffic light, thus increasing LSTM prediction
error, especially for large prediction windows. Nevertheless,
this is a SUMO implementation issue that does not impact the
methodology presented in this work.

The second scenario, where vehicles traveling in the right-
most lane of the road can either travel straight or turn right
at the intersection, represents the main challenge faced by the
proposed approach (Fig. 5). In this case, our approach relies
on other features besides location, e.g., velocity, to identify
the vehicle’s movement intention. These features, however, are
not useful when the vehicle starts from a standstill position, as
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TABLE I: Prediction error and MSE with and without traffic light info (SUMO dataset) and comparison with several other approaches.

Prediction
Time [s]

Euclidean Error [m] MSE [m2]
Enc. LSTM Enc. LSTM Vanilla Encoder Stacked Bidirect. Constant Speed Enc. LSTM Enc. LSTM

w/o TLS with TLS LSTM LSTM LSTM Kalman Filter w/o TLS with TLS

All vehicles
t+ 1 0.381 0.398 0.401 0.414 0.467 0.989 0.138 0.148
t+ 2 0.617 0.567 0.714 0.641 0.778 2.921 0.549 0.480
t+ 3 1.135 1.041 1.472 1.133 1.586 5.187 2.233 1.901

Non-turning
Vehicles

t+ 1 0.370 0.384 0.379 0.403 0.428 0.927 0.122 0.130
t+ 2 0.580 0.519 0.637 0.613 0.709 2.710 0.420 0.339
t+ 3 1.031 0.929 1.315 1.044 1.449 4.773 1.713 1.336

Turning
Vehicles

t+ 1 0.405 0.429 0.447 0.436 0.549 1.103 0.173 0.185
t+ 2 0.695 0.670 0.882 0.703 0.928 3.312 0.829 0.781
t+ 3 1.357 1.281 1.811 1.323 1.880 5.953 3.352 3.116

Fig. 5: SUMO dataset: Vehicle traveling in the right lane is wrongly
predicted to turn. Past observations (red), actual trajectory (green),
predicted trajectory at t+1 (yellow), t+2 (blue), and t+3 (purple).
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Fig. 6: Mean error CDF for predicted trajectories (RW dataset).

Fig. 7: Vehicle accelerates from a standstill position (RW dataset).

it often happens at a regulated intersection when the vehicle
stops at the traffic light. Furthermore, in our SUMO dataset,
vehicles having a green traffic light approach the intersection
with very similar velocity values regardless of whether they
plan to turn or proceed straight, i.e., 11.49 m/s and 12.46
m/s, respectively, up to 0.5 seconds before the intersection.
Only when a vehicle is just about to enter the intersection, our
approach is able to predict the vehicle’s intention. Before that,
the 3-s prediction of the proposed approach always matches
the most common behavior of the vehicles traveling on that

TABLE II: Euclidean prediction error with and without traffic light
information (real-world dataset)

Prediction Time [s] Euclidean Error [m]
w/o TLS with TLS

All vehicles
t+ 1 0.496 0.394
t+ 2 0.851 0.669
t+ 3 1.299 1.092

Non-turning Vehicles
t+ 1 0.444 0.384
t+ 2 0.749 0.603
t+ 3 1.197 0.982

Turning Vehicles
t+ 1 0.534 0.401
t+ 2 0.925 0.717
t+ 3 1.372 1.171

specific lane, thus generating large errors for the small subset
of vehicles that follow a different trajectory on that lane.
Note that, even if such error is not entirely dependent on the
simulator, SUMO’s simulated mobility patterns (with vehicles
barely braking before turning) play a crucial role in accentuat-
ing the obtained prediction errors. Thus, a second, real traffic
dataset, was also used to better evaluate the performance of
the proposed technique under real traffic conditions and to
overcome the limitations the incur due to the simulation tool.

C. Performance Results - Drone-based Real-world Dataset

For the drone-based real-world dataset, the best model
configuration (i.e., best hyperparameters) utilizes a single layer
for the encoder and a single layer for the decoder, with 128
hidden units in the LSTM cell for both cases. This time, with
and without traffic light signal information, the hidden layer
of the TD dense layer is set to 64 units. As with the SUMO
dataset, the output of the dense layer includes 2 units, one
for each output feature. The model is trained according to a
batch size equal to 64 and a learning rate equal to 0.0001,
with training lasting 3 epochs, as for the SUMO dataset.

Table II presents the average ED between predicted and
real vehicle locations, at t + 1, t + 2, and t + 3, with
and without TLS information. As with the SUMO dataset,
when the real-world dataset exploits traffic light information,
the trajectory prediction accuracy improves. Specifically, for
longer prediction windows, i.e., 3 s, the prediction accuracy
improves by 15.93%, Interestingly, even though the real-
world dataset presents additional variability, due to human
unpredictability, the average errors are very similar to those
obtained with the SUMO dataset. This is due to the fact that,
in the real-world dataset, the error amplifications observed in
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Fig. 8: Real-world dataset: Trajectory prediction when the vehicle approaches a standstill state without (left) and with (right) TLS information.
Past observations (red), actual trajectory (green), predicted trajectory at t+ 1 (yellow), t+ 2 (blue), and t+ 3 (purple).

the SUMO dataset are not present now, compensating for the
human unpredictability factor. Remarkably, the model is able
to predict the future vehicle location with very good accuracy.
In fact, the obtained prediction errors are better, by a large
margin, compared to existing LSTM-based approaches used
for trajectory predictions on real-world data in less challenging
scenarios such as highways (i.e., [5], [23] present errors larger
than 3m, on average, for a 3-s look-ahead prediction).

Figure 6 presents the CDF of the mean error obtained
through our approach for the 1-s, 2-s, 3-s look-ahead predic-
tions. From the results obtained, it is clear that the proposed
approach performs similarly in distribution as well for both
datasets. Specifically, 97.72% of the 1-s look-ahead predic-
tions exhibit an error of less than 1m, 96.13% of the 2-s
look-ahead predictions an error of less than 2m, while 98.45%
of the 3-s look-ahead predictions an error of less than 5m.

Exploiting the CDF, the characterization of the larger pre-
diction errors is again possible. The biggest challenge for the
proposed approach, as depicted in Fig. 7, is to correctly predict
the moment of the vehicle’s first movement when queued at
the traffic light. Evidently, the larger the distance between the
vehicle and the traffic light the larger the error, as in this case
the correlation between the vehicle’s initial acceleration from
the standstill position and the traffic light state is minimal.

Nevertheless, there is a common scenario where the traffic
light information improves the trajectory prediction. By adding
traffic light information, the errors pertaining to vehicles
approaching a standstill state are reduced substantially, as
shown in Fig. 8. Indeed, when a vehicle approaches a red
traffic light, the proposed solution can accurately predict the
time instant at which the vehicle starts braking.

VI. CONCLUSIONS AND FUTURE WORK

We addressed trajectory prediction in scenarios including
road intersections, and presented a novel framework that
effectively leverages an IM hosted at a 5G-MEC platform,
as well as V2I and I2I communications to collect and process
the relevant data. Due to its advantageous location, the IM can
obtain a holistic view of the system and, exploiting LSTM
RNNs, it can provide accurate trajectory predictions in such
complex scenarios as urban intersections. Unlike the existing
approaches, our solution jointly leverages data collected at the
vehicles and data collected through the smart city infrastruc-
ture, namely, traffic light phases. Our results, obtained using
both a simulated SUMO dataset and a real-world dataset,

demonstrate that the novel proposed methodology can be
effectively used for accurate vehicle trajectory prediction.

Future research will exploit additional data that can be col-
lected at the IM, e.g., information on the vehicles surrounding
the ego vehicle, to further improve accuracy.
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