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Abstract—In the last years, the adoption of Artificial Neural
Networks (ANNs) in safety-critical applications has required an
in-depth study of their reliability. For this reason, the research
community has shown a growing interest in understanding the
robustness of artificial computing models to hardware faults.
Indeed, several recent studies have demonstrated that hardware
faults induced by an external perturbation or due to silicon
wear out and aging effects can significantly impact the ANN
inference leading to wrong predictions. This work classifies
and analyses the principal reliability assessment methodologies
based on Fault Injection at different abstraction levels and with
different procedures. Some of the most representative academic
and industrial works proposed in the literature are described
and the principal advantages, and drawbacks are highlighted.

Index Terms—Reliability, Fault Injection, Neural Networks

I. INTRODUCTION

For their outstanding computational capabilities, Artificial
Neural Networks (ANNs) have shown to be effective in various
areas such as robotics, automotive, gaming, medical wearable
devices. Since some of them are considered safety-critical, in
the last decades, the research community has shown a growing
interest in investigating the reliability of systems based on
artificial neural networks [1], [2].

ANNs are brain-inspired models, and it is claimed that
they hold a certain degree of robustness for their parallel
and distributed structure and for the redundancy due to over-
provisioning [3]. Indeed, they are made by more neurons than
the minimal number required to perform a computation.

However, these models, when deployed, are executed on
hardware devices, and, as the shrinking of semiconductor tech-
nology continues, devices are getting more prone to physical
errors: the probability that parts of the hardware fail increases.
Hence, even though researchers claim that neural networks are
potentially safe due to their inner resilience properties, there
is a serious need for evaluating their robustness, especially if
deployed on safety-critical systems [4], [5].

Fault Injections (FIs) have been longly considered as appeal-
ing methods for evaluating the dependability of systems under
test among all known testing methodologies [6]. Specifically,
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faults or errors are injected in the system under test, and its
behaviour is observed with respect to the golden scenario.
Dealing with ANNs, many different injection scenarios might
arise: errors can be placed in neurons, synaptic weights,
activators, and input images; faults can be injected in the
hardware architecture running the network, i.e., either the
physical silicon implementation or a Hardware Description
Language (HDL) model. They are intentionally modified
or turned off to evaluate the ANN’s resilience in incorrect
conditions. FIs can be performed at very different levels of
abstraction: they can target only the ANN software to achieve a
technology-independent characterization, or they can consider
the entire system, including the ANN and the final hardware
implementation, for a technology-dependent characterization
of the system.

In this work, we provide an insight into the state-of-
the-art FI methodologies targeting the assessment of ANN-
based applications and highlight the principal advantages and
drawbacks of their adoption. In Section II, a classification is
proposed for the FI methodologies, and some of the most
representative works in the literature are described. Section III
provides an analysis of the principal pros and cons of the
above-described techniques with respect to three metrics, i.e.,
Cost, Precision, FI Time. In the same section, open challenges
and future directions are discussed. Finally, Section IV con-
cludes the paper.

II. PROPOSED CLASSIFICATION OF FI METHODOLOGIES

Different FI methodologies are described in the literature
to facilitate the ANN reliability assessment. As also pro-
posed in [7], the methodologies can be classified in three
main categories: (i) Simulation-based, (ii) Platform-based, and
(iii) Radiation-based. The different classification considers the
abstraction level where the FI is performed and also the
faults sources, which can be simulated, emulated, and even
physically induced on the target platform. In the following,
we present an overview of the different methodologies and
frameworks developed for the purpose.

A. Simulation-based

The simulation-based is the most commonly used technique,
and it targets the FI on a model of the ANN, which can assume978-1-6654-2057-0/21/$31.00 ©2021 IEEE
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two different abstraction levels:
• Software-level: targets a high-level model of the ANN.

In this case, no architectural aspects are considered.
• Hardware-level: targets a model of the ANN considering

the hardware architecture aspects, e.g., register transfer
level (RTL) or gate level.

The software-level FI approach provides great controllabil-
ity [8], and it is usually faster when compared with other
approaches. Software-level FIs rely on the creation of a
high-level model of the ANN and the construction of a FI
framework that can inject faults on the model, which can
target, for example, the ANN’s weights and biases. Since the
controllability usually is high, this approach can characterize
the vulnerabilities of the neural network, in which it is
possible to determine the most sensitive layers, nodes, and
data representations. It is possible to say that the FI at the
software level may incur in low cost.

In the literature, software-level approaches have been pro-
posed in several works. For example, in [9], the authors
evaluated the reliability of two CNNs: LeNet-5 [10] and
YOLO [11], by randomly injecting permanent faults on the
weights of the CNNs at the software level. The outcomes from
the FI campaign are then compared with a golden prediction
to analyse the effects of the permanent faults. Furthermore,
in [12], the impact of approximate computing techniques, e.g.,
the use of a reduced data representation, is also explored
through simulation-based FIs. Additionally, we also record the
growing interest in high-level open-source machine learning
and deep learning frameworks, such as TensorFlow [13]. This
framework is commonly used as a base for the development
of simulation-based FI frameworks, as presented in [14]–[17].

Similar to the software-level, the hardware-level approach
works on a simulation of an ANN model. However, this model
should consider the hardware architecture where the ANN is
intended to be deployed. At the software level, the FI is limited
on the parameters of the neural networks (such as synaptic
weights, activations values) and the high-level programming
logic. Conversely, simulations at the hardware level enable
a broader spectrum of possibilities for selecting weaknesses
and faulty locations based on the hardware architecture. The
hardware-level approach is achieved by running simulations in
HDL (Hardware Description Language) models of the target
hardware architecture running the ANN-based application.
Therefore, the simulation time tends to increase.

The authors in [17] present a resilience analysis framework
to study transient hardware errors in deep learning accelerators
leveraging on high-level design information obtained from
architectural descriptions [17]. Also, Li et at in [18] propose a
framework to simulate the propagation of soft errors in DNN-
based systems. Moreover, based on RTL models, Salami et al.
in [19] present a simulation-based hardware-level FI frame-
work for the vulnerability analysis of a hardware accelerator.

B. Platform-based

The platformed-based FI approach assesses the reliability
of the target neural network by running it in the actual

physical platform, e.g., FPGAs, embedded GPUs, CPUs, and
memories. The faults are emulated in the platform by different
means, such as injecting bit flips in the FPGA bitstream or
configuration memory or inducing bit flips in registers and
memory cells.

The platform-based category is present in a vast part of
the state-of-the-art projects, where several frameworks have
been proposed. For example, in [20], the authors propose
a framework, named Ares, to inject faults in the memory
hosting the network parameters. The framework injects bit-
flips in the weights, the activations and the hidden states of
DNNs. Furthermore, in [21], it is proposed the vulnerability
assessment of an automotive detection neural network de-
ployed in a Volta GPU, where single bit-flips are injected in
the weights and inputs images. Also, De Sio et al. in [22]
exploit the FPGA reconfigurability to emulate faults affecting
the hardware, with a framework (i.e., FireNN) that applies
random bit-flip injections in the configuration memory related
to specific resources of the network architecture.

C. Radiation-based

The radiation-based FI category relies on the exposure of the
system to an accelerated radiation source, e.g., atmospheric-
like neutrons. Radiation is a well-known source of perturba-
tions in electronics devices, inducing Single-Event Effects like
Single-Event Upsets (SEUs), Single-Event Functional Inter-
rupt (SEFI), among others [23]. Therefore, this methodology
guarantees a highly accurate reliability assessment for specific
environments of application such as space, atmosphere, nu-
clear power plants, medical irradiation facilities and particle
accelerators. On the other hand, the hardware resources and
facility access are costly.

In the literature, several radiation-based approaches have
been proposed. For example, in [24], the authors evaluated
the impact of neutron-induced SEEs on a CNN (LeNet-5)
implemented with three different levels of approximation on
the data representation. In this study, the target hardware is the
memory device that hosts the network parameters and input
images. A similar approach is presented in [25], where a 2- and
3-D Flash memory storing the weights of an ANN is exposed
to X-ray irradiation. Also, in [26], three different NVIDIA
GPU architectures are exposed to a neutron beam targeting
the study of error propagation in computing resources. Finally,
targeting an FPGA-based architecture, Libano et al. in [27]
analyse the SEEs influence on three versions of a MNIST
CNN implemented in a SRAM-based FPGA. Most of the
works that assess the reliability of ANN applications via
radiation-based approaches use atmospheric-like neutrons as a
radiation source. However, as mentioned above, for a specific
environment, specific radiation sources like protons, heavy-
ions, electrons, among others, should be considered.

III. COMPARISON AMONG FI METHODOLOGIES

The intent of this section is to compare and underline
the principal advantages as well as the limitations of the
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above-mentioned fault injection methodologies. Next, the open
challenges are discussed.

We introduce three different metrics for presenting the trade-
offs between the state-of-the-art fault injection approaches:

• Costs: It refers to the costs needed to carry out the
reliability assessment, including both resources and time.

• Precision: It means how much the FI procedure is close
to reality, and the obtained results are accurate and
realistic.

• Fault Injection Time: The amount of time that the
injection process takes to complete a single injection
cycle.

In Fig. 1, we assign a specific level to these metrics and
grade them as Low, Medium-Low, Medium, High-Medium,
High, and Very High.

As for the costs, because simulation-based approaches do
not need the development and purchase of specific electronic
devices to conduct the assessments, they are the most cost-
effective. Moreover, when the HDL model is available, the
costs are low and, anyhow, reduced compared to other FI
techniques. When working with platform-based techniques,
economic costs increase since they rely on the purchase
and usage of specific validation or emulation devices (e.g.,
GPUs, CPUs, and FPGAs). A further benefit is also due
to the fact that (i) they can be utilized again once the FI
campaigns are completed, and (ii) they can be parallelized
to increase the performance. The radiation-based procedures
are the most expensive ones for three principal reasons: access
to an irradiation facility, hardware setup development, and the
low possibility of reusing the irradiated devices.

The precision with which the four FI procedures provide
findings varies and is dependent on how well these approaches
simulate the incidence of realistic system faults and how
near they are to real. Radiation-based FI techniques achieve
the maximum level of precision, as radiation-induced faults
directly impact the silicon implementation of the device under
test. This enables the DNN model to be accurately character-
ized. On the other hand, simulation-based hardware-level FIs
have a good level of precision. Due to the adoption of the HDL
model (either RTL or gate-level), their injection procedure
can be considered close to the actual silicon implementation.
For this reason, they are credited with a medium-high pre-
cision level. Contrarily, platform-based and simulation-based
software-level FIs both have a low-medium precision level
for the following reasons. The incidence of realistic hardware
faults is mimicked using sophisticated software fault models,
where errors are injected at the software or algorithmic level.
Specifically, when a DNN model is written in C or C++, it
can be compiled and executed directly on a physical hardware
device; hence, the injected software errors can be close to the
faults they attempt to reproduce.

In higher-level programming languages or tools, such as
Python, PyTorch, and TensorFlow, FI frameworks introducing
errors at the algorithmic level are exposed to a more elaborate
compilation chain. Consequently, the lower the programming
language level adopted for the DNN application, the higher the

precision. One of the advantages of conducting simulation-
based reliability assessments at the software level is the
possibility of characterizing the vulnerability of neural net-
works independently from the target hardware device and,
in particular, driving analyses on layers, data types, weights,
and network’s parameters. However, when a more thorough
reliability evaluation is necessary, the injection campaigns
should additionally encompass the target hardware that will
ultimately execute the DNN under test, clearly when the
device’s HDL model, whether RTL or gate-level, is provided.
In this second scenario (such as in [7], [19]), hardware-level
FIs can achieve better accuracy of the results, closer to the
silicon implementation. In a recent paper [28], the authors
propose using realistic fault models (retrieved from radiation
test campaigns) to inject at the software level in a CNN
application, with the aim of enhancing the precision level of
simulation-based FIs at the software level.

Regarding the last metric (i.e., the fault injection time), it is
worth considering that it is very difficult to compare exactly
the time required to run a single FI among the existing fault
injection approaches. Indeed, many variables are involved and
responsible for determining the fault injection time, such as
the parallelization of the experiments, the adopted tools, the
specific radiation source.

The problem associated with simulation-based FIs at the
hardware level is that HDL simulations are extremely time-
consuming. Clearly, it depends on the complexity of the neural
networks under assessment and their HDL description. For
example, a small CNN with only seven layers can take about
25 minutes to run a single inference [7]. Furthermore, existing
commercial fault simulation tools are not tuned and neither
optimized to face the complexity of the state-of-the-art DNN
applications [29] (with billions of neuronal computations).
This means that a FI at the hardware level is accurate but
very costly in terms of simulation time. Therefore, reliability
assessments at the hardware level typically consider only neu-
ral networks of limited size: a 6-layer fully connected classifier
in [19] and a 7-layer CNN in [7]. By contrast, simulation-
based FIs at the software level are not concerned with this
non-negligible limitation. Actually, the neural network under
consideration can range from 2-layer neural networks to more
complex and deep networks, such as VGGNet and ResNet.

A. Open Challenges

Even though a lot of effort has been spent so far to develop
specific FI frameworks for the reliability assessment of neural
networks, in this section, we would like to highlight the
open issues in this field that may need significant research
and innovation efforts. A systematic FI into the configuration
memory of FPGAs, more specific SRAM-based ones, can
be satisfactory for some specific cases. Still, it can not be
generalized to assess the device or system reliability since,
as shown in [30], the results vary from device to device.
Furthermore, the temperature has shown influence in the FIs
results. The study was based on sixteen Xilinx Artix-7 and
ten Lattice iCE40, which have their bitstream documentation
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Fig. 1. Comparing the Fault Injection Methodologies.

publicly available. Overall, it means that several aspects should
be considered, and parallelising the FI procedure may lead
to unrealistic results. In the literature, several works can
be seen on the effects of transient and permanent faults.
However, a deeper investigation on other fault models, such
as delays, bridging, and open lines, is still an open challenge
and would be able to cover the newer fault mechanisms in
deep submicrometer technologies. Moreover, the use of the
FI methodologies brings pros and cons, and the research
community is also looking forward to a hybrid solution, which
could use the advantages of different methodologies and merge
into one. An interesting example is presented in [31], where
the reliability of CNNs executed in GPUs is investigated using
microarchitectural simulations and software FI. Also, FI tools,
as the one presented in [32], have been used for the reliability
assessment of generic applications. We believe that for future
work, this study can serve as a basis for researchers wishing to
identify the best hybrid strategy that considers all the metrics
examined (eg Cost, Precision, Fault Injection Time).

IV. CONCLUSIONS

Following the growing trend on ANNs, which have been
used in various sectors, such as computer science, medicine,
safety-critical applications, we have presented in this article
the pros and cons of the different approaches for assessing
the reliability of ANN-based applications. Among the existing
testing techniques, fault injections are the most commonly
used solutions to measure the dependability of systems under
test. We have identified three main categories: simulation-,
platform-, and radiation-based FI methodologies. This classi-
fication is based on their abstraction level, the source of errors
(internal or external), and the overall FI procedure. These
methodologies were compared in terms of cost, precision and
FI time, exploring open challenges. Our overview of the topic
reveals that state-of-the-art ANNs still require more accurate
metrics and tools to manage their complexity and shows that
this discussion is relevant to the advancement of this area.
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