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Abstract—The Clustering for Identification of Muscle 

Activation Pattern (CIMAP) algorithm has been recently 

proposed to cope with the high intra-subject variability of 

muscle activation patterns and to allow the extraction of 

principal activations (PAs), defined as those muscle activation 

intervals that are strictly necessary to perform a specific task. 

To assess differences between different PAs, gait cycle 

normalization techniques are needed to handle between- and 

within-subject variability. The aim of this contribution is to 

assess the effect of two different time-normalization techniques 

(Linear Length Normalization and Piecewise Linear Length 

Normalization) on PA extraction, in terms of inter-subject 

similarity. Results demonstrated no statistically significant 

differences in the inter-subject similarity between the two tested 

approaches, revealing, on the average, inter-subject similarity 

values higher than 0.64. Moreover, a statistically significant 

difference in the inter-subject similarity among muscles was 

assessed, revealing a higher similarity of PAs extracted 

considering the distal lower limb muscles. In conclusion, our 

results demonstrated that PAs extracted from healthy subjects 

during a walking task at comfortable walking speed are not 

affected by the time-normalization approach implemented. 

Keywords—EMG, gait analysis, locomotion, muscle 

activations, principal activations, time normalization. 

I. INTRODUCTION 

Gait analysis is commonly used to quantitatively assess 
normal and pathological functions of human walking [1], [2]. 
In particular, the study of muscle activation intervals extracted 
from surface electromyographic (sEMG) signals is especially 
important in clinical practice and research, as a valuable tool 
in the assessment of locomotion pathologies and rehabilitation 
protocols [3]. However, there is a great stride-to-stride 
variability in sEMG signals collected during gait [4], [5], even 
in healthy subjects. To cope with the high intra-subject 
variability of muscle activation patterns, Clustering for 
Identification of Muscle Activation Patterns (CIMAP) [6], [7] 
algorithm have been recently proposed and validated on 
several healthy and pathological sample populations [8]–[10].  

The CIMAP algorithm is an agglomerative hierarchical 
clustering method that allows to group together the gait cycles 

showing similar sEMG onset-offset activation intervals [7]. 
Each cluster is described by an element (called prototype) that 
is calculated as the median value of all the sEMG activation 
intervals belonging to the same cluster. Then, Principal 
Activations (PAs) can be obtained as the intersection of all the 
cluster prototypes, describing the main activation pattern of a 
muscle during a gait analysis session. PAs represent those 
muscle activations that are strictly necessary to perform a task 
(e.g., walking) and describe the fundamental activation 
intervals of a specific muscle [9]. 

To assess differences between different muscle activation 
patterns, time-normalization techniques are needed to handle 
between- and within-subject variability due to slight changes 
of the walking speed [11]–[13] and stride-to-stride variability 
[4], [5]. Several methods have been proposed in literature to 
time-normalize gait cycles. Gait cycle data are either 
normalized by converting the time-samples to percentage of 
the gait cycle or by segmenting each gait cycle into subphases 
and time-normalizing each subphase. 

In this contribution, we assessed the influence of these two 
different time-normalization approaches (Linear Length 
Normalization and Piecewise Linear Length Normalization 
approach) on PA extraction, in terms of PA inter-subject 
similarity. 

II. MATERIALS AND METHODS 

A. Sample Population and Experimental Protocol 

A sample population of 30 healthy subjects (gender: 15 
females and 15 males, age: 27.8 ± 4.6 years, height: 172.8 ± 
9.9 cm, weight: 68.2 ± 12.6 kg) was retrospectively analyzed 
considering gait data freely available in Zenodo repository 
(doi: 10.5281/zenodo.3932767) [14]. None of the enrolled 
volunteers reported lower limb injuries at the time of the 
experimental sessions or had neurological or musculoskeletal 
disorders that could affect gait performance. 

All the enrolled volunteers underwent the same 
experimental protocol consisting of a walking task at a pre-
selected speed. More specifically, the experimental protocol 
consisted of an overground walking at an average comfortable 



walking speed of 1.4 m/s [15], [16] on an 18-m straight 
walkway, always starting with the same foot. 

B. Data Acquisitions 

During each experimental session, the following signals 
were simultaneously recorded [14]: 

 
i. sEMG signals by means of a 16-channel wireless 

bipolar EMG system (Wave Plus wireless EMG, 
Cometa srl, Bareggio, Italy) 

ii. Acceleration signals acquired through a tri-axial 
accelerometer (PicoEMG, Cometa srl, Bareggio, 
Italy)  

SEMG probes were placed over the following 13 muscles 
of the dominant lower limb (right side): Gluteus Medius 
(GMD), Gluteus Maximus (GMA), Tensor Fasciae Latae 
(TFL), Rectus Femoris (RF), Vastus Medialis (VM), Vastus 
Lateralis (VL), Medial Hamstring (MH), Lateral Hamstring 
(LH), Tibialis Anterior (TA), Peroneus Longus (PL), 
Gastrocnemius Medialis (MGS), Gastrocnemius Lateralis 
(LGS), and Soleus (SOL). 

Tri-axial accelerometer, instead, was placed over the 
second-last pair of shoe eyelets to obtain gait cycle timings 
(i.e., foot touchdown and lift-off time-instants) [17], [18]. 

SEMG signals were acquired with a sampling frequency 
of 2000 Hz, while acceleration signals with a sampling 
frequency of 142 Hz. 

Gait data were then imported into MATLAB® release 
R2020b (The MathWorks Inc., Natick, MA, USA) to be 
processed offline by means of custom routines. 

C. Data Processing 

Before the application of the CIMAP algorithm, sEMG 
signals were pre-processed to extract muscle activation 
intervals and to time-segment gait cycles. Then, two different 
time-normalization approaches were applied to the pre-
processed sEMG signals to assess the effect of different time-
normalization approaches on principal activations (PAs). 

1) Extraction of Muscle Activation Intervals 
Firstly, sEMG signals were pass-band filtered through a 

5th order Butterworth digital filter with a lower cut-off 
frequency of 40 Hz and an upper cut-off frequency of 300 Hz 
to remove motion and high-frequency artifacts [19]. 

Then, muscle activation onset/offset intervals were 
computed from the filtered sEMG signals, separately for the 
two tested time-normalization techniques, by means of a deep 
learning-based muscle activity detector. More specifically, the 
detector used in this study is based on Long Short-Term 
Memory (LSTM) neural networks [20], a widely used type of 
Recurrent Neural Networks (RNNs), specifically designed to 
recognized patterns and time-dependencies in sequential data, 
such as numerical time series, audio tracks, and texts [21]. 

Muscle activation intervals extracted through the muscle 
activity detector were defined as binary masks that were set 
equal to 1 in correspondence of a muscle activation and to 0 
otherwise. Then, a post-processing step was applied to the 
detector’s output to reject the erroneous transitions due to the 
stochastic nature of the sEMG signals. More specifically, 
muscle activation intervals shorter than 30 ms were discarded 
[22], [23]. 

Figure 1 shows an example of sEMG signal acquired from 
the Tibialis Anterior (TA) muscle of a representative healthy 
subject of the sample population with the indication of the 
muscle activation intervals computed through the deep 
learning-based detector. 

2) Gait Cycle Segmentation and Time-Normalization 
For each acquired muscle, the muscle activation intervals 

were time-segmented in gait cycles considering the 
touchdown and lift-off time-instants provided in the dataset 
[14]. 

Then, two different time-normalization approaches were 
tested to assess their influence on PAs: (i) the Linear Length 
Normalization (𝐿𝐿𝑁) approach and (ii) the Piecewise Linear 
Length Normalization (𝑃𝐿𝐿𝑁) approach. 

 
i. Linear Length Normalization ( 𝐿𝐿𝑁 ): this approach 

linearly compresses/expands the time-axis of each gait 
cycle such that all gait cycles have the same number of 
samples [24]–[26]. More specifically, in this 
contribution, the gait cycle length is set equal to 1000 
samples. According to the 𝐿𝐿𝑁  approach, all the 
temporal differences between gait cycles due to changes 
in gait cycle duration are removed. However, even after 
the 𝐿𝐿𝑁, temporal differences between gait cycle sub-
phases (i.e., stance and swing phase) may exist due to 
changes in gait speed [11]–[13], [27] or stride-to-stride 
variability [28].  
 

ii.    Piecewise Linear Length Normalization (PLLN): this 
approach firstly segments each gait cycle into epochs 
considering user-defined points of interest.  Then, it 
piecewisely applies the 𝐿𝐿𝑁 approach to time-normalize 
each gait cycle epoch [24], [29], [30]. The user-defined 
points of interest are usually determined based on 
kinematically relevant points within the gait cycle, such 
as foot touchdown and lift-off time-instants. In this 
study, each gait cycle was segmented in two different 
epochs, stance and swing, considering as points of 
interest the foot touchdown and lift-off time-instants 
provided in the dataset. Each gait cycle was then time-

 

Figure 1. SEMG signal (blue line) acquired from the Tibialis Anterior 

(TA) muscle of a representative healthy subject of the sample population 
is represented along with the output of the muscle activity detector 

(black line). All the muscle activity shorter than 30 ms are rejected by 

means of the post-processing step. 



normalized to 1000 time-samples, assigning 600 time-
samples to the stance sub-phase and 400 time-samples to 
the swing sub-phase. The stance and swing durations 
were determined based on the foot-floor contact 
sequences usually adopted by healthy subjects during 
locomotion at comfortable walking speed [31], [32].  

3) Extraction of Principal Activations (PAs) through 
CIMAP algorithm 

The optimized version of the CIMAP algorithm [33] was 
applied on the normalized muscle activation intervals to 
extract PAs.  

Figure 2 shows an example of application of the CIMAP 
algorithm to sEMG signals acquired from the Lateral 
Gastrocnemius (LGS) and Rectus Femoris (RF) muscles of a 
representative healthy subject of the sample population. 
Figure 2A and Figure 2B represent the time-normalized 
sEMG activation intervals (blue lines) grouped in clusters 
with the indication of the clusters’ prototypes (orange lines) 
for the LGS and RF muscle, respectively.  

Starting from a number of clusters equal to the number of 
analyzed gait cycles (each cluster contains only one gait 
cycle), the CIMAP algorithm iteratively merges the two 
“closest” clusters considering the Manhattan and Chebyshev 
distance metric, separately. The complete linkage method is 
used to assess the two “closest” clusters. According to the 
complete linkage method, the farthest distance between every 
pair of elements in the two considered clusters is considered 
as merging criterion. Two different dendrograms are then 
constructed: the first one considering the Manhattan distance 
and the second one considering the Chebyshev distance.  

The final number of clusters (cutoff rule) for each 
dendrogram is selected to achieve: 

i. Clusters characterized by a comparable and 
representative number of elements (𝐶) 

ii. Small intra-cluster variability (𝐼𝐶𝑉), defined as the 
Euclidean distance between each element of the 
cluster and the corresponding cluster’s prototype. 

 

Since different numbers of final clusters may result from 
the two dendrograms, the best cutoff is automatically 
identified using an index that takes into account both the 
intra-cluster variability (𝐼𝐶𝑉) and the number of elements 
within each cluster (𝑁), as described in (1): 

 

𝐶𝑢𝑡𝑜𝑓𝑓 =  

∑ 𝐼𝐶𝑉𝑖
𝑛
𝑖=1

𝑛⁄

∑ |𝐶𝑖|
𝑛
𝑖=1

 (1) 

where 𝑛 represents the number of clusters, |𝐶𝑖| is the number 
of gait cycles belonging to the 𝑖 -th cluster, and 𝐼𝐶𝑉𝑖 
represents the intra-cluster variability of the 𝑖-th cluster  

PAs are then extracted from the representative clusters 
(clusters that contains at least 10% of the total number of gait 
cycles) computing the intersection of the clusters’ prototypes 
[33]. PAs are defined as 1000-samples binary masks that are 
set equal to 1 in correspondence of a principal muscle 
activation and to 0 otherwise.  

Figure 2A and Figure 2B depict how the principal 
activations (red lines) are obtained from the significant 
clusters’ prototypes for the LGS and RF muscle, respectively. 

D. Inter-Subject Similarity of PAs 

The influence of gait cycle normalization on PAs was 
studied in this contribution investigating the presence of 
changes in the inter-subject similarity of PAs. The Jaccard 
similarity index (𝐽) [22],[23] was used to compute similarity 
between couples of PAs as defined in (2).   

𝐽𝑖,𝑗 =
𝑃𝐴𝑖 ∩ 𝑃𝐴𝑗

𝑃𝐴𝑖 ∪ 𝑃𝐴𝑗

 (2) 

where 𝑃𝐴𝑖  and 𝑃𝐴𝑗  represent the principal activations 

extracted from the 𝑖 -th and 𝑗-th subject, respectively. The 

Jaccard similarity index (𝐽) ranges between 0 (i.e., complete 

dissimilarity) and 1 (i.e., complete similarity). 

The average 𝐽𝑘 value was computed over all the possible 

couples of PAs extracted from the 𝑘-muscle, while the grand-

average of the 𝐽𝑘 indexes (𝐽)̅ was computed over all the 𝑘-

muscles. 

 

Figure 2. Example of application of the CIMAP algorithm to the (A) Lateral Gastrocnemius (LGS) and (B) Rectus Femoris (RF) muscles of a rapresentative 

healthy subject of the sample population. Blue lines inside each black rectangle (representative cluster) represent the time-normalized muscle activation 

intervals of the gait cycles that belong to the same representative cluster, while gray lines represent the excluded gait cycles. Orange lines represent the 

clusters’ prototypes, defined as the median value of all the muscle activation intervals belonging to the same cluster. Red lines represent the Principal 

Activations (PAs), defined as the intersection of the representative clusters’ prototypes.   



The MATLAB® function “jaccard” was used to compute 

the Jaccard similarity indexes. 

E. Statistical Analysis 

Two-way analysis of variance (ANOVA) followed by a 
post-hoc analysis with Tukey’s adjustment for multiple 
comparisons was used to test the differences in the Jaccard 
similarity indexes between Approach (𝐿𝐿𝑁  and 𝑃𝐿𝐿𝑁) and 
Muscles. The significance level (α) was set equal to 0.05. The 
statistical analysis was performed using the Statistical and 
Machine Learning Toolbox of MATLAB®. 

III. RESULTS 

The subjects walked at an average speed of 1.4 m/s ± 0.1 
m/s. On the average, a dataset of 63 ± 11 gait cycles was 

assessed for each subject. In terms of stance and swing 
durations, an average value of 63.6% ± 0.03% and 36.4% ± 
0.03% was found considering the stance and the swing phase, 
respectively. 

An average 𝐽 ̅index of 0.64 ± 0.17 and 0.63 ± 0.17 was 
found considering the 𝐿𝐿𝑁 and 𝑃𝐿𝐿𝑁 approach, respectively. 
Two-way ANOVA showed no statistically significant 
differences in Jaccard similarity indexes between Approach (p 
= 0.843), while statistically significant differences were 
detected between Muscles (p < 0.0001).  

Figure 3 shows the boxplots of the Jaccard similarity 
indexes (𝐽𝑘) relative to each of the 13 acquired muscles and 

the boxplot of the grand-average over all the muscles (𝐽)̅. 

Figure 4, instead, represents the results of the post-hoc 
analysis with Tukey’s adjustment for multiple comparisons. 

IV. DISCUSSION AND CONCLUSION 

In this contribution, we assessed the effect of two different 
sEMG time-normalization approaches on principal activation 
extraction in terms of inter-subject similarity of PAs. More 
specifically, among all the time-normalization approaches 
published in literature, the Linear Length Normalization 
( 𝐿𝐿𝑁 ) and the Piecewise Linear Length Normalization 
(𝑃𝐿𝐿𝑁) were tested.  

No statistically significant differences in the inter-subject 
similarity values between 𝐿𝐿𝑁 (0.64 ± 0.17) and 𝑃𝐿𝐿𝑁 (0.63 
± 0.17) approach, while statistically significant differences 
were detected between inter-subject similarity values 
extracted from different muscles. In particular, the muscles of 
the leg (i.e., SOL, LGS, MGS, PL, and TA) revealed higher 
values of Jaccard similarity indexes with respect to the shank 
muscles (i.e., GMD, GMA, TFL, RF, VM, VL, MH, and LH). 
Results revealed that PAs are, overall, more similar across 

 

Figure 3. Boxplots of the average 𝐽𝑘 values and grand-average 𝐽 ̅values computed considering the 𝐿𝐿𝑁 (blue) and 𝑃𝐿𝐿𝑁 (red) approaches. Outliers are 

indicated by circles. 

 

Figure 4. Results of the post-hoc analysis with Tukey’s adjustment for 

multiple comparisons. Blue circles represent the average Jaccard 

similarity indexes (𝐽𝑘), while blue intervals represent the corresponding 

standard errors for each k-muscle.  



subjects considering distal lower limb muscles, suggesting a 
higher repeatability of the propulsive (PL, MGS, LGS, and 
SOL) and foot clearance control functions (TA) with respect 
to the biomechanical functions of the proximal lower limb 
muscles. 

In conclusion, our results demonstrated that PAs extracted 
from healthy subjects during a walking task at comfortable 
walking speed are not affected by the time-normalization 
approach implemented. Further studies are necessary to test 
the effect of different gait cycle normalization approaches also 
on sEMG data acquired at different walking speeds. 
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