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A novel approach for security function graph
configuration and deployment

Daniele Bringhenti, Guido Marchetto, Riccardo Sisto, Fulvio Valenza
Dip. Automatica e Informatica, Politecnico di Torino, Torino, Italy, Emails: {first.last}@polito.it

Abstract—Network virtualization increased the versatility in
enforcing security protection, by easing the development of
new security function implementations. However, the drawback
of this opportunity is that a security provider, in charge of
configuring and deploying a security function graph, has to
choose the best virtual security functions among a pool so large
that makes manual decisions unfeasible. In light of this problem,
the paper proposes a novel approach for synthesizing virtual
security services by introducing the functionality abstraction.
This new level of abstraction allows to work in the virtual level
without considering the different function implementations, with
the objective to postpone the function selection jointly with the
deployment, after the configuration of the virtual graph. This
novelty enables to optimize the function selection when the pool
of available functions is very large. A framework supporting
this approach has been implemented and it showed adequate
scalability for the requirements of modern virtual networks.

Index Terms—virtualized networks, network security, auto-
mated orchestration, function selection

I. INTRODUCTION

Network Functions Virtualization (NFV) [1] and Software-
Defined Networking (SDN) [2] have introduced high flexibility
in enforcing security protection in modern computer networks.
When a security provider must enrich a virtual service graph
with the security functions that are needed to fulfill some Net-
work Security Policies (NSPs, i.e., the security requirements
that must be satisfied in the virtual service [3]) with the aim
to build a security function graph, she has a huge number
of alternative softwarized functions at her disposal. These
security functions are commonly known as virtual Network
Security Functions (VNSFs), and are programs which can run
on general Virtual Machines or Dockers without requiring
special-purpose embedding hardware.

Nevertheless, this high freedom of choice has a drawback. In
the approach that is commonly pursued for enforcing security
in a virtual network service [4], security providers select the
vNSFs required to enforce the NSPs before the two next stages
of security orchestration, i.e., i) the security enforcement in the
virtual service, through the definition of allocation scheme and
configuration of the selected vNSFs in the topology, and ii)
their deployment in the physical infrastructure of the network.
Due to this ordering of the operations, network information
(e.g., the topology of the virtual service, or the behavior of
service functions like load balancers and network address
translators) is overlooked in the selection of the VNSFs.
Ignoring this information may result into sub-optimizations
impacting the stages following the vNSF selection, because it

may have been useful to identify the minimum and the least
resource consuming subset of VNSFs that are really needed
among potentially thousands of them available.

An alternative approach would be to postpone the selection
of the vNSFs after the enforcement of the security protection in
the virtual service, just before or jointly with their deployment.
Hence, the challenge that arises would be to understand how
the virtual security function graph could be synthesized and
configured, if the vINSFs are selected afterwards. It is clear that
a link, previously represented by the vNSF selection, would
be missing between the NSP specification and the security
enforcement in the virtual function graph.

In light of all these considerations, this paper proposes a
novel approach for security function graph configuration and
deployment. In this approach, as hinted before, the VNSF
selection is performed after the synthesis of the virtual graph.
This is enabled by the introduction of a new level of ab-
straction: in each VNSF a set of functionalities (i.e., function
features which can enforce corresponding security properties)
is identified, and the virtual graph is created by allocating
and configuring functionalities instead of vNSFs. Only later,
depending on the allocated functionalities and their computed
configuration, the effective selection and deployment jointly
occur for the vNSFs, in a final single and optimized step.
Last but not least, this approach is fully automated, so that
all the stages of the process (i.e., functionality allocation and
configuration, vNSF selection and placement) work on inputs
provided by service providers but without requiring additional
human intervention.

In summary, the contributions brought over by this proposal
are the following.

A new level of abstraction. In NFV/SDN-based networks,
traditionally the virtual security graph is already composed of
vNSFs. By introducing the functionality abstraction, the virtual
graph is built upon functionalities, enabling higher versatility
for the next stages.

A novel approach for security graph configuration and
deployment. The vNSF selection is postponed after the syn-
thesis and configuration of a security graph composed by
functionalities. This decision required to remodel the process,
and to redefine the working mode of each stage.

An automated framework for security orchestration. This
novel approach has been implemented within a prototype
framework which can work with minimum external interac-
tions, reducing human factor in producing errors and improv-



ing the performance efficiency.

The rest of this paper is structured as follows. Section
Il presents the functionality abstraction required for post-
poning the VNSF selection stage. Section III illustrates the
novel approach that has been defined for security function
graph configuration and deployment, thanks to the newly
introduced functionality abstraction. Section IV describes the
implementation of a framework based on this approach and
the results of an experimental validation. Section V dissects
related work, highlighting the differences with respect to the
proposed approach. Finally, Section VI concludes the paper
and prospects future work.

II. THE FUNCTIONALITY ABSTRACTION

The functionality abstraction represents a novelty which
enables to split the VNSF selection from the synthesis of
virtual security function graphs. This section illustrates how
the vNSFs should be represented to enable this abstraction,
and then it shows how the functionalities are derived from
that representation.

A. vNSF manifest

Each vNSF is characterized by parameters that define the
security properties it can enforce (e.g., the layer of the
ISO/OSI stack where the VNSF can work, the algorithms it
can execute, or the actions it can perform on the traffic).
With the objective to provide a comprehensive view on all
the parameters characterizing a VNSF, they can be grouped in
a single representation, called vVNSF manifest.

For a vNSF v, the corresponding manifest M, is composed
of two sets, i.e., M, = (F,, A,):

e I, is the set of all the fields and features for which the
vNSF can take a decision and/or which can be configured
on it;

o A, is the set of all the actions that the vNSF can enforce.

In turn, the field set F,, is organized in two subsets, i.e.,
F, = (F,f, F}), because it is important to discriminate the
fields which a vNSF can configure on itself from those for
which it can only take decisions:

o Ft is the set of all the fields for which the vNSF can take
a decision and which it can configure (e.g., for a packet
filtering firewall such as iptables, all the fields of the IP
5-tuple belong to this set, because the configuration rules
are composed of conditions based on IP addresses, ports
and transport-level protocol);

o F is the set of all the fields for which a vNSF can take
a decision, but without configuring them, i.e., by con-
figuring other fields which may allow to reach the same
security property (e.g., if a specific web domain must
be blocked, iptables might be used, however it cannot
configure a “domain” field, but only a corresponding IP
address).

In the following, three examples are presented to clarify the
concept of vNSF manifest. In these manifests, only a subset

of all the fields that are present in the F,} and F* sets are
reported for sake of conciseness.

VNSF v1: iptables
Fjl = {IPSrc, IPDst, pSrc, pDst, tProto}

F;, = {domain, url, mailAddress, payload, ...} M
Ay, = {allow, deny}

VNSF wv2: Squid

F:; = {IPSrc, IPDst, pSrc, pDst, tProto, domain, url, ...} ?)
F;, = {mailAddress, payload, ...}

Ay, = {allow, deny, log}

VNSF v3: MyLogger

FJ; = {domain, url} 3)
F;, = {mailAddress, payload, ...}

Ay, = {allow, log, alert}

The manifest of a packet filtering VNSF such as iptables,
ipfirewall or equivalent firewall implementations, which can
only work at layers 3 and 4 of the ISO/OSI stack, is shown
in (1). These vNSFs can decide if a received packet should be
allowed to be forwarded to the next hop or denied depending
on the values of the IP 5-tuple. However, this does not mean
that a packet filtering firewall cannot take decisions for packets
having fields such as web domain and url.

Instead, web application firewalls such as Squid have a
manifest similar to the one presented in (2). With respect to
a packet filter, this type of firewall can also configure rules
based on web domains, urls, HTTP methods (e.g., POST,
PUT, GET), Content-Type, etc. All the other fields which were
present in F; are in F}; as well, since Squid is a firewall as
iptables, but it simply works on a different level. Nonetheless,
both of them do not have in their Fy and in F}; sets any
parameter related to encryption (e.g., algorithm, encryption
key length).

Finally, the virtual functions that can be used to enforce
some security properties do not have to be well-known imple-
mentations such as iptables or Squid, but they can be software
programs developed by any developer, running on a Virtual
Machine or Docker. As it is possible to see from (3), the
manifest description is flexible enough to support also this
type of functions. In this example, the vNSF that has been
developed and is available for the security provider is named
“MyLogger”. It cannot block packets, but it can only log the
receiving of specific kinds of traffic and notifying the security
provider about that event. Additionally, it has been developed
in such a way that the only fields which are present in the
configuration rules are web domain and url. Therefore, the
fields of the IP 5-tuple itself are absent from the F;g set.
They are not in the F; set as well, because domain and url
are information of higher level than layers 3 and 4 of the
ISO/OST stack.

B. Security functionalities definition

A security functionality (for brevity simply called function-
ality in the following) expresses how a subset of fields and



actions (i.e., the manifest) of a VNSF is used to enforce the
security properties expressed by an NSP.

As the person in charge of the NSP definition cannot
know beforehand which vINSFs will be effectively deployed
to enforce them, an implementation-independent language is
used for their formulation. In literature, a similar level of
abstraction is also called Medium Level Policy Language
(MLPL) [5], because it provides all the information for the
NSP enforcement, but in a way that is agnostic to the employed
vNSFs.

An NSP p can be represented in MLPL as p = (C,,, 4,):

o C, is the set of policy conditions that must be fulfilled

(e.g., they might specify the value of the IP 5-tuple fields
representing a type of traffic to be blocked by a firewall,
or the type of encryption algorithm to be employed by a
VPN gateway);
e A, is an ordered list of actions that must be applied on
the packets identified by the conditions expressed in C,.
An example of policy p is shown in (4).

NSP p
Cp = {IPSrc = 125.10.2.0/24, IPSrc = 20.20.20.1, pSrc = *,
pDst = 80, tProto = TCP, domain = dangerousSite.com}

4)

Ap = [log, deny]

In this formulation, whenever a field does not have to be
characterized by a specific value, the * value is used for the
condition on that field. For example, pSrc = * means that
there is not a strict condition on the value the transport-level
source port must have for the identification of the traffic on
which the security actions must be enforced.

The functionalities derive from mapping the manifest of
each vNSF to an NSP, and they represent how the vNSFs might
be configured to enforce the security properties requested by
the NSP. Therefore, each functionality f is represented in a
similar way as the NSP itself, i.e., f = (Cy, Ay). Specifically,
Cj is the set of conditions applied on the fields of F," of the
vNSF v from which f derives, whereas A is an ordered list
of actions supported by the A, set of the corresponding vNSF.

For instance, considering the three vNSFs vi, vo and wvs
whose manifests have been presented in (1), (2) and (3), the
functionalities deriving from those manifests and necessary to
enforce the policy p presented in (4) are the following:

Functionality f1, derived by mapping the VNSF v to the NSP p

Cy, = {IPSrc = 125.10.2.0/24,IPSrc = 20.20.20.1, pSrc = , 5)
pDst = 80, tProto = TCP}

Ay, = [deny]

Functionality fo, derived by mapping the vNSF vz to NSP p

Cf, = {IPSrc = 125.10.2.0/24, IPSrc = 20.20.20.1, pSrc = *, 6)
pDst = 80, tProto = TCP, domain = dangerousSite.com}

Ay, = [log, deny]

Functionality f3, derived by mapping the VNSF v3 to NSP p

C'y, = {dangerousSite.com} @)

Ay, = [log]

It is necessary that a single functionality or a combination of
functionalities supports all the actions required by the NSP so
that it is enough to enforce it. In this example, the functionality
f2 supports both the actions of logging and packet blocking,
therefore it might be sufficient to enforce the NSP. Instead, f;
and f3 are not enough by themselves, because the former can
only block packets, while the latter can only perform logging
operations. As such, a combination of f3 followed by f; would
be needed.

In light of these definitions and examples, a consequence is
that identifying all the possible combinations of functionalities
that might enforce the NSPs allows to postpone the effective
vNSF selection and leads to two important advantages, which
have not been introduced in literature as for now. The first
benefit is that, when building the virtual security graph, all
the possible functionalities are evaluated, while considering
the behavior of the virtual network itself. Only later, after
having decided the functionalities that are really needed, the
vNSFs are selected for the deployment in the physical network.
The second advantage is that, if there are multiple VNSF im-
plementations with the same manifest (e.g., iptables, ipfirewall
and other packet filtering firewalls would have almost identical
manifests), then the functionalities deriving from mapping
their manifest to an NSP would be identical as well. At that
point, considering a single functionality for the next stage of
the orchestration process is enough, in place of considering
multiple vNSFs which may differ only for resource demands
(e.g., CPU or RAM requirements) but are the same in terms
of offered security properties.

III. THE NOVEL WORKFLOW

This section describes the full novel workflow designed for
security function graph configuration and deployment, after the
introduction of the functionality abstraction. Specifically, this
workflow, as depicted in Fig. 1, is composed of three stages:

1) the FUnctionality IDentification (FUID) stage (Subsec-
tion III-A) identifies which functionalities, supported by
the available vNSFs, are required to enforce a set of user-
specified NSPs;

2) the Allocation and Configuration Generation (ACG)
stage (Subsection III-B) automatically establishes the
allocation scheme and configuration of the identified
security functionalities in the virtual graph;

3) the SElection and Placement (SEP) stage (Subsection
III-B) performes the selection of the vNSFs, postponed
with respect to a traditional workflow, and their deploy-
ment in the physical network.

A. FUnctionality IDentification

The FUID stage works on a set of NSPs specified by the
security provider. After receiving a set of NSPs expressed
within MLPL, the FUID stage identifies the functionalities
that might be needed to enforce them. To perform this task,
it has access to a repository containing all the vNSFs that
would be available for the effective deployment in the network.
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Fig. 2: Function graphs employed in the ACG stage

Each vNSF is accompanied with a manifest that follows the
definition presented in Section II.

The manifest of each vINSF is mapped to each NSP, and
the result of this operation is a security functionality. It
might happen that, given more vNSF manifests, their resulting
functionalities for a given NSP are identical. In that case, a
single instance of that functionality is kept. Similarly, it might
happen that a VNSF does not support any field among the
ones specified in the conditions of an NSP. No functionality
will derive from mapping its manifest to the NSP, and that
vNSF is thus excluded a-priori for its enforcement.

Then, the computed functionalities are combined in such
a way that only valid combinations that can fully enforce
the actions requested by an NSP are considered. In case no
valid combination is identified for an NSP, the global process
immediately halts, and an early non-enforceability report is
produced, notifying the security provider why the functionality
identification failed. Otherwise, the valid combinations are
passed on to the next stage of the process, for their allocation
in the virtual graph. In this way, the security configuration
will be performed in a way that is agnostic to the VNSF
implementation.

In this stage, no information related to the virtual network
is employed. This allows to execute the functionality identifi-
cation for each NSP independently from the others.

B. Allocation and Configuration Generation

The ACG stage works on three inputs:

1) the NSPs specified by the service provider;

2) the set of functionalities identified in the FUID stage (i.e.,
the ACG stage is vNSF-agnostic);

3) the description of a Virtual Service Graph (VSerG).

The VSerG description provides information about the topol-
ogy of the service where the security properties must be
enforced, and the configuration of the network function (e.g.,
NATsS, load balancers) composing it. As such, it represents the
current status of an existing network graph, but completely
devoid of any security function. In the ACG stage, a VSerG is
internally represented as a Virtual Allocation Graph (VANG).
A VAIIG contains a virtual placeholder position, called Alloca-
tion Place (AP), for each link among a pair of services of the
corresponding VSerG. These APs represent the possible places
where the functionalities identified in the FUID stage can be
allocated and configured. For example, the VSerG depicted in
Fig. 2a is represented as the VAIIG depicted in Fig. 2b.

The purposes of the ACG stage are to establish the optimal
and formally correct allocation scheme in the VSerG and
configuration of the previously selected functionalities, in such
a way to enforce all the NSPs. These goals are achieved by
formulating and solving a Maximum Satisfiability Modulo The-
ories (MaxSMT) problem. This type of optimization problem
derives its principles from the traditional SAT problem, but
extends them in two ways. On one side, it introduces additional
theories than the only Boolean algebra. On the other side,
it is characterized not only by hard constraints that must be
always satisfied (e.g., the ones expressing the enforcement of
the NSPs), but also soft constraints that should be simply
satisfied as far as possible and allow the formalization of
optimization objectives. Such an approach is inspired by works
proposed in literature about packet filtering firewalls [6] and
VPN gateways [7], which have nonetheless a limited scope
and proved its validity for a single type of function. Besides,
this formulation enables two features: optimization and a-
priori formal verification. About the former, an optimization



objective is to establish the minimum number of required
functionality instances. About the latter, following the trend
of works such as [8], formal models are used to capture
the behavior of service functions characterizing the VSerG,
so that the solution for the MaxSMT problem has a formal
assurance of being correct thanks to the intrinsic correctness-
by-construction paradigm of a MaxSMT formulation.

The solution to the MaxSMT problem is a Virtual Security
Graph (VSecG), where some APs are filled with the selected
functionalities, which are also configured in such a way to
enforce the user-specified NSPs. An example of VSecG is
depicted in Fig. 2c, where f1g and fi9 are security functional-
ities introduced in the VAIIG. This graph represents a higher
abstraction than the traditional virtual graph, where vNSFs are
typically present.

C. SElection and Placement of the vNSF's

The SEP stage works on the following inputs:

1) the VSecG computed in the ACG stage;

2) the repository of vNSFs available for deployment;

3) the description of the physical network (i.e., how it is
structured, and the resource availabilities of each host
composing it);

4) an optimization policy, describing how each optimiza-
tion criterion (i.e., minimization of CPU, RAM, disk,
bandwidth, number of selected vNSFs and number of
used physical hosts) has higher or lower priority than
the others.

A first aim of this stage is to select the best subset of VNSFs,
among the available ones, that supports the functionalities allo-
cated and configured in the ACG stage. Jointly, the deployment
scheme of the selected vNSFs is established, i.e., the decision
on which host composing the physical network each VNSF
should be embedded is taken. Having postponed the vNSF
selection so that it is performed with their deployment has
many advantages. At this stage, it is clear which functionalities
are effectively needed, and how they have been allocated in
the virtual graph. Besides, these two operations (i.e., selection
and embedding) are typically subject to the same optimization
criteria and constraints, even though they are traditionally
in different steps of the security orchestration workflow. For
example, in this novel approach, a certain VNSF is directly
avoided to be selected if there is no a physical host available
with adequate RAM capacity.

The selection and deployment problem has been formulated
as a multi-objective Integer Linear Programming (ILP) prob-
lem. If there are hundreds of available vNSFs that implement
the same functionalities, then a manual decision would have
been troublesome and error-prone to be taken, even over-
looking all the other degrees of freedom (e.g., number of
physical hosts, etc.). Therefore, an ILP formulation enables
an automated resolution of the joint selection and deployment
problem. More specifically, considering a set of n VNSFs v,
Vg, ..., Un, in this formulation an integer variable z; is defined
for each VNSF, representing the outcome of the selection
(i.e., z; =1 if v; has been selected to be deployed, x; =0

otherwise). These variables recur in constraints related to the
resource capacity of the hosts (i.e., the selected vNSFs must be
deployed in hosts having enough resources for their demands),
and also in the optimization objectives.

Concerning optimization, the proposed approach is multi-
objective. As such, it seeks the best solution that can be
achieved by optimizing the resource consumption of the physi-
cal hosts according to the requested optimization policy, where
the criteria have different priorities. In such an approach, the
optimization is performed hierarchically, i.e., firstly the crite-
rion with maximum priority is optimized, then the criterion
with the second higher one, and so on. Formula (8) is an
example of optimization objective defined in the ILP problem.

Obj (min(znj niwdix i), pd) ®)
=1

In this formula, for a vNSF wv;, n; is an integer variable
representing the number of selected instances, d; is an integer
variable representing the disk required (in MB), while py
represents the priority of the criterion related to the disk
consumption with respect to the others. In words, (8) states that
the sum of the disk space consumed by selected and deployed
vNSFs should be minimized as far as possible, in compliance
with other constraints of the ILP problem.

At the end, the deployment scheme is generated for the
selected VNSFs, and it is passed on to the user so that she can
deploy the functions by interacting with an orchestrator such
as Open Baton or Kubernetes.

IV. IMPLEMENTATION AND VALIDATION

This section describes how the proposed novel workflow has
been implemented, together with an experimental validation
that has been performed to examine its scalability.

A. Implementation

A prototype Java-based framework has been developed to
implement the approach described in Section III. Specifically:

o a Java algorithm is employed for the FUID stage;

o a state-of-the-art MaxSMT solver, called Z3 (version
4.8.5) [9], is used to formulate and solve the optimization
problem represented by the ACG stage;

« a state-of-the-art ILP solver, called Gurobi (version 8.1.1)
[10], is used to formulate and solve the ILP problem for
the SEP stage.

The framework exposes REST APIs for the interaction
with human beings (e.g., service providers) and with other
applications (e.g., automated service orchestrators such as
Open Baton). The data exchanged through HTTP Requests
and HTTP Replies can have an XML or JSON embedding.

B. Validation

An experimental validation of the framework has been
performed with the main aim of analyzing its scalability.
This validation has been performed on a 4-core Intel i7-
6700 3.40 GHz workstation with 32 GB RAM. Even though
this prototype framework is based on a preliminary model
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Fig. 3: Experimental results of scalability tests

for the functionality abstraction, a scalability validation is
interesting to understand the potential of this novel approach.
In particular, considering the three stages of the proposed
workflow, the metric of interest for each one varies. Therefore,
the analyzed metrics have been the following:

o the number of NSPs for the FUID stage, because each
NSP must be analyzed to identify the functionalities
required to enforce it;

« the number of APs for the ACG stage, because each AP
represents a candidate position in the virtual service for
allocating a functionality;

« the number of available vNSFs for the SEP stage, because
each one represents a possible choice for enforcing the
allocated functionalities in the network.

The performance of each stage has been investigated indepen-
dently of the others, by varying its own metric of interest.

Fig. 3 shows the results achieved for this scalability evalu-
ation. Each value plotted in the charts represents the average
value, computed over the results of 100 independent iterations.

These results point out that the framework has a good
scalability, especially for the FUID and SEP stages. In fact, the
former requires just a bit more than 10 seconds for identifying
the required functionalities to enforce 1000 NSPs, whereas the
latter performs the VNSF selection and deployment, accessing
a repository of 1000 vNSFs, in around 15 seconds. The two
corresponding plots in Fig. 3 show that for these stages the
computation time does not increase exponentially, but it has a
linear growth. The only stage that requires more time is ACG:
around 40 seconds are needed to compute the functionality
allocation scheme and configuration in a VAIIG having 100
APs. The growth itself of the computation time for the ACG
stage is not linear, but quadratic. There are two main reasons
which explain this different behavior. The first is that the
problem solved in the ACG stage is the most complex one,
since configuring distributed functionalities across a virtual
service, in an optimal and provably correct way, would be
unfeasible for a human being. The second is that solving a
MaxSMT problem requires more time than solving an ILP
problem. Nonetheless, the MaxSMT formulation is needed

for the support of additional theories and for enabling the
correctness-by-construction paradigm of the approach.

Nevertheless, the total computation time required for per-
forming all the steps of the proposed workflow is in line
with the time required for network security management
operations in virtual networks. As reference, [11] reports that
the Deployment Process Delay (i.e., the time required for
deploying and instantiating a virtual function and setting up an
operational network service) is 134s for Open Source MANO,
a well-known NFV-based orchestrator. Therefore, in less than
this DPD time, the framework implemented to support the
approach proposed in this paper can establish how a full virtual
security service should be configured and deployed.

In conclusion, the experimental results confirm that not only
the approach is suitable for replacing human beings in the
security function graph configuration and deployment, but it
can do so in much less time than what would require a person,
and in a way that is compatible with the agility requirements
of modern computer networks.

V. RELATED WORK

Concepts akin to the functionality abstraction illustrated
in this paper have barely been investigated in literature. A
series of IETF RFC drafts, of which [12] is the most recent
one, proposes the Capability Information Model to describe
the security properties that a VNSF can enforce in a vendor-
neutral manner. With such a description, it is not required to
refer to a specific technology or vendor-dependent function
when defining a security service. However, these ideas have
not been completely formalized and exploited for researching
novel ways to perform security configuration and deployment.
In fact, [13] uses a capability model for abstracting VNSFs,
but that work is restricted to access control and forwarding
virtual functions. The work presented in [5] broadens the
research to other types of security functions. However, as
in [13], the capability model is not used to innovate the
security configuration workflow, and the vNSF selection for
the security enforcement is performed before the allocation
and configuration stage as usual, losing all the benefits deriving
from a possible postponement.



More research has been carried out about the automatic
configuration of security functions on one side, about their
deployment on the other side. Automatic ways for configuring
vNSFs have been investigated singularly for packet filtering
firewalls ([14], [15], [6]) and VPN gateways ([16], [7]),
or for multiple types of functions at the same time ([5]).
However, all these approaches are limited to establish the
configuration of VNSFs instead of functionalities, and do
not address the need of synthesizing their allocation scheme.
Moreover, optimization criteria are not enforced with some
rare exceptions (e.g., [6]), and only heuristic algorithms are
employed without guarantees that the computed solutions are
effectively optimized.

Finally, more effort has been spent in researching strategies
for the deployment of virtual functions. Some relevant works
in this research area are [17], [18] and [19]. A more exhaustive
survey about deployment and embedding of virtual functions
is presented in [20]. With respect to all these traditional
approaches, in the workflow illustrated in this paper the de-
ployment scheme is generated alongside the vNSF selection, as
enabled by the postponement of that operation. This difference
not only allows to perform the two operations jointly, but
also optimizes them since they are constrained to the same
optimization criteria.

VI. CONCLUSION AND FUTURE WORK

The paper presented a novel approach for automatically
configuring and deploying security functions in a virtual
security function graph. This approach lays its foundations on
the definition of the functionality abstraction, which allows
to select the functions required to enforce security protection
just before the deployment, after synthesizing the virtual
graph. The overall process thus benefits from the optimizations
deriving from this abstraction. A prototype framework has also
been implemented to show the validity and scalability of this
novel approach.

Future works are planned to be carried out regarding
both the definition of the functionality abstraction and the
formulation of the configuration and deployment workflow.
About the former, different granularities for the functionality
features may be acceptable. As such, an extensive evaluation
of them will be conducted, with the purpose to understand
the most suitable granularity and consequently model all the
functionalities by using it. About the latter, the formulation
of some stages may be altered (e.g., the MaxSMT problem
defined for ACG process may be replaced or supported by
heuristics), so that the overall performance of the framework
can further improve.
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