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Prediction error quantification through probabilistic scaling
Victor Mirasierra1, Martina Mammarella2, Fabrizio Dabbene2,∗, Teodoro Alamo1

Abstract— In this paper, we address the probabilistic er-
ror quantification of a general class of prediction methods.
We consider a given prediction model and show how to
obtain, through a sample-based approach, a probabilistic
upper bound on the absolute value of the prediction error.
The proposed scheme is based on a probabilistic scaling
methodology in which the number of required randomized
samples is independent of the complexity of the prediction
model. The methodology is extended to address the case in
which the probabilistic uncertain quantification is required
to be valid for every member of a finite family of predictors.
We illustrate the results of the paper by means of a numeri-
cal example.

Index Terms— Randomized algorithms, Estimation, Ma-
chine learning, Model Validation, Uncertain systems.

I. INTRODUCTION AND PROBLEM FORMULATION

QUANTIFYING the error related to the process of approx-
imating a set of given data with a prescribed prediction

method represents a fundamental requirement, which has
given rise to an entire research area known as Uncertainty
Quantification, see e.g. [1], [2] and references therein.

Motivated by this necessity, methods for directly construct-
ing predictive models with prescribed robustness guarantees
have recently gained popularity. For instance, [3] presents
several methods based on interval analysis to construct in-
tervals which are guaranteed to contain the true value, under
the assumption of deterministically bounded noise. Similarly,
data-based approaches exploiting the availability of random
samples, providing probabilistic guarantees, are being devel-
oped. These methods extend classical quantile regression [4].
In particular, we point out the probabilistic interval predictions
proposed in [5], [6].

All these methods require to design (or re-design) the esti-
mator using a specific ad-hoc model. However, this approach
may not result practical when data-analysts have already
constructed a model exploiting a “preferred” technique (e.g.,
one based on support vector machines (SVM)) and they want
to assess, before deployment, the actual uncertainty of their
model.

For this reason, researchers have started investigating post-
processing methods for quantifying the uncertainty of a given
predictor. This means that no new methodology is proposed
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for constructing a regression model but that such a model
(or a family of candidate ones) is given. This philosophy is
exactly the one pursued in uncertainty quantification methods,
see e.g. the recent approaches based on polynomial chaos [1],
or the conformal predictors [7]. These methods typically use
additional validation (or calibration) data to determine precise
levels of confidence in new predictions [8].

In this paper, we move a step further in this direction
and present sampling-based techniques for assessing the cor-
responding error in a computationally efficient way. Indeed,
this novel approach, extending recent results on probabilistic
scaling, e.g., [9], [10], requires a number of randomized
samples independent of the complexity of the prediction model
(i.e. the dimension of the regressor).

In particular, we consider that given x ∈ Rnx , an estimation
ŷ for y ∈ R is provided by operator T : Rnx → R. That is,

ŷ = T (x).

We assume that the operator T is a given predictive model that
has been designed by means of any modelling methodology
(first principles, linear regression, SVM regression, neural
network, etc.).

We want to provide a probabilistic bound on the prediction
error. More formally, we consider the random vector w =
(x, y) ∈ Rnx×R ⊆W, with stationary probability distribution
PrW, and we aim at constructing a function ρ : Rnx → R such
that, with probability no smaller than (1− δ),

PrW{|y − T (x)| ≤ ρ(x)} ≥ 1− ε.

The method relies on the possibility of accessing random
data, that is, observations couples w = (x, y). Note that
these are new data not used to construct T (·). We show that
the sample complexity of the proposed techniques (i.e. the
number of observations required) does not depend on the
chosen regression model but only on the desired probabilistic
levels.

The remainder of the paper is structured as follows. In
Section II we propose a first simple result, which allows to
obtain an initial probabilistic bound on the prediction error
via probabilistic maximization, given a predictive model. The
obtained bound, which can be computed by means of a simple
algorithm, is independent of the given x. Section III, focuses
on including those situations in which the expected size of
the error does depend on x, and propose a probabilistic bound
conditioned to x. This approach is extended in Section IV
to the case when a “family” of candidates estimators is
considered. Finally, in Section V, we included the possibility
of designing the predictors by means of kernel methods,
providing at the same time also a measure of the expected size
of the error. All these approaches are illustrated by means of



a running numerical example, and conclusions are drawn in
Section VII.

Notation
Given an integer N , [N ] denotes the integers from 1 to N .

Given x ∈ R, bxc denotes the greatest integer no larger than x
and dxe the smallest integer no smaller than x. Given integers
k,N , with 0 ≤ k ≤ N , and parameter ε ∈ [0, 1], the Binomial
cumulative distribution function is denoted as

B(k;N, ε)
.
=

k∑
i=0

(
N
i

)
εi(1− ε)N−i.

Given the measurable function g(x, y) and the probability
distribution PrW, we denote by EW{g(x, y)} the expected
value of the random variable g(x, y) and by EW{g(x, y)|x}
the expected value of g(x, y) conditioned to x. The following
definition is borrowed from the field of order statistics [9].

Definition 1 (Generalized Max): Given a collection of N
scalars Q = {q1, q2, . . . , qN} = {qi}Ni=1, and an integer r ∈
[N ], we say that q+r ∈ Q is the r-largest value of Q if there
is no more than r − 1 elements of Q strictly larger than q+r .

Hence, q+1 denotes the largest value in Q, q+2 the second
largest one, and so on until q+N , which is equal to the smallest
one. We also use the alternative notation q+r = max(r){qi}Ni=1.

II. UNCERTAINTY QUANTIFICATION USING
PROBABILISTIC MAXIMIZATION

In this section we present an initial probabilistic bound for
the error y− T (x) based on probabilistic maximization. Sup-
pose that we draw N independent and identically distributed
(i.i.d.) samples {(xi, yi)}Ni=1 according to distribution PrW,
and we denote as

qi
.
= |yi − T (xi)|, i ∈ [N ]

the absolute value of the corresponding prediction errors. A
well established result [11] shows that the largest value in
the sequence {qi}Ni=1, i.e., q+1 , provides a probabilistic upper
bound on the random variable q = |y−T (x)|. Formally, given
ε ∈ (0, 1) and δ ∈ (0, 1), [11, Theorem 1] states that if

N ≥ 1

ε
log(

1

δ
) (1)

then, with probability no smaller than 1− δ,

PrW
{
q > q+1

}
≤ ε.

It is immediate to observe that this result provides a first simple
probabilistic scheme for uncertainty quantification: If N i.i.d.
samples {(xi, yi)}Ni=1 are drawn according to PrW, with N
satisfying (1), then with probability at least 1− δ

PrW
{
|y − T (x)| ≤ q+1

}
≥ 1− ε.

We notice that the required sample complexity (i.e. the number
of samples N ) depends only on ε and δ. Moreover, no specific
assumptions are required on T (x) or PrW.

However, we also note that this scheme may provide
extremely conservative results, especially if the support of

the random variable q = |y − T (x)| is not finite and N
is large. In fact, suppose that y − T (x) is a zero mean
Gaussian random variable. Then, the probabilistic upper bound
obtained from q+1 will be too conservative if one of the samples
qi = |yi−T (xi)| departs considerably from zero, which occurs
with a probability that increases with N . We conclude that
only relying on the largest observed value of |y−T (x)| hinders
the computation of sharp probabilistic bounds, especially for
small values of ε and δ, leading to a large number of samples
N .

In order to circumvent this issue, we resort to the following
result [9, Property 3], which states how to obtain a probabilis-
tic upper bound of a random scalar variable by means of the
notion of generalized max (see Definition 1).

Property 1: Given ε ∈ (0, 1), δ ∈ (0, 1) and r ≥ 1, let
N ≥ r be such that

B(r − 1;N, ε) ≤ δ. (2)

Suppose that q ∈ W ⊆ R is a random scalar variable with
probability distribution PrW. Draw N i.i.d. samples {qi}Ni=1

from distribution PrW. Then, with a probability no smaller
than 1− δ,

PrW{q > max(r){qi}Ni=1} ≤ ε. (3)

Remark 1 (On Property 1): This result is proved in [9]
using techniques from the field of order statistics [12]. As
discussed in [9], this result may be alternatively derived by
applying the scenario approach with discarded constraints [13],
[14]. Adaptations of this result have been used in the context
of chance constrained optimization [15], [16], and stochastic
model predictive control [10], [17], [18].

Several questions arise when trying to apply Property 1 to
the probabilistic error quantification problem:
Choice of N : It was proved in [19, Corollary 1] that the
constraint B(r − 1;N, ε) ≤ δ holds if

εN ≥ r − 1 + log
1

δ
+

√
2(r − 1) log

1

δ
. (4)

Thus, given r, δ, and ε, the sample size N can be obtained
as the smallest integer N satisfying (4). Another possibility is
to compute, by means of a numerical procedure, the smallest
integer N satisfying B(r − 1;N, ε) ≤ δ.
Choice of δ: Since 1 − δ determines the probability of the
satisfaction of the probabilistic constraint (3), it is important to
choose δ sufficiently close to zero. In view of (4), we have that
N grows logarithmically with 1

δ . This implies that significantly
small values of δ (say δ = 10−6) can be used without an
excessive impact in the number of samples N .
Choice of r: If r is chosen to be too small, then the obtained
probabilistic bounds might turn to be too conservative because
the obtained upper bound would be determined by a reduced
number of possible extreme values. We notice from (4) that the
larger the value of r, the larger the number of required samples
N . We also derive from (4) that r−1N < ε. A reasonable choice
for r with an appropriate trade off between sample complexity
N and sharpness of the results is r =

⌊
εN
2

⌋
.

Choice of ε: Parameter ε determines the size of the con-
fidence interval in the uncertainty quantification process. In



uncertainty quantification, values of ε much smaller than 0.05
are not frequent.

We now state a result, which has been presented in a
different context in [10] and [16], that shows how to obtain
N in such a way that (2) is satisfied for the particular choice
r =

⌊
εN
2

⌋
.

Lemma 1: Given ε ∈ (0, 1) and δ ∈ (0, 1), suppose that
N ≥ 7.47

ε ln 1
δ and r =

⌊
εN
2

⌋
. Then B(r − 1;N, ε) ≤ δ.

Proof: See the appendix of [20], where it is proved that the
claim holds if N ≥ (1+

√
3)2

ε ln( 1
δ ). The result follows from

(1 +
√

3)2 < 7.47.
Property 1, along with the previous discussion on the choice

of r, leads to Algorithm 1, which provides a simple procedure
to compute a probabilistic bound on the prediction error y −
T (x).

Algorithm 1 Probabilistic Fixed-Size Bound on Error
1: Given a predictor T : Rnx → R, and probability levels
ε ∈ (0, 1) and δ ∈ (0, 1), choose

N ≥ 7.47

ε
ln

1

δ
and r =

⌊
εN

2

⌋
. (5)

2: Draw N i.i.d. samples {(xi, yi)}Ni=1 according to PrW.
3: Compute qi = |yi − T (xi)|, i ∈ [N ].
4: Return ρ = max(r){qi}Ni=1 as the probabilistic upper

bound for |y − T (x)|.

The probabilistic guarantees of the upper bound generated
with Algorithm 1 are provided in the next corollary.

Corollary 1: The output ρ of Algorithm 1 satisfies, with
probability no smaller than 1− δ, PrW{|y − T (x)| > ρ} ≤ ε.

Proof: From Lemma 1, we have that the values for N and
r obtained in step 1 of Algorithm 1 guarantee that B(r −
1;N, ε) ≤ δ. Thus, we conclude from Property 1 that ρ =
max(r){|yi−T (xi)|}Ni=1 satisfies, with probability no smaller
than 1− δ, PrW{|y − T (x)| > ρ} ≤ ε. �

Numerical example: Algorithm 1
Consider the function

y = f(x, n1, n2) = (10 + n1)x+ 10 sin(4x) + 5 + n2. (6)

We assume that x is a random scalar with uniform distribution
in [−2.5, 2.5] and n1, n2 are random scalars drawn from
zero-mean Gaussian distributions with variances 7 and 3,
respectively. Suppose that the optimal predictor T (x) = 10x+
10 sin(4x) + 5 for the random scalar y = f(x, n1, n2) is
available1. We fix the probabilistic levels to ε = 0.05 and
δ = 10−6, which leads to N = 2, 065 and r = 51 (see step
1 of Algorithm 1). We draw N i.i.d. samples {(xi, yi)}Ni=1

and obtain ρ = 10.77. Thus, according to Corollary 1, with
probability no smaller than 1− δ, PrW{|y − T (x)| > ρ} ≤ ε.
We notice that for this example it is not difficult to obtain the
sharpest probabilistic bounds for y − T (x) corresponding to
a given x. It suffices to notice that given x, y − T (x) is a
zero-mean Gaussian random variable with variance 7x2 + 3.

1We address the problem of determining predictor T (·) in Section V.

Thus, using standard confidence interval analysis for a scalar
Gaussian variable, we obtain that

PrW{|y − T (x)| > 1.96
√

7x2 + 3} ≤ 0.05.

Figure 1 shows, for a new validation set of N i.i.d. samples, the
(fixed size) probabilistic bounds for y provided by Algorithm
1 (i.e. PrW{y ∈ [T (x)−ρ, T (x)+ρ]} ≥ 1−ε), along with the
exact probabilistic bounds. We notice that Algorithm 1 fails
to capture the varying size of the exact probabilistic bounds.
We address this issue in the next sections.
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Fig. 1. Numerical example: comparison between the probabilistic
bounds obtained with Algorithm 1 with the exact ones. We notice that
the size of the interval bounds provided by Algorithm 1 are independent
of x.

III. CONDITIONED UNCERTAINTY QUANTIFICATION

The simplicity of Algorithm 1 comes at a price: the obtained
upper bound does not depend on x. Clearly, this is not an issue
if the error e = y − T (x) is independent of x. However, in
many situations, the expected size of the error does depend on
x. For example, the prediction errors are often correlated with
the size of the predicted variable, which in turn is correlated
with x. From here, we infer that information on the expected
error can often be obtained from x.

Under some strong assumptions, the probability distribution
of y− T (x) conditioned to x, can be computed in an explicit
way. This is the case, for example, when T (x) is obtained
by means of Gaussian process regression [21, §2] or when
exponential models are employed [22, §4]. However, we
notice that, although these kernel-based approaches can indeed
provide estimations of the conditioned expectation

σ2(x) = EW{(y − T (x))2 |x},

the accuracy of the estimations will depend on the satisfaction
of the underlying assumptions (i.e. Gaussian process and
exponential model, respectively) and the adequate selection of
the kernels (along with their hyper-parameters) used to obtain
T (x). There are other possibilities to obtain conditioned error
quantification, like sensitivity analysis, techniques based on
Fisher information matrix, bootstrapping, etc. [2], [1].



We also mention here Parzen method [23], which serves to
estimate the probability density function of a random variable.
More general multivariate kernel-based generalizations are
also available (see e.g., [24]). In these methods, an estimation
σ̂(x) of σ(x) is obtained from

σ̂2(x) =

M∑
i=1

(yi − T (xi))
2Γ(x, xi)

M∑
i=1

Γ(x, xi)

, (7)

where Γ : Rnx × Rnx → R is an appropriately chosen
function and {(xi, yi)}Mi=1 are i.i.d. samples drawn from PrW.
Under non very restrictive constraints [23], [24], the provided
estimation σ̂(x) converges to the actual value σ(x) as M tends
to infinity.

For a fixed value of x, d = (y − T (x))2 is a random non-
negative variable with expectation σ2(x). Thus, we can resort
to the Markov inequality [25], [26], to obtain

PrW{d ≥ ξσ2(x) } ≤ 1

ξ
, ∀ξ > 0.

Thus, choosing ξ =
1

ε
, we obtain PrW

{
d ≥ σ2(x)

ε

}
≤ ε.

Equivalently,

PrW

{
|y − T (x)| ≥ σ(x)√

ε

}
≤ ε.

The obtained probabilistic upper bound suffers from the
following two limitations: (i) generally, σ(x) is unknown and
only a rough estimation is available (as the ones commented
before), and (ii) Markov inequality yields overly conservative
results in many situations [26]. A meaningful exception to this
is when the errors y−T (x) are of Gaussian nature. In this case,
using the Chi-squared distribution [25], sharp probabilistic
bounds of the form PrW{|y − T (x)| ≥ γεσ(x)} = ε, can
be obtained.

In order to avoid these limitations, we can again resort to
probabilistic maximization. Suppose that an estimation σ̂(x) of
σ(x) is available. Suppose also that σ̂(x) > 0, for all x ∈ Rnx .
We could define the scaling factor γ as

γ =
|y − T (x)|
σ̂(x)

.

With this definition, any probabilistic upper bound γ̄ on γ
would provide a probabilistic upper bound on |y−T (x)|. That
is,

PrW{γ > γ̄} ≤ ε ⇒ PrW{|y − T (x)| > γ̄σ̂(x)} ≤ ε.

This means that we could slightly modify Algorithm 1 to
obtain a novel algorithm capable of obtaining a probabilistic
upper bound conditioned by the value of x. This idea is
implemented in Algorithm 2.

Algorithm 2 Conditioned Probabilistic Bound on Error
1: Given a predictor T : Rnx → R, an estimator σ̂ : Rnx →

(0,∞), of
√

EW{(y − T (x))2 |x}, probability levels ε ∈
(0, 1) and δ ∈ (0, 1), choose N and r according to (5).

2: Draw N i.i.d. samples {(xi, yi)}Ni=1 according to PrW.
3: Compute γi = |yi−T (xi)|

σ̂(xi)
, i ∈ [N ].

4: Return γ̄ = max(r){γi}Ni=1, as probabilistic upper bound
for |y−T (x)|

σ̂(x) .

The following Corollary states the probabilistic guarantees
of the output γ̄ of Algorithm 2.

Corollary 2: The output γ̄ of Algorithm 2 satisfies, with
probability no smaller than 1− δ,

PrW{|y − T (x)| > γ̄σ̂(x)} ≤ ε.

Proof: The proof follows the same lines as the proof of
Corollary 1. That is, we infer from Property 1 and Lemma
1 that the proposed choice of N and r guarantees that, with
probability no smaller than 1− δ,

PrW

{
γ =

|y − T (x)|
σ̂(x)

> γ̄

}
≤ ε.

Thus, we conclude PrW{|y − T (x)| > γ̄σ̂(x)} ≤ ε. �

Remark 2 (On normalization of σ̂(x)): We notice that the
upper bound obtained by means of Algorithm 2 provides iden-
tical results when the estimator σ̂(x) is replaced by a scaled
version σ̂ξ(x) = ξσ̂(x), where ξ > 0. Thus, multiplicative
errors in the estimation of σ(x) are corrected in an implicit
way by the algorithm.

Remark 3 (Difference with convex scenario approaches):
Scenario approaches (see e.g. [5], [6]) obtain both the
estimator and probabilistic guarantees in a single optimization
problem that requires a number of samples that increases both
with the dimension of the regressor used in the predictive
model and the number of samples that are allowed to violate
the interval predictions. Our approach can be applied to
any given predictor T (·) and has a sample complexity that
does not depend on the dimension of the regressor. This
allows us to consider kernel approaches in a possible infinite
dimensional lifted space (see Section V).

IV. UNCERTAINTY QUANTIFICATION FOR FINITE FAMILIES
OF ESTIMATORS

The probabilistic bounds proposed for error e = y − T (x)
depend not only on the intrinsic random relationship between
x and y (joint probability distribution), but also on the choice
of the estimators T (·) and σ̂(·). Since there exists a myriad of
possibilities for choosing T (·) and σ̂(·), we now analyze the
problem of choosing among a finite family F of possible pairs
(T (·), σ̂(·)) the one that minimizes the size of the obtained
probabilistic bounds. The following result states the relation-
ship between the cardinality nF of F , and the probabilistic
specifications (ε, δ), with the number of samples required to
obtain the corresponding bounds.



Theorem 1: Consider the finite family of candidate estima-
tors

F = { (Tj(·), σ̂j(·)) : j ∈ [nF ] },

where Tj : Rnx → R and σ̂j : Rnx → (0,∞) for every
j ∈ [nF ]. Given ε ∈ (0, 1), δ ∈ (0, 1) and r ≥ 1, let N ≥ r
be such that B(r − 1;N, ε) ≤ δ

nF
. Draw N i.i.d. samples

{(xi, yi)}Ni=1 from distribution PrW and denote

γ̄j
.
= max(r)

{
|yi − Tj(xi)|

σ̂j(xi)

}N
i=1

, j ∈ [nF ]. (8)

Then, with a probability no smaller than 1− δ,

PrW{|y − Tj(x)| > γ̄j σ̂j(x)} ≤ ε, j ∈ [nF ].

Proof: Denote δF the probability that at least one of the
randomly obtained scalars {γ̄j}nF

j=1, obtained from the random
multi-sample {(xi, yi)}Ni=1, does not satisfy the constraint

Ej(γ̄j)
.
= PrW

{
|y − Tj(x)|
σ̂j(x)

> γ̄j

}
≤ ε. (9)

Thus,

δF = PrWN{ε < max
j∈[nF ]

Ej(γ̄j)}

≤
nF∑
j=1

PrWN{ε < Ej(γ̄j)} ≤
nF∑
j=1

δ

nF
= δ.

We notice that the last inequality is due to the assumption
B(r − 1;N, ε) ≤ δ

nF
, (8) and Property 1. Thus, with

probability no smaller than 1 − δF ≥ 1 − δ, inequality (9) is
satisfied for every j ∈ [nF ]. �

Remark 4 (Sample complexity for finite families): In view
of Lemma 1, it suffices to draw N =

⌈
7.47
ε log nF

δ

⌉
i.i.d.

samples from PrW to obtain a probabilistic uncertainty quan-
tification for the complete finite family F . In order to select
the best pair (Tj(·), σ̂j(·)) in F , one could choose the index
j ∈ [nF ] providing the sharpest probabilistic uncertainty

bounds. That is, the one minimizing
N∑
i=1

γ̄j σ̂j(xi). Since nF

enters in a logarithmic way in the sample complexity bound,
large values for nF are affordable. In this case, the search
for the most appropriate pair (Tj(·), σ̂j(·)) does not need to
be exhaustive, and sub-optimal search in the finite family F
could be envisaged (since the probabilistic bounds provided
are valid for every member of the family F).

V. KERNEL CENTRAL PREDICTION AND UNCERTAINTY
QUANTIFICATION

Suppose that M i.i.d. samples {(xi, yi)}Mi=1 are available.
We now address the design of the predictor T (x) by means
of kernel methods while guaranteeing that the procedure also
provides us with an estimation of σ(x). Given x, let us define
the loss functional

J(θ;x) = θTΣθθ +

M∑
i=1

(yi − θTϕ(xi))
2Γ(x, xi),

where ϕ : Rnx → Rnθ is the regressor function and θTΣθθ
is a regularization term. A possible choice is Σθ = τ I, where
τ > 0. Finally, Γ : Rnx×Rnx → R is an appropriately chosen
weighting function. We assume that Γ(x, z) is a decreasing
function of ‖x−z‖, where ‖ · ‖ is a given norm. For example,
Γ(x, z) = exp(−λ‖x− z‖), where λ > 0.

As it is usual in machine learning, for given x, a central
estimation for y is provided by T (x) = θTc (x)ϕ(x), where
θc(x) is given by θc(x) = arg min

θ
J(θ;x). We notice that the

proposed estimator is a weighted least square estimator with
a ridge regression regularization term [27], [28].

There exists two possibilities to obtain predictor T (x) and
local estimations ŷi(x) = θTc (x)ϕ(xi), i ∈ [M ] (which will
be needed to compute the Parzen estimator for σ(x)):
Based on ϕ(·): Since J(θ;x) is a strictly convex quadratic
function of θ, the optimal value θc(x) can be obtained deter-
mining the value of θ for which the gradient of J(θ;x) with
respect to θ vanishes.
Based on a kernel formulation: Defining the kernel function
K(·, ·) as K(xa, xb) = ϕT (xa)Σ−1θ ϕT (xb), the estimation
T (x), along with the local estimations ŷi(x), i ∈ [M ], can be
obtained in an explicit way by means of well-known kernel
tricks (see e.g., [29], [30, §14.4.3] and references therein).
In this case, the kernel formulation allows to approach the
regression problem in a possibly infinite dimensional lifted
space [28].

Once the local estimations {ŷi(x)}, i ∈ [M ] have been
computed, the estimation for σ(x) follows from the following
local Parzen estimator (see also equation (7)):

σ̂2(x) =

M∑
i=1

(yi − ŷi(x))2Γ(x, xi)

M∑
i=1

Γ(x, xi)

. (10)

See the Appendix of the extended arXiv version of this
document [31] for a detailed description on how to obtain
predictors T (x) and σ̂(x) for both considered possibilities (i.e.
based on a regressor ϕ(·) or based on a kernel formulation).
As commented before, the Parzen estimator converges, under
non very restrictive assumptions, to the actual value σ(x) as M
tends to infinity ([23], [24]). A too reduced number of samples
M , or a non appropriate choice for weighting factors Γ(·, ·),
may translate into a degraded estimation of σ(x), which will
not affect the probabilistic properties of the obtained bounds
(that are guaranteed by Theorem 1), but will lead to more
conservative bounds. We also notice that an additional set of
N i.i.d samples is required to compute the scaling factor γ̄ in
Algorithm 2.

VI. NUMERICAL EXAMPLE: KERNEL FINITE FAMILIES

We revisit now the numerical example proposed in Section
II. For the predictor T (·) we consider a radial basis function
kernel k(xa, xb) = 50exp(− |xa−xb|

2

0.2 ), and for the estimator
σ̂(x) the Parzen estimator in (10), where M = 2, 065 and the
pairs {(ỹi, x̃i)}Mi=1 are i.i.d. samples from PrW. We consider
a family of weighting functions Γ(x, z) = exp(−λ|x− z|),
where λ ∈ [10]. Thus, the finite family F consists of each of



the nF = 10 possible pairs (Tj(·), σ̂j(·)) that can be obtained
with the nF values considered for the hyper-parameter λ using
the methodology proposed in Section V. Setting ε = 0.05,
δ = 10−6 and nF = 10, we obtain from Theorem 1 and
Lemma 1 that the choice N = 2407 and r = 60 is sufficient
to obtain a probabilistic uncertainty quantification valid for all
the members of the family. The value of λ minimizing the
size of the obtained probabilistic bounds is attained at λ = 1.
The resulting scaling parameter is γ̄ = 2.15. See Figure 2 for
a comparison of the results obtained for the same validation
set that was used to generate Figure 1. The ratio of violation
in the validation set for the proposed finite family approach
was 0.0332, whereas it was 0.0511 for the exact probabilistic
bounds.
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Fig. 2. Probabilistic upper bounds obtained by means of a finite
family of kernel estimators, Algorithm 1 bounds, and exact bounds. We
notice that the new probabilistic bounds are modulated by the estimated
value σ̂(x).

VII. CONCLUSIONS

In this paper, we proposed a methodology to obtain a prob-
abilistic upper bound on the absolute value of the prediction
error via a sample-based approach. We provided a series
of approaches of increasing complexity. All the proposed
techniques share the desirable characteristic of requiring a
number of observations which is independent of the prediction
model complexity. This is made possible by the exploitation
of a probabilistic scaling scheme.
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