
29 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Dataflow Restructuring for Active Memory Reduction in Deep Neural Networks / Cipolletta, A.; Calimera, A.. - 2021-
:(2021), pp. 114-119. ((Intervento presentato al convegno 2021 Design, Automation and Test in Europe Conference and
Exhibition, DATE 2021 nel 2021 [10.23919/DATE51398.2021.9473965].

Original

Dataflow Restructuring for Active Memory Reduction in Deep Neural Networks

Publisher:

Published
DOI:10.23919/DATE51398.2021.9473965

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2921765 since: 2021-09-07T11:06:34Z

Institute of Electrical and Electronics Engineers Inc.

Dataflow Restructuring for Active Memory
Reduction in Deep Neural Networks

Antonio Cipolletta, Andrea Calimera
Politecnico di Torino, 10129 Torino, Italy

Abstract—The volume reduction of the activation maps produced
by the hidden layers of a Deep Neural Network (DNN) is
a critical aspect in modern applications as it affects the on-
chip memory utilization, the most limited and costly hardware
resource. Despite the availability of many compression methods
that leverage the statistical nature of deep learning to approximate
and simplify the inference model, e.g., quantization and pruning,
there is room for deterministic optimizations that instead tackle
the problem from a computational view. This work belongs to this
latter category as it introduces a novel method for minimizing
the active memory footprint. The proposed technique, which is
data-, model-, compiler-, and hardware-agnostic, does implement
a functional-preserving, automated graph restructuring where
the memory peaks are suppressed and distributed over time,
leading to flatter profiles with less memory pressure. Results
collected on a representative class of Convolutional DNNs with
different topologies, from Vgg16 and SqueezeNetV1.1 to the recent
MobileNetV2, ResNet18, and InceptionV3, provide clear evidence
of applicability, showing remarkable memory savings (62.9% on
average) with low computational overhead (8.6% on average).

I. INTRODUCTION

The astonishing achievements made by Deep Learning (DL) in
the last decade is driving the growth of intelligent applications
where Deep Neural Nets (DNNs), mainly Convolutional DNNs
(CNNs), serve as the backbone of complex data reasoning tasks.
With the intention to get more improved characteristics and
better performance of the whole data-analytics stack, the quest
for neural models that can be ported and distributed across
different hardware architectures, such as high-end CPUs for
office applications, low-power CPUs for the mobile segment,
and tiny MCUs deployed onto the end-nodes of the IoT, accel-
erated the development of multi-stage pipelines where not just
accuracy, but also non-functional metrics, memory utilization
in particular, play as concurrent variables to optimize.
The compression of the model size, i.e., number and size
of the learned weights, had always been considered the key
aspect of the memory optimization problem. However, looking
at how DNNs evolved, the reduction of memory taken by
the intermediate results produced during inference, i.e., the
activation maps of the hidden layers, has become even more
concerning. That is due to two main factors. First, the resolution
of multi-dimensional input data grew at a fast pace, with
much more information to process; computer vision tasks are
examples here. Second, the search for more efficient DNNs,
often built with hardware-aware auto-ML tools, is leading to
more irregular neural architectures [1] where the weight-to-
activation ratio reduces substantially; for instance, SwiftNet [2],
one of the winning submissions of the Visual Wake Words

competition [3], takes 250K memory words for the weights
and 200K for the activation maps1.
A way to attack the problem is to leverage the statistical nature
of DL and the intrinsic redundancy of DNNs. The lowering of
the arithmetic precision [4], [5], or the pruning of weak portions
of the model that contribute less to the prediction accuracy [6],
[7], are common options today. These techniques are data-
driven and come with a high degree of uncertainty. They
must be embedded as part of the training stage, increasing the
cardinality of the optimization space with a negative impact on
convergence. Moreover, they tend to wear away model accuracy
as the information learned by the model is gradually removed
until the design specs are met. Other methods belonging to a
different class tackle the memory reduction problem from a
computational perspective, namely, applying data-independent
transformations during the compilation pipeline. For instance,
by optimizing the execution flow of the tensor graph [8], or by
locally accelerating the arithmetic operators [9]. The techniques
are training-free, and hence model- and task-agnostic, they are
fast and predictable, and can be superimposed to data-driven
optimizations without further loss of information.
This work belongs to the second class as it introduces a
restructuring methodology aimed at minimizing the volume of
concurrent tensors processed within memory-critical regions
of the dataflow graph. The idea was born from the simple
observation that, for many DL models, the total active memory
reaches its peak value for a limited amount of time during
the processing of few layers2, whereas it is remarkably lower
before and after. The plots reported in Fig. 1 confirm the trend
for three popular CNNs. This translates into a source of waste.
The fixed-size blocks allocation strategies adopted in modern
neural compilers reserve a memory pool big enough to host the
activation maps of the highest demanding concurrent layers,
but such space remains underutilized for most of the inference
time. Intuitively, one could redistribute the memory peaks over
less critical layers to alleviate the memory pressure and get
more balanced profiles. That is precisely the purpose of the
proposed strategy, implemented through (i) a tunable algorithm
that seeks for critical, i.e., memory demanding, sub-graphs to be
restructured and (ii) graph-rewriting procedures that implement
functional preserving topology transformations based on the
concept of tensor splitting and independent processing.
As key features, the proposed approach can work on any
DNN, without the need for specialized code or components,

1https://github.com/newwhitecheng/vwwc19-submission
2In this work, the terms layer and operator are used interchangeably.

0 10 20 30 40 50

Processed Layers

0

200

400

600

800

1000

M
em

or
y[
K
B
]

(a) ResNet18. Peak Memory 980KB.

0 20 40 60 80 100

Processed Layers

0

500

1000

1500

M
em

or
y[
K
B
]

(b) MobileNetV2. Peak Memory 1470KB.

0 10 20 30

Processed Layers

0

2000

4000

6000

M
em

or
y[
K
B
]

(c) Vgg16. Peak Memory 6272KB.

Fig. 1: Memory profile of three different CNNs during the forward pass of a 3x224x224 image.

and is orthogonal to other data-/hardware-driven optimizations.
In fact, differently from similar previous works, e.g., [10],
our solution plays at a higher level of abstraction and with a
modular granularity, managing tensors as abstract data-objects
regardless how they are actually packed, stored, and processed.
In this sense, it breaks free of those external dependencies
imposed by software and hardware implementations, meet-
ing flexibility and portability. A thorough assessment of the
proposed technique on five state-of-the-art ConvNet architec-
tures — VGG-16, ResNet18, InceptionV3, MobileNetV2, and
SqueezeNetV1.1 — quantifies the memory reduction achieved
(62.9% on average) as well as the computational overhead
introduced (8.6% on average).

II. BACKGROUND

DNNs, and in general tensor graphs, are modeled as dataflow
graphs (DFGs) with nodes representing the computational op-
erators while edges the data-dependencies. Each node is fed
with at least one tensor and produces one output tensor. Fig. 2
graphically depicts an example for a residual block used in
ResNet [11]. The DFG is static if the inner tensors have time-
invariant sizes, and the execution flow is known at compilation-
time; it is dynamic if the execution-flow, and so the size of the
tensors, can change at run-time. This work deals with static
graphs, leaving its dynamic extension for future works.
Both resource scheduling and binding run at compile time.
Specifically, the compiler does the schedule through a topo-
logical sort operation, then it runs a liveness analysis for
the tensors and estimates the amount of memory to allocate.
The lifetime of a tensor is defined as the difference between
the end-time of its latest consumer and the start-time of its
producer. Non-overlapping tensors can share the same portion
of memory, enabling reuse. As shown in Fig. 2, the sum of
overlapping tensors in a given cycle sets the active working
memory, and the cycle with the highest memory requirement,
i.e., the peak memory of the execution flow, defines the total
memory footprint. Intuitively, both the graph topology and the
size of tensors affect the amount of memory usage.

III. RELATED WORKS

This section gives an overview of existing data-independent
optimization strategies. Table I shows a taxonomy based on
the level of abstraction (i.e., graph-, operator-level), the main
optimization objective (i.e., Memory, Latency), and the target
hardware (i.e., CPU, GPU, Custom ASIC or FPGA). The

Schedule: < L0, L1, L2, L3 >

T0 : 4

T1 : 6

T2 : 4

T3 : 4

Active

Memory
4 10 14 12

L0

Add

4

L1

Conv

6

L2

Conv

4

L3

Add

4

Fig. 2: Dataflow graph of a residual block [11] (left) and the
conflict graph of its tensors Ti (right). Each node is labeled
with an ID, its operation, the size of the output tensor.

level of abstraction reflects the hierarchical strategy adopted by
modern DL frameworks and compilers [12], [13] to translate
high-level dataflow graph into executable code. At the graph-
level, the transformations are hardware-independent and aim
at orchestrating the flow of macro-operations; at the operator-
level, the transformations optimize the computing scheme of
each operator, obtaining a code tailored to a specific plat-
form, e.g., CPUs with shared memories and Single Instruction
Multiple Data (SIMD) units, or GPUs with private memories
and parallel cores, or accelerators with a distributed memory
hierarchy and tightly coupled processing elements.

Graph-level transformations manipulate the dataflow by remov-
ing, modifying, or adding nodes while preserving the over-
all functionality. Specifically, they make use of hand-crafted
graph rewriting rules to lower the latency of the scheduled
dataflow [14] or to reduce the peak memory consumption [8]
leveraging the algebraic properties of the operators. For in-
stance, a graph pattern with a concatenation followed by a
convolution can be rewritten as a sum of partial convolutions.
Differently from these rule-based approaches, we exploit the
spatial property of an operator rather than its algebraic behavior,
thus obtaining solutions that work for any DL model.

Graph-Level Op-Level Objective Platform

[8] x M Any
[14] x L Any

[9], [15], [16] x L CPU/GPU
[17] x x L CPU/GPU

[10], [18] x x M Custom
Ours x M Any

TABLE I: Taxonomy of related works.

L0

Conv

2

L1

Conv

4

L3

Pool

2

L2

Conv

8

L4

Conv

2

Schedule: < L0, L1, L2, L3, L4 >

(a) Toy Network DFG Initial

L0

Conv

2

L6

Split

1

L7

Split

1

L2*

Conv

4

L2**

Conv

4

L3*

Pool

1

L3**

Pool

1

L5

Cat

2

L4

Conv

2

L1*

Conv

2

L1**

Conv

2

Schedule: < L0, L6, L1*, L2*, L3*, L7, L1**, L2**, L3**, L5, L4 >

(b) Toy Network DFG End

0 1 2 3 4 5 6 7 8 9 10 11

Processed Layers

0.0

2.5

5.0

7.5

10.0

12.5

M
em

o
ry

(a)

(b)

(c) Initial and end model memory profiles

Fig. 3: Example of Dataflow restructuring on a sequential DFG.

Operator-level transformations optimize the multi-loop imple-
mentation of a given operator in order to improve its perfor-
mance, e.g., improve caches utilization. They can be operated
automatically, using a code synthesis process [9], or manually,
through a hardware conscious code restyling [15], [16].
Operator- and graph-level transformations complement each
other and should not be seen as competitors. There exist
hybrids that play as cross-level optimizations indeed. They are
mainly based on the concept of operator fusion, by which the
processing of subsequent chained operators is rearranged in a
depth-first manner. For instance, given an operator, its output
values (i.e., the pixels of the output map) are consumed by the
next operator as soon as they are ready, and not after the whole
output (i.e., the entire output map) is completed. The result
can be conceived as an optimized graph with a restructured
topology enabled by the availability of a custom intra-layer
operator. In [17], the authors proposed a framework that first
identifies the operators that can be aggregated, then it generates
a fused code tailored for CPUs or GPUs. Due to the memory
architecture of these platforms, the layer fusion brings savings
only when applied to a convolutional with the subsequent
element-wise and pooling operators. Therefore, the degree of
optimization is strictly bounded by the types of operators in
the dataflow. The authors of [10] and [18] introduced more
aggressive strategies enabled by custom hardware architectures
with special local buffers. In these cases, multiple convolutional
operators can be fused together, empowering the reuse of the
on-chip memory ([10]) and improving performance ([18]).
The resulting graph restructuring is coupled with internal loop
organization of the operator. By contrast, our proposal does
formulate the restructuring process at the graph-level only,
breaking the dependence from other cross-layer strategies,
which, however, can be applied later, depending on the specific
target platform and other constraints.

IV. PEAK MEMORY REDUCTION

The objective of the proposed optimization is to seek, suppress,
and distribute the memory peaks starting from a valid schedule
of the DFG. This goal is accomplished through a methodology
that first identifies those critical sub-graphs with the highest
memory requirement, and then applies a localized, memory-
driven topology restructuring based on tensor splitting and

independent processing. The new topology preserves the same
functionality of the original model, without further updates on
the inner weights of the operators, but it shows many smaller
independent branches that are less memory and computational
dense. Each of these branches is built to work on a spatial
subset of the original input tensor(s) and to contribute to the
computation of a slice of the output tensor. The resulting output
slices are concatenated to build the main outcome.

Before detailing the algorithmic implementation, we give an
abstract view of the problem. For such purpose, Fig. 3a depicts
the optimization process showing the DFG of a sequential
model before (a) and after (b) the restructuring process, together
with the resulting memory profiles (c). The original memory
footprint (12 units in the example) is dictated by operator L2,
and to lower it down encompasses the reduction of the active
tensors handled by L2 itself. This reduction can be achieved
by splitting L2 and propagating the transformation backward
to L1 and forward to L3. The resulting DFG has two smaller
(in terms of activations) independent branches: from L6 and
L7 (the newly inserted operators in charge of splitting the
tensor produced by L0), to L5 (which concatenates the output
slices produced by L3∗ and L3∗∗). Within the two branches,
there are copies of the original operators that work on tensors
halved in size. To be noted that the two branches are two
times faster than the initial monolithic path (except for a small
overhead discussed later in this section), hence latency gets
almost the same. Even more important, they are independent;
namely, they consume and produce disjoint tensors, and can
be therefore scheduled in sequence to break lifetime conflicts
and to maximize the memory reuse. As shown in the plot, the
obtained memory profile shows a lower peak value and, thus,
a smaller memory footprint (33% savings).

There are essential aspects to be considered in order to achieve
the desired savings, mainly originating from a key step of the
restructuring phase: the optimal placement of the fork-points,
implemented by the split operators (L6 and L7), and the join-
point(s), implemented by the concatenation operator (L5). They
define the critical region to be restructured and their function
is to create independent processing paths between surrounding
points in the graph with a lower memory pressure (L0 and
L4 in the example). Do not find the appropriate anchor points

h

cin

cout

Fig. 4: Splitting a stencil operator into two smaller independent operators.

L4

Split
L5

Split

L2

Conv

L1

Conv

L3

Cat

L4*

Split
L5*

Split

L1

Conv

L3

Cat

L2*

Conv
L2**

Conv

Fig. 5: Graph-rewriting that propagates
the split operators in the DFG.

would make the restructuring failing. For instance, splitting
L2 alone does not bring any savings as the total size of
the overlapping tensors would be the same as the original
DFG. Moreover, the presence of fork-points and join-points
creates further dependencies with neighboring tensors. In fact,
the input slices (provided by the split operators) and the
output slices (collected by the concatenation operator) must
be kept alive when processing each independent branch. In
addition, one should not forget that several operators, such as
convolution and pooling, are stencils with overlapping windows
that lead to redundant computations and duplicated elements
when creating the independent branches. Making the produced
branches independent of each other requires the replica of a
few data from the original tensor. An example is shown in
Fig. 4 for a stencil operation with a kernel window of size
2 × 2. The output tensor is split along the vertical direction,
generating two smaller operators; each of them operates on
a private portion of the original input tensor, but such two
portions must have duplicated values (grey-shaded elements
in the picture) to preserve the arithmetic equivalence. When
the split operator is propagated across a path, those duplicated
elements are computed several times by different operators,
resulting in redundant computations. Where the fork- and join-
points are placed affects the length of the independent branches,
hence the number of redundant operations. Last but not least,
the number of independent branches, i.e., the number of splits,
plays an important role in determining the potential savings and
the cost of the fork- and join-points.
Based on these considerations, it is evident that a multi-
objective optimization approach is needed. However, formu-
lating the problem in a closed-form might result impractical
due to the many hyper-parameters of the graph and the huge
cardinality of the search space. Therefore, we provide the
restructuring algorithm that can serve as an engine for different
greedy optimization strategies (one of which will be shown as
part of the experimental section).

A. Restructuring Algorithm

Algorithm 1 reports the pseudocode of the proposed restructur-
ing algorithm, named RESTRUCTURE. The input parameter
α is a scalar controlling the extension of the sub-graph to be
restructured, while n slices is a pair {w, h} indicating the
number of splits applied in the width and height dimensions of

Algorithm 1 Restructuring Algorithm

1: procedure RESTRUCTURE(DFG, α, n slices)
2: critical set ← explore(DFG, α)
3: subDFG ← subgraph(DFG, critical set)
4: reverseVisit(subDFG, n slices)
5: end procedure
6:
7: procedure EXPLORE(DFG, α)
8: schedule ← sort(DFG)
9: lifetimes ← getLifetimes(DFG, schedule)

10: memory profile ← getMemProfile(schedule)
11: peak memory ← max(memory profile)
12: for all node ∈ DFG.nodes do
13: criticality[node] ← computeCriticality(
14: lifetimes, node, memory profile)
15: end for
16: critical set ← {node ∈ DFG.nodes,
17: s.t. criticality[node] == peak memory}
18: while ∃ node ∈ fanin(frontier(DFG, critical set))
19: s.t. criticality[node] ≥ α · peak memory do:
20: critical set ← critical set ∪ {node}
21: end while
22: while ∃ node ∈ fanout(frontier(DFG, critical set))
23: s.t. criticality[node] ≥ α · peak memory do:
24: critical set ← critical set ∪ {node}
25: end while
26:
27: return critical set
28: end procedure
29:

the tensors. At first, the EXPLORE procedure is invoked to seek
the set of nodes included in the critical sub-graph (line 2), i.e.,
those to be restructured. Here is where the fork- and join-points
discussed in the previous sub-section get defined. Then, the
same nodes are projected on the DFG, and the critical sub-graph
is isolated (line 3). Finally, the sub-graph is visited in reverse
topological order operating the graph-rewriting (lines 4). It is
during this stage that nodes are split, and the independent
branches are created. Specifically, the output tensors of the sub-
graph are split according to the values in n slices; then, during
the backward traversal, the split operators are propagated from
the output to the input tensors of each node applying the graph-
transformation shown in Fig. 5. To compute automatically the
parameters of the split operators, we developed a symbolic
evaluation engine on top of a domain-specific language (DSL)
that associates a functional specification to each DL operator.
In the prologue of the EXPLORE procedure (lines 8-9), the

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

0.30

0.35

0.40

0.45

0.50

0.55

N
o
rm

a
li
ze
d
M
em

o
ry

0.50

0.75

1.00

1.25

1.50

(a) Vgg16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

0.4

0.5

0.6

0.7

0.8

0.9

0.50

0.75

1.00

1.25

1.50

(b) MobileNetV2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

0.4

0.5

0.6

0.7

0.8

0.9

0.50

0.75

1.00

1.25

1.50

N
o
rm

a
li
z
e
d
O
P
s

(c) SqueezeNetV1.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

0.6

0.7

0.8

0.9

1.0

1.1

N
o
rm

a
li
ze
d
M
em

o
ry

0.50

0.75

1.00

1.25

1.50

(d) ResNet18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

α

0.5

0.6

0.7

0.8

0.9

1.0

0.50

0.75

1.00

1.25

1.50

N
o
rm

a
li
z
e
d
O
P
s

(e) InceptionV3

Fig. 6: Normalized memory and number of operations for α ∈ [0.1, 0.9] and n slices={2h, 2w}.

DFG is scheduled and the lifetime of each tensor extracted.
These data are used to calculate the total working memory
and the peak value (lines 10-11). Each node is labeled with a
criticality index equal to the total amount of memory active
during its processing (lines 12-15). All the nodes with a
criticality index equal to the peak memory take part to the initial
critical set (lines 16-17). The frontier of the critical set is made
up of those critical nodes with in-/out-degree edges from/to
nodes outside the critical set. The extension of the critical
set continues using α as the driving parameter. Specifically,
nodes at the boundary of the frontier can join the critical set if
their criticality is greater or equal to α · peak value (lines 18-
25). The expansion ends if no other nodes can join the critical
set, namely, when the remaining nodes have a criticality lower
than α · peak value. Therefore, α can be used to control the
extension of the critical region, i.e., the placement of the fork-
and join-points, and hence the efficiency of the restructuring.

V. RESULTS

We tested the proposed optimization on five state-of-the-art
CNN architectures. The goal is to quantify the savings and
prove the efficacy on models with different topologies. Within
the selected benchmarks, VGG-16 is taken as representative of
large and computationally intensive networks with conventional
single-layer connectivity; ResNet18, with residual connections,
and InceptionV3, with inception blocks, can represent models
with irregular connectivity; MobileNetV2 and SqueezeNetV1.1
are more compact networks designed for mobile platforms. We
provide a parametric analysis taking into consideration the two
main parameters of the restructuring algorithm (Sec. IV-A): α
in the range [0.1, 0.9] - step 0.1; n slices in {[2, 4]× [2, 4]} -
step 1 - along the two spatial directions height (h) and width
(w), for a total of 9 permutations.
A first set of the collected results is reported in Fig. 6. The plots
show the normalized peak memory (in red) and the normalized

number of operations (in blue) as functions of α under a
default value for n slices={2h, 2w}. As a general trend, the
memory usage gets smaller with α, until it reaches a global
minimum, indicated by αopt. Tab. II collects a summary of such
optimal points reporting the memory savings achieved and the
corresponding computing overhead (normalized with respect to
the original models). Averaging over the five CNNs, memory
savings reach 54.3%, with an overhead of 4.1%. The technique
performs best on VGG-16 (67.5% of savings, 1.1% overhead)
thanks to a linear topology with no reconvergent paths, while
it gets slightly worse on ResNet18 (41.6% of savings, 11.9%
overhead) due to residual blocks that complicate the topology
with more overlapping tensors and more constraints to the
restructuring process. To notice that in four networks (i.e.,
all but SqueezeNetV1.1), configurations with α=0.9 already
achieve a significant improvement (60% on average). That
is due to a highly irregular memory profile with peaks that
fall steeply. However, larger memory savings require a proper
selection of the critical sub-graph, especially for networks
with a complex topology. In fact, the min-max distance of
the memory savings is relatively high (> 30%) for all the
CNNs under analysis. This observation further motivates the
importance of an optimal search.

The point αopt is the break-even point under which the critical
sub-graph (i) has a light frontier that enables enough data reuse,
and (ii) is wide enough to catch several peaks of the model
without resulting in a large number of additional operations. For
α greater than αopt, the critical sub-graph may get too small,
and this may affect the memory savings negatively for two
reasons. First, being the original global peak suppressed by the
restructuring procedure, other local peaks outside the critical
region of interest may now emerge as the new global ones.
Second, the increase in the lifetime for large tensors at the fork-
and join-points could overcome the benefits of lighter branches.

Network αopt
Memory

Savings [%]
Computational
Overhead [%]

VGG-16 0.4 67.5 1.1
MobileNetV2 0.3 60.5 3.0

SqueezeNetV1.1 0.2 48.4 3.1
ResNet18 0.4 41.6 11.9

InceptionV3 0.6 53.5 1.4

Average 54.3 4.1

TABLE II: Memory saving and computational overhead for
α = αopt and n slices = {2h, 2w}.

For α lower than αopt, the critical sub-graph gets larger than
required, covering too many operators and thereby enlarging
the chain of backward rewritings substantially. This long chain
is a source of redundancy which translates into higher memory
demand and more arithmetic operations.
Table III completes the parametric analysis bringing the param-
eter n slices into play. Specifically, it shows the optimal setting
for n slices when α = αopt. A comparison between Tables III
and II demonstrates that freeing the values in n slices leads to
achieving larger memory savings (62.9% vs. 54.3% on average)
at the cost of some computational penalty (8.6% vs. 4.1%
on average). As general trend, with more slices the memory
consumed by each branch gets smaller at the cost of redundant
computations. However, the memory-vs-compute trade-off is
more complex. If, after the graph restructuring, the new peak
memory falls outside the critical sub-graph, increasing the
values in n slices does introduce more computational overhead
without further savings. On the contrary, if the critical-sub
graph still contains the peak dictating the total memory, then
the effectiveness of varying n slices over α is highly biased by
the topology. How to infer the optimal setting is an open issue.
However, this does not represent a major impediment since the
exploration of various settings is fast and efficient. According
to the measurements of our single core implementation on
a machine powered by an Intel i7-8700K, the sweep of the
restructuring algorithm over nine α values completes in 82s for
SqueezeNetV1.1 (fastest) and 375s for InceptionV3 (slowest).
As a final remark, we further emphasize the orthogonality of
the proposed graph-level restructuring to other optimizations.
Rule-based approaches that leverage hand-written optimizations
based on specific DNN structures are still as effective as on
the initial graph and can be applied over the newly created
branches. At the same time, it is still possible to exploit
either automatic code synthesis methods [9] or vendor-specific
libraries [15], [16], freeing the user from the considerable
burden of developing additional operator-level optimizations for
all possible target platforms.

VI. CONCLUSION

This work introduced a functional-preserving graph restruc-
turing technique to reduce the memory footprint of the hid-
den activation maps of a Deep Neural Network. Regions
of the model contributing to the peak memory consumption
are identified and rewritten by means of tensor splitting and
independent processing. A thorough analysis conducted on a

Network αopt n slices Memory
Savings [%]

Computational
Overhead [%]

VGG-16 0.4 2h, 4w 75.0 2.3
MobileNetV2 0.3 3h, 4w 77.3 7.8

SqueezeNetV1.1 0.2 2h, 2w 48.4 3.1
ResNet18 0.4 3h, 3w 48.8 25.7

InceptionV3 0.6 3h, 3w 64.9 3.9

Average 62.9 8.6

TABLE III: Computational overhead and memory saving for
the optimal setting of n slice when α = αopt.

representative set of DNNs demonstrates broad applicability,
reporting remarkable memory savings (62.9% on average) with
low computational overhead (8.6% on average). We expect that
the joint combination of the proposed restructuring process with
other graph- and operator-level transformations, together with
alternative search strategies, will open to further optimizations
and more efficient tensor graph computing.

REFERENCES

[1] H.-P. Cheng et al., “Msnet: Structural wired neural architecture search
for internet of things,” in Proc. of the IEEE Conference on Computer
Vision Workshops, 2019, pp. 2033–2036.

[2] H.-P. Cheng et al., “Swiftnet: Using graph propagation as meta-
knowledge to search highly representative neural architectures,”
arXiv:1906.08305, 2019.

[3] A. Chowdhery et al., “Visual wake words dataset,” arXiv:1906.05721,
2019.

[4] B. Jacob et al., “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” arXiv:1712.05877, 2017.

[5] V. Peluso et al., “Integer ConvNets on Embedded CPUs: Tools and
Performance Assessment on the Cortex-A Cores,” in Proc. of the IEEE
Conference on Electronics, Circuits and Systems, 2019, pp. 598–601.

[6] J. Yu et al., “Scalpel: Customizing DNN pruning to the underlying hard-
ware parallelism,” in Proc. of the ACM/IEEE International Symposium
on Computer Architecture, 2017, pp. 548–560.

[7] M. Grimaldi et al., “Optimality Assessment of Memory-Bounded
ConvNets Deployed on Resource-Constrained RISC Cores,” IEEE Access,
vol. 7, pp. 152 599–152 611, 2019.

[8] B.-H. Ahn et al., “Ordering chaos: Memory-aware scheduling of irregu-
larly wired neural networks for edge devices,” in Proc. of the Conference
on Systems and Machine Learning, 2020, pp. 44–57.

[9] T. Chen et al., “Learning to optimize tensor programs,” in Advances in
Neural Information Processing Systems, 2018, pp. 3389–3400.

[10] K. Goetschalckx et al., “Breaking High-Resolution CNN Bandwidth Bar-
riers With Enhanced Depth-First Execution,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 323–331,
2019.

[11] K. He et al., “Deep Residual Learning for Image Recognition,” in Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[12] T. Chen et al., “TVM: An automated end-to-end optimizing compiler for
deep learning,” in Proc. of the 13th USENIX Symposium on Operating
Systems Design and Implementation, 2018, pp. 578–594.

[13] N. Rotem et al., “Glow: Graph lowering compiler techniques for neural
networks,” arXiv:1805.00907, 2018.

[14] Z. Jia et al., “Optimizing DNN Computation with Relaxed Graph Substi-
tutions,” in Proc. of the Conference on Systems and Machine Learning,
2019, pp. 27–39.

[15] S. Chetlur et al., “cudnn: Efficient primitives for deep learning,”
arXiv:1410.0759, 2014.

[16] L. Lai et al., “Cmsis-nn: Efficient neural network kernels for arm cortex-
m cpus,” arXiv:1801.06601, 2018.

[17] N. Weber et al., “Brainslug: Transparent acceleration of deep learning
through depth-first parallelism,” arXiv:1804.08378, 2018.

[18] Q. Xiao et al., “Exploring heterogeneous algorithms for accelerat-
ing deep convolutional neural networks on FPGAs,” in Proc. of the
ACM/EDAC/IEEE Design Automation Conference, 2017, pp. 1–6.

