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Stokesian dynamics approach
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Abstract

A method for the simulation of aggregation and breakup processes in colloidal

particle suspensions is presented. The method combines a Monte Carlo algo-

rithm to determine, on the basis of probabilistic considerations, the sequence

of aggregation and breakup events, and a Discrete Element Method, built in

the framework of Stokesian dynamics and contact mechanics, to accurately re-

produce them. Liquid-solid suspensions subject to a uniform shear stress are

investigated. The model is seen to be able to reproduce the typical dynamic

steady state which is observed in colloidal suspensions under severe shearing,

in which the effects of aggregation and breakup balance each other. The struc-

tural properties of the aggregates and the dynamics of the aggregation and

breakup phenomena are characterized in detail. Both fragmentation and ero-

sion are seen to contribute to the breakup process, which is characterized by an

exponent similar to the one reported in the literature for compact clusters.
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1. Introduction

The dynamics of a destabilized colloidal suspension subject to strong me-

chanical agitation initially proceeds through the shear-induced aggregation of

the primary particles of the disperse phase. Subsequently, when the size of the

aggregates becomes so large that the hydrodynamic stress acting on them ex-5

ceeds their cohesive strength, the biggest clusters start breaking up and, in the

end, a dynamic steady state condition may be reached, in which the properties

of the suspension do not change any longer and the effects of aggregation and

breakup balance each other. The evolution toward this dynamic steady state

is typical of colloidal processes conducted under intense stirring and it was ev-10

idenced experimentally by a number of researchers, both under simple laminar

flow configurations [1–5] and in complex turbulent flow fields [6–9]. This type of

conditions, in which shear-induced aggregation and breakup act simultaneously,

are usually achieved in suspensions at large Péclet number, where the role of

Brownian motion is negligible in comparison to the effects of the shear flow.15

Such situations are relatively common in the colloidal domain and may occur

in flocculation [10–13], polymer processing and compounding [14, 15], flow of

complex fluids [16–19]. Even in the production of micro and nanoparticles by

wet route, shear-induced aggregation and breakup may play a significant role in

determining the properties of the product, although in parallel with the nucle-20

ation and growth of the particles, and the Brownian aggregation at the smallest

scales [20].

The dynamics of colloidal systems subject to aggregation and breakup is

usually calculated by solving the Population Balance Equation [21] (PBE), a

differential equation that describes statistically the change of the properties of25

a population of particles (e.g., size, mass, aspect ratio, composition, ...). The

approach dates back to the analysis of fast coagulation by Smoluchowski, where

the investigated property was the number of primary particles of each aggregate.

Subsequently, the approach was made more general and applicable to any of

the properties of a population of particles. In this general form the PBE is30
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largely used to describe aggregation/breakup processes in colloidal dispersions.

In most cases a single internal variable is considered (usually particle volume

in aggregation-breakup systems) [22–26] and, indeed, this is sufficient if the

information on particle morphology is not required and all the phenomena of

interest involve only volume or size. However, in some cases one may need other35

variables to describe the internal structure of the aggregates and a number of

bivariate PBE was indeed applied to the study of aggregation and breakup. In

such cases, the most common choice of internal variables is particle volume (or,

equivalently, number of primary particles of the aggregate) and fractal dimension

[27–29], or particle size and fractal dimension [30, 31].40

The population balance method has a relatively small computational cost,

but it is not completely predictive, in that it needs models for the rates of ag-

gregation and breakup, and for the change of shape and morphology of the ag-

gregates. Various approaches can be used to infer such information. Bäbler and

coworkers, for instance, measured the breakup rate in a homogeneous isotropic45

turbulence by following aggregates along Lagrangian paths and assuming that

breakup occurs instantaneously as soon as the aggregates experience a hydro-

dynamic stress exceeding a critical threshold value [32, 33]. Zaccone et al. [34]

used a crack propagation model to derive a scaling law between size and critical

stress for varying aggregate fractal dimension. Drossinos et al. [35] developed an50

algorithm for random binary fragmentation, by which they estimated breakup

frequencies and the size distribution of the daughter particles.

A more predictive description of the processes of aggregation and fragmen-

tation can be obtained from Discrete Element Methods (DEMs), in which the

trajectory of each primary particle of the suspension is computed by solving its55

equation of motion and considering all the forces acting on it (including fluid

dynamic, contact and colloidal interactions). When this method is applied to

colloidal suspensions, however, the implementation of fluid dynamic interaction

may become critical, because of its complex and long-ranged nature, which is

very different from the short-ranged contact forces typical of the granular solids60

for which DEM codes were originally developed. For this reason the use of
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DEMs for the study of colloidal processes is normally based on drastic sim-

plifications of the fluid dynamic interaction. The most common approach is

the free draining approximation, in which each particle interacts with the sur-

rounding liquid as it were alone in the system [36–40], thus neglecting all fluid65

mediated particle-particle interactions. These, however, were seen to strongly

influence aggregation efficiencies [10, 41–43], stress distribution inside the aggre-

gates [15, 44, 45], and consequently their mode of aggregating, [13, 46] breaking

up and restructuring [47–49].

The aim of this work is to present and apply a method that takes into ac-70

count all the relevant particle-particle interaction and which is able to simulate

in detail the dynamics of a colloidal suspension at a reasonable computational

cost. We investigate the evolution of a large population of colloidal particles sus-

pended in a liquid medium and subject to a uniform shear flow. To circumvent

the problem of the exceedingly high computational cost of the DEM simula-75

tions, the developed method combines a Monte Carlo approach to determine,

on the basis of probabilistic considerations, the sequence of aggregation and

breakup events and the clusters involved, and a Discrete Element Method, built

in the framework of Stokesian Dynamics, to accurately reproduce the event. In

this way the DEM simulations only involve the relatively small number of pri-80

mary particles composing the two clusters involved in an event, thus allowing

us to avoid to track simultaneously all the primary particles of the population

throughout the process. The DEM model is able to evaluate the fluid-dynamic

stress acting on each monomer and to describe properly the inter-particle inter-

actions that arise from van der Waals attraction and elastic deformation at the85

contact between the solid surfaces.

A preliminary version of the method was used previously to investigate a

purely aggregating system [46]. However, that work was focused mostly on

the outcomes of the model, whereas the approach and the model behind were

not described in detail. In this work the method is presented in depth and90

we report the results of simulations for suspensions in which aggregation and

breakup occur simultaneously, with a particular regard to the determination
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of size distribution and morphologies of aggregates. As discussed before, our

approach is quite different from the other ones reported in the literature for this

type of problems since it makes it possible to model with great accuracy the95

evolution of a large population of aggregates. So far, in fact, Stokesian dynamics

has been used solely to model events involving one or two aggregates at most,

whereas large populations have been generally described by adopting simplified

fluid dynamics models.

2. Methods100

The evolution of a colloidal suspension is determined by a sequence of distinct

events of aggregation and breakup. In a uniform shear flow all such events are

driven by encounters between the suspended particles, that is, situations where

two particles approach so closely that the probability of collision becomes sig-

nificant. (In the following we will use the term particle to identify any entity105

capable of moving independently in the fluid. Consequently, this term includes

both aggregates and free primary particles, i.e., primary particles which do not

belong to any aggregate). If an encounter actually ends up in the collision of the

two particles and the attractive colloidal forces are strong enough to keep them

in contact, the process leads to the formation of a single stable daughter aggre-110

gate, and it will be referred to as an aggregation event. If the formed aggregate

is very large, the accumulation of hydrodynamic stresses on its structure may

become so intense to exceed the cohesive forces acting between primary particles

in some points of the structure and the aggregate may split into two or more

fragments [44, 50]. Since the dynamics of breakup is fast when the critical size115

is exceeded [51], in this case we describe the global process (i.e., the sequence

of aggregation and rupture) as a single breakup event. Finally, the situation in

which an encounter does not end up in a collision and the two particles preserve

their individuality will be referred to as a missed collision event. It is worth

observing that the coupling between rupture and aggregation in a single event120

is strictly related to the assumption of a uniform shear flow. In non-uniform
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flow fields breakup may occur independently of aggregation whenever a particle

moves from a region of low strain rate to a region of higher strain rate.

In the present work the dynamics of colloidal suspensions subject to a uni-

form shear flow is simulated by an event-driven, rejection-free Monte Carlo125

algorithm [52], in which the evolution of the particulate system is simulated by

creating an artificial realization of the studied process through the numerical

generation of a sequence of random events, which obeys the same statistical laws

as the physical system [53]. While the expected frequency of encounters can be

evaluated a priori, their outcome (aggregation, breakup or missed collision) is130

established by resorting to an accurate DEM simulation, by which the motion

of all the primary particles composing the involved aggregates is tracked. The

DEM also provides detailed information on the geometry and structure of the

aggregates at the end of the encounter. We applied this model on dilute suspen-

sions: in this condition it is reasonable to consider encounters as binary events,135

i.e., events involving only two aggregates at once.

In order to deal with a reasonably small population of particles, only a small

portion ∆V of the volume of the system is actually simulated, assuming that the

behaviour of the particles in this subvolume replicates the statistical features

of the real suspension as a whole, as originally suggested by Liffman [54]. The140

size of the subvolume can be changed during the simulation, in order to have a

statistically significant number of particles at any time of the process. A simple

shear flow was assumed to act on the suspension with constant and uniform rate

γ̇ = duz

dy . The Brownian motion of the particles was neglected, since the process

occurs at high Péclet numbers (Pe = 6πµa3γ̇/kBT > 105) where convection is145

largely predominant over the thermal motion of the particles.

2.1. Monte Carlo algorithm

To tune the Monte Carlo algorithm, a model is needed to evaluate the pair

encounter frequency between the simulated particles, i.e., the probability for a

certain couple of particles to meet each other in the suspension. To this purpose,150

a precise characterization of an encounter is needed.
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Figure 1 shows two aggregates, i and j, approaching each other in a uniform

shear flow. The aggregates are made of primary particles with radius a. The size

of an aggregate is characterized by its external radius R, which is the maximum

distance between the surface of a primary particle and the center of mass of

the aggregate: R = maxk (|xk − xcm|) + a, where |xk − xcm| is the distance

of the k-th primary particle from the center of mass of the aggregate. If the

two aggregates were solid spheres of radii Ri and Rj and no colloidal force

or lubrication interaction acted between them (as in the original approach by

Smoluchowski for shear coagulation [55]), particle j would eventually collide

with particle i if its center of mass crosses the circular collision cross section of

radius (Ri+Rj), which is shown in grey in Figure 1 and is located on a plane of

constant z far upstream of particle i. The expected rate for this type of collision

in a volume ∆V is:

fij =
4

3
γ̇ (Ri +Rj)

3
cicj∆V (1)

where ci and cj are the number concentrations of particles i and j, both equal

to 1/∆V because only one i-particle and one j-particle are present in the sub-

volume. In our system, however, the irregular shape of the aggregates and the

presence of hydrodynamic interactions strongly reduces the probability of con-155

tact. Hence, crossing the cross-section of size (Ri+Rj) does not necessarily lead

to a collision between aggregates i and j. This is why the rate given by Eq. (1)

is not the actual collision frequency for our system, but it is instead regarded

as the frequency at which a close encounter is expected between i and j. Such

an encounter can subsequently evolve in a missed collision, an aggregation or a160

breakup event.

[Figure 1 about here.]

By substituting the values of ci and cj , the encounter frequency between i

and j-particles becomes as follows:

fij =
4

3
γ̇

(Ri +Rj)
3

∆V
(2)
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Differently from the analysis by Smoluchowski, we used this information to

model solely the encounter frequency between pairs of clusters, whereas the

actual outcome of a close encounter is ascertained from the detailed DEM sim-165

ulation described in the following section.

The total encounter frequency for Na suspended aggregates contained in the

subvolume ∆V is given by:

ftot =

Na∑
i

Na−1∑
j=i+1

fij (3)

We used this information to estimate the time interval elapsing between two

subsequent encounters. This time interval can be regarded as an interval of

quiescence (IQ), i.e., as a waiting time during which no encounter occurs and

the population remains unchanged [56]. If an encounter occurred at time t0, the

probability for a new encounter to take place at time t = t0 + IQ is given by:

Pr (IQ) = 1− e−ftotIQ (4)

Since the phenomena are stochastic, the interval of quiescence can be sam-

pled from a random variable with the cumulative distribution function given by

Eq. (4).

Once determined the time at which the new encounter occurs, the Monte

Carlo method has to select the aggregates involved. The probability of occur-

rence of a generic encounter k involving aggregates i and j is:

Prk = fij/ftot (5)

[Figure 2 about here.]170

From an ordered list of all possible encounters the algorithm chooses the event

with index q, which satisfies the following relationship:

q−1∑
k=1

Prk < ξ <

q∑
k=1

Prk (6)

where ξ is a random number sampled from a uniform distribution between 0

and 1. Figure 2 shows the method for a small sample population made of 4
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aggregates. This technique, usually referred to as inversion method [57], was

preferred over other approaches, such as the acceptance-rejection method [58,

59], which could result in a very large number of attempts before a pair of175

aggregates is sampled.

The subsequent step of the method is the simulation of the encounter be-

tween the two sampled aggregates by means of a Discrete Element Method

based on Stokesian dynamics. However, before executing the DEM simulation,

the initial spatial coordinates of the particles have to be prescribed (Figure 1).180

The center of mass of aggregate i is placed in the origin of the reference system;

aggregate j is instead located far upstream from aggregate i and inside the en-

counter cross section. Its exact position is determined on the basis of statistical

considerations. Far from aggregate i the translational velocity of aggregate j

equals the undisturbed fluid velocity, uz = γ̇y, which is linearly increasing with185

y and independent of x. The distribution of the probability for particle j of

crossing the encounter cross section at coordinates (x, y) should reproduce such

profiles. As a consequence, if we examine the square of size (Ri +Rj) enclosing

the encounter cross section (graph a of Figure 3), the initial coordinates (x0j , y
0
j )

for aggregate j can be found by picking up a random number from a uniform190

probability distribution for x (graph b of Figure 3) and a linear probability dis-

tribution for y (graph c), respectively. The sampling must be repeated until

the condition
√(

x0j
)2

+
(
y0j
)2 ≤ (Ri +Rj) is satisfied, in order to ensure that

the center of mass of aggregate j is located inside the encounter cross section.

The z0j -coordinate was set equal to ±5 (Ri +Rj), with the ± sign determined195

according to the sign of the y coordinate. At this distance the hydrodynamic

interactions acting between the two approaching aggregates are not significant

and we can reasonably assume that, in this initial configuration, the aggregates

have the same velocity as the undisturbed fluid.

[Figure 3 about here.]200

The advantage of combining the DEM model with the Monte Carlo method

stays in the possibility of tracking the motion of every primary particle of the
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approaching aggregates, thus allowing us to establish the effective outcome of

the encounter event and the accurate geometry of the resulting aggregate/s.

The detailed description of the DEM and its features is postponed to the next205

section. Here it suffices to say that an encounter may lead to three qualitatively

different outcomes:

• missed collision: a close pass of the two aggregates without an actual

collision and with no change of the number of primary particles composing

the two aggregates;210

• aggregation: the two aggregates collide forming one stable larger aggre-

gate;

• breakup: the generation of new fragments from the encountering aggre-

gates.

Any aggregation event causes the net loss of one aggregate from the pop-215

ulation, since the two parent aggregates are substituted by the daughter one.

On the contrary, a breakup event may result either in no change of the total

number of aggregates, if only two fragments are produced after a collision oc-

curred, or in an increase of the number of particles, if three or more fragments

are generated. As described in more detail in the subsequent sections, the DEM220

simulation lasts for a time long enough for breakup to occur according to the

criterion by Harshe and Lattuada [51], which is valid when the applied viscous

stress exceeds the cohesive strength of the particles. When the viscous stress is

slightly smaller than the cohesive strength, a slow process of deterioration of the

structure may take place, which gradually reduces the strength of the aggregate225

and may end up with its rupture [60]. Such a process is slow and is not captured

by our DEM simulation. However, it affects only the few aggregates with size

very close to the critical one and hence it is unlikely to influence significantly

the statistics of the whole population.

In all cases, even if no collision has occurred, the fluid stresses exerted by230

the fluid can rearrange the positions of the primary particles, deforming the
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overall morphology of the aggregates. Although such a rearrangement takes

place during the whole life of an aggregate, for the sake of simplicity, we take

this effect into account only during encounters, assuming that the geometry of

the aggregates remains frozen during the rest of their life.235

Due to the changes in geometry, the birth of new aggregates and the death

of old ones originated by the aforementioned events, the encounter frequencies

involving any of the aggregates returning from the DEM simulation need to be

corrected or calculated ex-novo, updating the frequencies fij .

[Figure 4 about here.]240

A flow-chart of the method is reported in Figure 4. After setting up the

initial population of particles (a monodisperse population of identical primary

particles in the results reported herein), the frequency table fij for all possible

encounters is calculated from Eq. (2). At this point the interval of quiescence ∆t

after which a new encounter occurs is sampled randomly from the distribution245

of Eq. (4). The two aggregates involved in the encounter are identified on the

basis of the encounter probability table fij , and their position at the initial time

of the encounter is set accordingly to the far field fluid velocity distribution, as

described before. In addition, the two aggregates are given a random orienta-

tion about their center of mass, to take into account also the complex rotational250

motion they underwent before the encounter. The encounter is simulated ac-

curately through the DEM and, on the basis of the outcome of the event, the

population is updated. At this point, the process can be restarted with the new

population, until the prescribed number of events has been simulated.

At the beginning of the process, when the population is made mainly of255

primary particles or very small aggregates, aggregation largely prevails over

breakup, and the large reduction of the number of aggregates could prevent the

simulation from returning statistically reliable results. Several approaches have

been used to circumvent this problem, preserving statistical robustness [54, 58].

In this work we decided to double the volume of the subsystem whenever the260

number of simulated aggregates fell below a critical threshold. An exact copy of
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the population was added to the system, thus preserving both number density

and particle size distribution. The critical threshold was set equal to 75% of the

initial number of particles.

2.2. DEM simulation of the encounters265

The basic idea behind our Discrete Element Method is that aggregates are

composed by distinct elements, equally-sized spherical primary particles, kept

together via colloidal interactions and subject to the hydrodynamic stresses

exerted by the moving fluid. By modelling all these interactions and solving the

equations of motion, we track the trajectory of each individual primary particle270

and, consequently, predict the dynamics of the aggregates. In the present work

hydrodynamic interactions are modelled by Stokesian dynamics, whereas direct

particle-particle interaction results solely from the van der Waals attraction and

the elastic forces due to the deformation of the contacts. No other source of

interparticle forces (e.g., double layer, adsorbed polymers, solid friction, ...) is275

here considered.

2.2.1. Hydrodynamic interaction

Stokesian dynamics in its FTS (force, torque, stresslet) formulation was

adopted to evaluate the hydrodynamic interactions among all the primary par-

ticles of the two approaching aggregates. Stokesian dynamics, relying on the280

linearity of the Stokes equation, is able to accurately count for all the hy-

drodynamic interactions, including particle-fluid and fluid mediated particle-

particle interactions. It operates by relating the hydrodynamic force, torque

and stresslet acting on the particles to their relative velocity with respect to the

fluid [61, 62].285

For the simple shear flow u∞ (r) = γ̇yez, with ez being the unit vector

aligned to the z direction, the undisturbed velocity of the medium u∞ in any

point r = (x, y, z) can be expressed as the superposition of a pure rotating flow

field with angular velocity ω∞ and a pure straining motion with deformation
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rate tensor E∞:

u∞ (r) = ω∞ × r + E∞ · r, (7)

where the only non-zero elements are ω∞x = γ̇/2 for the angular velocity and

E∞yz = E∞zy = γ̇/2 for the deformation rate. The velocity of each one of the N

primary particles can be obtained by solving the following linear system:

[R] ·



u(1) − u∞ (r1)
...

u(N) − u∞ (rN )

ω(1) − ω∞

...

ω(N) − ω∞

−E∞
...

−E∞



= −



F
(1)
H

...

F
(N)
H

T
(1)
H

...

T
(N)
H

S
(1)
H

...

S
(N)
H



(8)

where the vectors u(α) =
(
u
(α)
x , u

(α)
y , u

(α)
z

)
and ω(α) =

(
ω
(α)
x , ω

(α)
y , ω

(α)
z

)
are

respectively the linear and angular velocity of the α-th primary particle, whereas

u∞ (rα) is the velocity of the undisturbed flow field at the center of the α-th

primary particle. The undisturbed fluid angular velocity, ω∞, does not depend

on the spatial position in the investigated uniform shear flow. The terms F
(α)
H =(

F
(α)
x , F

(α)
y , F

(α)
z

)
and T

(α)
H =

(
T

(α)
x , T

(α)
y , T

(α)
z

)
are the hydrodynamic force

and torque acting on the α-th primary particle. Since both stresslet and rate-of-

strain tensors are symmetric and traceless, they are reduced to vectors composed

of 5 elements per primary particle, S
(α)
H =

(
S
(α)
xx , S

(α)
xy , S

(α)
xz , S

(α)
yz , S

(α)
yy

)
, E∞ =(

E∞xx, E
∞
xy, E

∞
xz, E

∞
yz , E

∞
yy

)
. Similarly to the angular velocity, the rate of strain of

the undisturbed flow does not depend on spatial position in a pure shear flow and

it is the same for all primary particles. The resistance matrix [R] has dimension

11N × 11N . It can be shown that [R] is symmetric and positive definite, and

depends only on viscosity, size of the monomers and on their relative positions

13



[63]. This matrix is often divided in submatrices as follows:

[R] =


RuF RωF REF

RuT RωT RET

RuS RωS RES

 (9)

where
[
RuF

]
couples velocities and forces. The other submatrices are defined

similarly.

As we are not interested in evaluating stresslets, the rows corresponding to

such terms in Eq. (8) can be removed and the reduced system of equations

becomes as follows:RuF RωF

RuT RωT

u− u∞

ω − ω∞

 = −

FH

TH

+

REF ·E∞RET ·E∞

 (10)

where we have used a compact notation by defining FH =
{
F

(1)
H ,F

(2)
H , . . . ,F

(N)
H

}T
,u ={

u(1),u(2), . . . ,u(N)
}T

, and similarly for the other vectors.

The resistance matrix is built from two contributions. A first order mul-290

tipole expansion of the rigorous expression for the fluid velocity gives the far

field components of the matrix, which describe correctly the hydrodynamic in-

teractions between primary particles that are relatively far apart. A correction

based on lubrication theory is added to the far field matrix, in order to count

for the near field hydrodynamic interactions between close pairs of primary par-295

ticles in relative motion with each other. Due to the lubrication correction, the

matrix [R] has terms diverging as 1/h and log(1/h) where h is the surface-to-

surface distance between two primary particles, giving rise to infinitely large

forces when they get in contact. However, lubrication theory assumes perfectly

smooth particles in the continuum limit, and may be not representative of a300

colloidal suspension in which particles frequently present a finite surface rough-

ness, where medium immobilization phenomena may limit lubrication effects.

In order to mimic this condition, we introduced a cut-off length scale δ to regu-

larize the singularities [64–66]: when the adimensionalized gap h/a between two

approaching particles becomes lower than δ, the applied pair lubrication correc-305
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tion is no longer updated, but kept evaluated at h = δa. In the simulations we

adopted δ = 5 · 10−3.

2.2.2. Direct particle-particle interaction

In this work we assumed that direct particle-particle interactions act only

as normal forces, i.e, along the center-to-center vector rαβ = rα − rβ , with rα310

and rβ being the vectors pointing to the centers of the primary particles α and

β. Therefore neither a torque nor a tangential force hinders the relative rolling

and sliding displacements of attached primary particles [67, 68].

The total colloidal interaction force, Fcoll, is plotted in Figure 5 as a function

of the surface-to-surface distance h normalized by the primary particle radius315

a. Positive values of Fcoll correspond to a repulsive force, negative values to

attraction. The gap distance h is defined as h = r − 2a, where r is the center-

center distance between the two particles. As it can be noticed in the figure,

our model is composed by two distinct curves and includes a hysteresis in order

to properly describe the complex contact-detachment dynamics occurring in the320

presence of large adhesion forces.

[Figure 5 about here.]

When the particles are not touching each other, the usual expression for

the van der Waals attraction between spheres was employed. In this case h

is the actual surface-to-surface distance between the spheres. For approaching325

particles such a condition holds until h = 0, when the contact is established.

The behaviour of pairs of contacting particles is instead described by the

contact mechanics theory by Johnson, Kendall and Roberts (JKR) [69], which

takes into account both van der Waals and elastic interactions. In this case

the gap distance h can take on negative values, because of the deformation of330

the contacting surfaces. Indeed, the condition of equilibrium heq corresponds

to a slight overlap between the two particles, where elastic repulsion balances

van der Waals attraction. When two contacting particles are pulled apart,

due to the large cohesion, the contact is preserved up to a positive surface-to-
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surface distance, referred to as pull-off distance (hpo), where detachment occurs335

abruptly. In physical terms it means that, while particles are moving apart, a

small neck of material is present at the contact, preventing detachment as long

as its length is smaller than hpo.

Non contacting particles: pure van der Waals attraction. The van der Waals

attraction was calculated according to [70]:

FvdW =
AH · a

12 · (h+ `0)
2 · f (h) (11)

where AH is the composite Hamaker constant for the interaction of two solids

immersed in a third medium, and `0 is the minimum approach distance; this

distance, assumed to be in the order of few Angstroms, can be thought of as the

typical molecular roughness length scale of the particle surface and results from

the effects of the very short-ranged intermolecular repulsive forces. The term,

f(h) takes into account the steeper decrease of the total interaction that occurs

at large separation due to the retardation effect [71]. This effect was modeled

according to [72]:

f (h) =



1 + 3.54p

(1 + 1.77p2)
0 < p < p0

0.98

p
− 0.434

p2
+

0.067429

p3
p0 < p <∞

(12)

where p = 2π(h+ `0)/λ, with λ being the London wavelength, corresponding to

the intrinsic oscillations of the atoms. According to Wiese and Healy [73], the340

value of p0 can be chosen in the range between 0.5 and 2.0. In order to ensure

continuity of FvdW we prescribed p0 = 0.5709.

Contacting particles: JKR theory. The joint effect of adhesive forces and elastic

response of the material after contact was modelled according to the JKR theory.

For a pair of contacting particles the relationship between the force, FJKR, and

the surface-to-surface distance, h, is as follows:

h =
b20
a

(
1 +

√
1 + FJKR/Fadh

2

)1/3

·

(
1− 3

√
1 + FJKR/Fadh

3

)
, (13)
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where the zero-load contact radius is b0 =
(
9πγsa

2
(
1− ν2

)
/2E

)1/3
, with γs

being the surface energy of the solid and where ν and E are respectively the

Poisson ratio and the elastic modulus of the primary particles. The adhesive

force of the contact, i.e., the largest traction force that the contact can bear, is

given by:

Fadh =
3

2
πγsa (14)

When the adhesive force is exceeded detachment takes place at a pull-off distance

h given by:

hpo =

(
3π2γ2sa

(
1− ν2

)2
8E2

)1/3

(15)

2.2.3. Dynamics of an encounter

Newton’s equation of motion for an α-th primary particle reads as:
m
du(α)

dt
= F

(α)
H + F

(α)
coll

I
dω(α)

dt
= T

(α)
H + T

(α)
coll

(16)

where m and I are the mass and the moment of inertia of the primary par-

ticle, F(α) and T(α) the force and torque acting on it, and u(α) and ω(α) its

translational and angular velocity. For colloidal particles the inertial effects are

generally negligible compared to the other involved forces and, consequently,

Eq. (16) can be simplified as: F
(α)
H = −F(α)

coll

T
(α)
H = −T(α)

coll

(17)

The substitution of the above relationship in Eq. (10) provides the equation of

motion for all the primary particles:RuF RωF

RuT RωT

u− u∞

ω − ω∞

 =

Fcoll

Tcoll

+

REF ·E∞RET ·E∞

 (18)

Equation (18) is a linear system of algebraic equations that allows the calculation

of u−u∞ and ω−ω∞ from the instantaneous spatial arrangement of the primary
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particles, which determines both the resistance matrix and the direct particle-

particle interactions. Finally, the trajectories of the particles are obtained from

velocities by an explicit Euler integration scheme:

r(t+ ∆t) = r(t) + u(t) ·∆t (19)

The length of the time step ∆t is a critical choice for the simulation, because

of the steep variation of the forces acting on close primary particles. A too long

time step can easily generate numerical interpenetration of the particles or, in

general, unphysical behaviour. Conversely, if the time step is too small, the

simulation becomes exceedingly slow. In this work an adaptive scheme was

adopted for the choice of the integration step. At every iteration, we identified

all the pairs of close but non-contacting monomers. Then, we set the timestep

as ∆t = min (∆tb,∆topt), in which ∆tb is a time step base value and ∆topt is

the minimum of the optimal values estimated for all the close pairs of particles

(α,β) as:

∆tα,βopt =



0.02`0
|uα − uβ |

if h < 10`0

0.5`0
|uα − uβ |

if h < 100`0

5`0
|uα − uβ |

otherwise

(20)

By this criterion we ensure that, in a single time step, two close non-contacting

particles may approach at most of 0.02`0 if their gap distance is smaller than345

10`0, 0.5`0 if h < 100`0 and 5`0 otherwise. The base value ∆tb is instead used

either when no pair of close particles is present or when ∆topt becomes very large

because uα ≈ uβ . In this way we can reproduce accurately all the near-contact

effects and safely adopt a longer timestep when monomers are far apart.

An encounter has to be simulated for a time long enough to allow the aggre-

gates to approach from their initial position, pass by or collide, and either reach

a stable configuration, through the rearrangement of the primary particles, or

undergo breakup. This time was estimated on the basis of the undisturbed flow

field as:

tsim =
|z0j |
γ̇y0j

+
4πNrot

γ̇
(21)
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where the first contribution is the time required for aggregate j to travel the350

distance |z0j | and collide with aggregate i, whereas the second term is the time

needed by the aggregate generated upon collision to perform Nrot rotations,

assuming an angular velocity of γ̇/2. For aggregates with dense structures, such

as those simulated here, it has been reported that 8 rotations are enough to

allow the aggregates to rearrange their internal structure or eventually to break355

up [74].

3. Results and discussion

The aim of the combined Monte Carlo - DEM approach is to predict the

evolution of a colloidal suspension under the effect of a shear flow field. The

simulations were conducted starting from a monodisperse population composed360

by spherical primary particles with radius equal to 500 nm dispersed in a sus-

pension with solid volume fraction φ = 10−4. At such a small volume fraction it

is reasonable to assume that each encounter involves two aggregates only. The

simulation was started with 200 primary particles and the sample volume ∆V

of the suspension was set in such a way to give the prescribed solid volume frac-365

tion φ. During the simulation, whenever the number of particles in the system

fell below 150 because of aggregation, the sample volume and the population

of particles were doubled, in order to keep a statistically significant number of

particles in the system.

[Table 1 about here.]370

In the different simulations the viscosity of the dispersing medium was varied

in the range 75-100 cP, while the shear rate was kept fixed at γ̇ = 104 s−1. At

room temperature these conditions give Péclet numbers larger than 105, making

the effects of Brownian motion negligible. The values of all the variables of the

simulation are reported in Table 1. The magnitude of the elastic properties of375

the solid (elastic modulus and Poisson ratio) are typical of relatively compliant

polymeric materials, such as polystyrene. Similarly, the values of the Hamaker
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constant and surface energy are typical of polymeric particles dispersed in a

liquid medium.

3.1. Dynamics of the population and size change380

The main consequence of aggregation and breakup in a suspension is the

variation of the size of the aggregates. For our suspensions this effect is shown

in Figure 6. Graph (a) shows the evolution over time of the mean size 〈P 〉 of

the aggregates for different values of the shear stress µγ̇. In this case, the size

of an aggregate i is quantified by the number of constituent primary particles,

Pi, and the mean size is the arithmetic average of Pi over the whole population.

The behaviour at the lower stresses (750 and 875 Pa) is typical of a suspension

stirred under a moderate shear rate. In the initial stages of the process the

role of breakup is negligible and the evolution of the suspension is determined

solely by aggregation. The initial slope of the curve, when aggregation occurs

exclusively between primary particles, is related to the collision efficiency η11

according to:
d 〈P 〉

dt

∣∣∣∣
t=0

=
4

π
η11φγ̇ (22)

and, as shown in the inset of Figure 6a, it can be predicted quantitatively by

using the expression by van de Ven and Mason for the aggregation efficiency of

spherical particles:

η11 = f ·
(

AH
36πµγ̇a3

)0.18

(23)

where the parameter f is around 0.95 for polymeric particles of 500 nm [75].

[Figure 6 about here.]

The collision efficiency is small for the examined conditions of high shear

stress: η11 is 0.078 for 750 Pa and 0.076 for 875 Pa, according to Eq. (23). Such

a situation is related to the intense hydrodynamic interaction between approach-385

ing particles, which induces a significant deflection of the particle trajectories

and reduces the aggregation efficiency.

Since the collision rate is proportional to the cube of the particle linear

size, the generation of the first aggregates in the aggregation-driven regime
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leads to an increase of the rate of size enlargement, as clearly visible from the390

curves at 750 and 875 Pa. However, this condition of accelerated aggregation

is rapidly dampened when some aggregates become large enough to undergo

breakup. As the process proceeds, the role of breakup becomes more important

and eventually an asymptotic dynamic steady state condition is reached, as

a consequence of a balance between aggregation and breakup. The average395

size is continuously fluctuating in this regime, due to the random statistical

succession of aggregation and breakup events. Some fluctuations of the average

size can be already observed even in the accelerated growth region, and they

can be explained as the consequence of occasional breakage events of the largest

aggregates.400

Breakup affects in a more substantial way the suspensions subject to larger

shear stresses, in which some aggregates undergo rupture even in the initial part

of the process and the accelerated aggregation stage is not present, as apparent

from the curve at γ̇ = 1000 Pa. An additional effect of the larger shear stress

is the decrease of the asymptotic size at equilibrium. Larger stresses are in fact405

responsible for an increase of the breakage probability, thus producing a larger

number of aggregates at the equilibrium state, which are composed on average

by a smaller number of primary particles. This is in line with what reported

both in numerical and experimental studies where breakup of aggregates was

seen to prevail over aggregation at increasing imposed shear rate [1, 9, 38].410

Figure 6b reports the average size of the aggregates in terms of Sauter di-

ameter. This average dimension characterizes the volume to surface ratio of the

population and it is defined as:

d32 = 2 ·
∑Na

i=1R
3
i∑Na

i=1R
2
i

(24)

In comparison to 〈P 〉, the Sauter diameter exhibits larger fluctuations in time.

This is mostly due to the sensitivity of d32 to the larger aggregates of the dis-

tribution, whose concentration is relatively small and may oscillate significantly

in time, but it is also a consequence of the continuous deformation experienced

by aggregates; at the end of any DEM simulation, even if a missed collision415
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occurred, the aggregates may show a different shape because of the partial re-

arrangement of the primary particles in the structure, and consequently have a

different outer radius.

[Figure 7 about here.]

Figure 7 compares the time change of the standard deviation σp of the par-420

ticle size distribution with the average particle size for µγ̇ = 1000 Pa. In the

first stages of the process σP is small, since the population is made mostly of

primary particles and, to a lesser extent, by small aggregates. As aggregation

proceeds and larger particles are formed, σP increases, passes through a maxi-

mum, and eventually reaches a stationary value at around 60% of the average425

particle size. As clear from the plot, this asymptotic condition is attained more

or less simultaneously both in the average size and in the standard deviation.

The full particle size distribution for the population subject to the viscous stress

of 1000 Pa sampled at t = 283 s (i.e., after reaching the steady state condition)

is shown in Figure 8 in terms of both number of primary particles P (graph a)430

and outer radius R (graph b) of the aggregates. It can be seen that a significant

fraction of isolated primary particles is still present at the steady state, while

the remaining part of the distribution (i.e., the part related to the aggregates)

resembles a log-normal curve. These features of the particle size distribution

were observed at all the examined viscous stresses, but the suspensions subject435

to lower shear stresses showed smaller amounts of isolated primary particles and

a more dispersed size distribution for the aggregates, characterized by a longer

tail.

[Figure 8 about here.]

3.2. Morphology440

A direct visual impression of the features of the aggregates is provided by

Table 2, which reports the geometries and the main properties of a small sample

of aggregates from the population stirred at 750 Pa. All aggregates are typically
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compact and show a relatively high bond density. The major difference in the

population concerns the shape of the formed aggregates, which ranges from445

nearly spherical entities to elongated ones.

[Table 2 about here.]

The size of colloidal aggregates is frequently characterized by means of their

gyration radius Rg. The gyration radius corresponds to the root-mean-square

distance of the primary particles from the center of mass of the aggregate and

for an aggregate composed by P primary particles reads as:

Rg =

√√√√ 1

P

P∑
α

|rα − rcm|2 (25)

where rα is the position vector of the α-th primary particle and rcm identifies

the location of the center of mass of the aggregate. We attempted to relate the

gyration radius to the number of constituent primary particles by means of a

power law of the following kind:

P = kg · (Rg/a)
dg (26)

where the two fitting parameters are the pre-factor kg and the size exponent dg.

Figure 9 shows the pairs (Rg/a, P ) of the aggregates of the suspension sheared

at µγ̇ = 1000 Pa. The regression of the data, performed by considering only450

clusters with P > 3, returned kg = 3.34 and dg = 1.68.

[Figure 9 about here.]

The inset of Figure 9 shows the variation over time of dg. The large fluctu-

ations of dg are due to birth, death and restructuring of aggregates. However,

in spite of the large fluctuations, the trend is clear: initially the value of dg455

is quite large (around 2.1), then it decreases and finally attains an asymptotic

value between 1.6 and 1.7 at the dynamic steady state. If the mass-size rela-

tionship is described in terms of the outer radius instead of the gyration radius,

a power-law is again retrieved, P = ko(R/a)do , but the exponent do is slightly
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smaller than dg, with a starting value around 1.9 and a final asymptotic value460

ranging between 1.5 and 1.6.

[Figure 10 about here.]

A power law for the mass-size relationship is often assumed as an indication

of a fractal structure of the aggregates and the size exponent is regarded in

this context as a fractal dimension. For fractal aggregates, values smaller than465

2 of the exponent correspond to highly porous structures that become more

and more tenuous as size increases. However, this interpretation is valid only

if the clusters are rigid and capable of creating structures that are statistically

isotropic in space. On the contrary, aggregates, composed by primary particles

interacting solely by central colloidal forces, such as the ones here simulated,470

typically show very dense structures with high coordination number [47, 76].

Therefore, the low value of the power law exponent here observed reflects a

gradual transition of shape, which is approximately spheroidal for the small-

est aggregates and becomes, on the average, more and more elongated as the

size increases. To make this point more clear, Figure 10 compares three differ-475

ent aggregates of increasing size and aspect ratio sampled from the population

sheared at 750 Pa and 1000 Pa. For the sake of simplicity, here we use the

outer radius as characteristic size and the corresponding sphere as character-

istic volume of the aggregate, but similar considerations hold for the radius of

gyration as well. It is immediately apparent that, because of the increasing480

elongation, the solid fraction in the spherical volume decreases with size. The

nearly spherical aggregates (a) and (d) fill almost completely the sphere of outer

radius, whereas aggregates (c) and (f) occupy only a small portion of it. It is

this feature that is captured by the small exponent of the power law, which

indeed implies that the solid fraction φ decreases with the size of the spherical485

volume as φ ∝ (R/a)do−3. Therefore, the decrease of the power law exponent

with time during the aggregation process reflects the dynamics of the popula-

tion: in the initial part of the process the population is composed mainly of

small aggregates, whose shape is almost spherical, thus determining the large
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value of the exponent. As aggregation proceeds and larger aggregates appear,490

the shapes become more differentiated and the value of the exponent reduces.

Thus, finally, the small solid density predicted by the mass-size power law for

large clusters is a fictitious effect due to the inadequacy of a single size vari-

able (the radius) to describe structures that may extend anisotropically in the

different directions of space.495

[Figure 11 about here.]

A method to better take into account the actual shape of an aggregate is to

approximate its structure with an inertia equivalent ellipsoid [46, 77, 78], i.e.,

a triaxial ellipsoid with the same principal moments of inertia as the aggregate

(Figure 10). It can be seen in fact that by using the inertia equivalent ellipsoid500

as a descriptor of the volume filled by the aggregate, the obtained solid fraction

becomes nearly independent of the aggregate size, as made in apparent in Fig-

ure 11 where the solid fraction is estimated by using both the sphere of same

outer radius and the inertia equivalent ellipsoid.

The length of the semi-axis of the inertia equivalent ellipsoid can be also

used to characterize the departure of the aggregates from the spherical shape.

We define the aspect ratio (A.R.) of an aggregate as:

A.R. =
2a1

a2 + a3
(27)

where a1, a2, a3 are the semi-axis of the inertia equivalent ellipsoid, ordered ac-505

cording to decreasing magnitude (a1 > a2 > a3). Values of A.R. close to 1

indicate aggregates with a sphere-like structure, whereas larger values are an

indicator of a rod-like structure. The distribution of the aspect ratio for the

asymptotic population at µγ̇ = 1000 Pa is shown in Figure 12a, in which only

aggregates made by a number of particles P > 2 were included; the amount510

of aggregates that show a well-defined rod structure (A.R. > 2.50) is sig-

nificant, although most aggregates exhibit only a slightly elongated structure

(1.25 < A.R. < 2.00). This variability of the A.R. well compares with the one

observed experimentally by image analysis [9, 79], confirming that, as pointed
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out by Selomulya et al., restructuring effects of the aggregates results in a scale-515

dependent structure which cannot be quantified by a size exponent and a linear

size only. [80]

[Figure 12 about here.]

The relationship between aspect ratio and size of the aggregates is shown in

Figure 12b. The aspect ratio lies between a minimum value, which is around 1.2520

and nearly independent of cluster size, and a maximum that increases linearly

with cluster size. This implies that while the smallest aggregates are inevitably

spheroidal, the largest ones show a variety of shapes, from spheroidal to highly

elongated ones, with the maximum attained aspect ratio increasing with size.

Spherical aggregates are usually a product of extensive internal rearrangement525

induced by the viscous stress. As the aggregation proceeds, spherical struc-

tures become less frequent in the population as they aggregate to form larger

aggregates. In such events, restructuring phenomena in the newly generated

aggregate are generally limited to the contact zone. Therefore, the obtained ag-

gregate still presents a compact primary particle packing, but the overall shape530

is usually elongated.

[Figure 13 about here.]

An additional relevant characterization of colloidal aggregates is given by

the density of intermonomer bonds; the number of bonds provides a measure of

the local compactness of the cluster structure and therefore gives information535

on its resistance to disruptive stresses. In tenuous aggregates most primary par-

ticles belong to a branch of the aggregate and have two bonds only (exceptions

are the terminal particles of the branches, with a single bond, and the internal

particles acting as a junction between different branches, with three or more

bonds). In compact clusters the number of bonds that each spherical particle540

forms can reach much higher values, attaining its maximum (=12) for hexag-

onal close packed and cubic close packed structures [44]. Figure 13 illustrates

the relationship between the number of primary particles P in a cluster and its
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mean coordination number n̄c = 2nb/P , with nb being the number of contacts

detected in the structure. It is apparent that the aggregates are compact and545

highly-coordinated, even if no ordered lattice was observed. This relatively large

coordination number of the aggregates is due to the absence of interactions that

prevent mutual sliding and rolling of the primary particles, and make the aggre-

gates to attain a close packing as a consequence of the internal rearrangement.

The average coordination number increases with the size of the cluster and it550

is between 5 and 6 for aggregates made of more than 15 primary particles. It

should be noted however that in small clusters most of the particles are located

on the outer surface, exposed to the dispersing medium and thus have a smaller

number of contacts. On the contrary, in large clusters, the amount of particles

at the surface is quite small in comparison with the number of particles sitting555

in the inner region. These particles clearly form a larger number of bonds and

are responsible for the greater value of n̄c.

3.3. Mechanism of breakup

The stability of an aggregate in a moving fluid is determined by a balance

between the cohesive forces acting between the constituent primary particles560

and the disruptive forces due to the hydrodynamic shear stresses exerted by

the dispersing medium. The stresses discharged by the fluid onto the aggregate

become more and more intense as its size increases, until a critical size is reached

at which the network of internal bonds in the aggregate is no longer able to

withstand the hydrodynamic stress and the aggregate splits into fragments [50,565

51, 74, 81]. The fragmentation process is extremely rapid and occurs as soon as

the aggregate exceeds the critical dimension following an aggregation event. A

realization of such a process is shown in Figure 14 (the video of the sequence is

available in the Supporting Material), where five subsequent snapshots of such

an event are shown: following the approach (images a and b) and the collision570

of two subcritical aggregates, an aggregate of supercritical size is formed (image

c). As soon as the aggregate aligns with the direction of greatest elongation of

the flow field, the tensile forces generated by the hydrodynamic stress on the
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aggregate become so intense that the aggregate breaks up into three fragments

(image d), which are then dispersed by the shear flow (image e). In some cases it575

is not even necessary that a mechanical contact is made between two subcritical

aggregates to induce breakage, but a very close passage is sufficient. In such

cases, the mutually induced hydrodynamic may induce stresses in the aggregate

structure which may overcome the internal resistance. An example is shown in

the second video of the Supporting Material. Similar breakup events induced by580

the encounter between pair of aggregates have been discussed in recent works

in which DNS-DEM simulations revealed that aggregates upon collision may

bounce, with an exchange of primary particles, or may undergo breakup in two

or more fragments if the aggregate generated upon collision exceeds a critical

threshold size [48, 49].585

[Figure 14 about here.]

[Figure 15 about here.]

As already discussed, the size of the aggregates at the steady state varies sig-

nificantly with the intensity of the applied shear stress: the more intense the

stress, the smaller is the mean size 〈P 〉 of the aggregates in the suspension, as590

made apparent in Figure 15. The figure also shows the relationship between the

aggregate size just before the collision leading to a breakage, P̄br, and the fluid

stress µγ̇. The value of P̄br can be considered as an estimate of the critical size

and, in accordance with the findings of several authors, it follows approximately

a power law with respect to the applied stress, P̄br ∝ (µγ̇)
−q

, where the breakup595

exponent q is around 2.0 in our case. Such a value is rather high compared to

the results for fractal aggregates with dg = 1.8 [50], but it is instead comparable

with the values obtained for more compact aggregates [82, 83]. The intensity of

the hydrodynamic stress that an aggregate is able to sustain is strongly related

to its shape and the significant scatter of data shown by the error bars is related600

to the difference in morphology of the clusters, since in the suspensions round-

shaped aggregates coexist along with rod-shaped ones. For the latter class of
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aggregates the accumulation of stresses in the internal network of bonds is much

more intense and it is responsible for an increase of the breakage probability.

On the other hand, round-shaped clusters have been proven to be stronger and605

less prone to undergo breakage [84].

It has to be remarked that the mean asymptotic size 〈P 〉 is the average

dimension of the population and not the critical size that separates stable ag-

gregates from clusters undergoing rupture. The mean asymptotic cluster size is

always significantly smaller than the critical size, but the decay exponent (i.e.,610

the slope of the curve in the bilogarithmic diagram) is similar. It is therefore

reasonable to infer the breaking properties of the suspension from the exami-

nation of the average size of the population, as it is often done in experimental

tests.

[Figure 16 about here.]615

Figure 16 reports the size distribution of the largest fragment generated upon

breakup as a fraction of the size of the parent aggregate. From the data it can

be seen that both fragmentation, i.e., the rupture into fragments of comparable

size, and erosion, i.e., the generation of small elements from the surface of the

aggregate take place. However, fragmentation is the prevailing mode of rupture620

and, in fact, in more than 80% of the events the size of the larger fragment is

between 45% and 75% of that of the parent aggregates, with a peak around

60%. Erosion is less frequent, but a peak for fragments with size between 90%

and 95% of the parent aggregates is clearly visible.

4. Conclusions625

We investigated numerically the shear-induced aggregation and breakup phe-

nomena occurring in dilute colloidal suspensions. The model was based on a

mixed Monte Carlo-Discrete Element Method (DEM) approach; such a combi-

nation allowed us to dynamically simulate the behavior of a large population of

colloidal aggregates in a fully predictive way. The Monte Carlo algorithm was630
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set up to sample statistically a sequence of binary encounter events between the

clusters composing the population, whereas the DEM, built in the framework

of Stokesian dynamics, was used to ascertain accurately the outcome of each

event. In the simulation of dilute colloidal suspensions, where the simultaneous

interactions between more than two aggregates are negligible, the method offers635

obvious advantages in comparison to a full simulation of the suspension. The

reduced complexity of the calculation made it possible to include accurate eval-

uation of the fluid dynamic interaction (based on Stokesian dynamics), which

affects significantly the stress distribution in the aggregates and their behavior

in the process of aggregation and breakup.640

The method was applied to the study of the dynamics of a suspension

made originally of monodisperse primary particles and subject to uniform shear

stresses. The suspensions studied were all characterized by a volume solid frac-

tion equal to 10−4, with a primary particle radius equal to 500 nm. The shear

rate applied was equal to 104 s−1 and the viscosity of the suspending medium645

was varied in the range 75-100 cP, resulting at room temperature in a Péclet

number approximately equal to 5 ·105. Primary particles were assumed to inter-

act solely by means of central forces and therefore were free to slide and roll over

each other at contact. In mild stress conditions the evolution of the suspension

consists in a transition between two regimes: an initial growth phase, during650

which the gradient of the flow field induced aggregation of the primary parti-

cles, and a final equilibrium phase, in which a balance between aggregation and

breakup of the clusters was observed; in this dynamic steady state a constant

average size of the population of aggregates and a self preserving size distri-

bution was established. During this phase the viscous shear stress exerted by655

the flow field on the cluster structure determined their breakup in two or more

fragments. Under more severe conditions, breakup events affected the system

earlier and involved smaller clusters.

The morphology of the aggregates was characterized in terms of size expo-

nent, coordination number and aspect ratio. We did not observe significant660

differences in the local structural properties, such as solid fraction and coor-

30



dination number, depending on the applied stress. All aggregates present a

compact, highly coordinate structure as a consequence of the ability of the pri-

mary particles to slide and roll over each other to arrange in a stable, closely

packed structure.665

Regarding the large-scale structure, the departure of the larger clusters from

a spheroidal shape needs to be taken into account. A clear relationship between

aspect ratio and dimension of the aggregate was found; most of the larger clus-

ters presented an elongated structure, whereas smaller ones had a sphere-like

structure. When the mass-size relationship is expressed in terms of a single670

characteristic length, a power law is obtained, where the small value of the size

exponent (around 1.7) reflects this gradual transition of shape.

Rupture occurs mainly by generation of fragments of comparable size, whereas

the erosion of small fragments from the surface of the cluster is less frequent

and amounts to about the 10% of the breakup events. The presence of eroded675

fragments affects the particle size distribution, which consists of two separated

regions at the steady state: one region is made of the very small particles (mostly

monomers), whereas the other one, composed by the larger aggregates, shows

approximately a lognormal shape. A power law with breakup exponent around

2.0 was found to relate the size of the clusters interested by breakup and the680

intensity of the shear stress. The same exponent was found to characterise the

decay of the mean cluster size of the population with shear stress, showing that

the breakup properties can be reasonably inferred from the examination of the

average size of the population, as often done in experimental tests.

Funding685

This research did not receive any specific grant from funding agencies in the

public, commercial, or not-for-profit sectors.

31



References

[1] V. Oles, Shear-induced aggregation and breakup of polystyrene latex

particles, J. Colloid Interface Sci. 154 (1992) 351–358. doi:10.1016/690

0021-9797(92)90149-G.

[2] T. Serra, J. Colomer, X. Casamitjana, Aggregation and breakup of particles

in a shear flow, J. Colloid Interface Sci. 187 (1997) 466–473. doi:10.1006/

jcis.1996.4710.

[3] V. A. Tolpekin, M. H. G. Duits, D. van den Ende, J. Mellema, Aggregation695

and breakup of colloidal particle aggregates in shear flow, studied with video

microscopy, Langmuir 20 (2004) 2614–2627. doi:10.1021/la035758l.

[4] L. Wang, D. L. Marchisio, R. D. Vigil, R. O. Fox, CFD simulation of aggre-

gation and breakage processes in laminar Taylor-Couette flow, J. Colloid

Interface Sci. 282 (2005) 380–396. doi:10.1016/j.jcis.2004.08.127.700

[5] G. Frappier, B. S. Lartiges, S. Skali-Lami, Floc cohesive force in reversible

aggregation: A Couette laminar flow investigation, Langmuir 26 (2010)

10475–10488. doi:10.1021/la9046947.

[6] K. A. Kusters, J. G. Wijers, D. Thoenes, Aggregation kinetics of small

particles in agitated vessels, Chem. Eng. Sci. 52 (1997) 107–121. doi:705

10.1016/S0009-2509(96)00375-2.

[7] J. C. Flesch, P. T. Spicer, S. E. Pratsinis, Laminar and turbulent shear-

induced flocculation of fractal aggregates, AIChE J. 45 (1999) 1114–1124.

doi:10.1002/aic.690450518.

[8] D. L. Marchisio, M. Soos, J. Sefcik, M. Morbidelli, Role of turbulent shear710

rate distribution in aggregation and breakage processes, AIChE J. 52 (2006)

158–173. doi:10.1002/aic.10614.

[9] M. Soos, A. S. Moussa, L. Ehrl, J. Sefcik, H. Wu, M. Morbidelli, Effect of

shear rate on aggregate size and morphology investigated under turbulent

32

http://dx.doi.org/10.1016/0021-9797(92)90149-G
http://dx.doi.org/10.1016/0021-9797(92)90149-G
http://dx.doi.org/10.1016/0021-9797(92)90149-G
http://dx.doi.org/10.1006/jcis.1996.4710
http://dx.doi.org/10.1006/jcis.1996.4710
http://dx.doi.org/10.1006/jcis.1996.4710
http://dx.doi.org/10.1021/la035758l
http://dx.doi.org/10.1016/j.jcis.2004.08.127
http://dx.doi.org/10.1021/la9046947
http://dx.doi.org/10.1016/S0009-2509(96)00375-2
http://dx.doi.org/10.1016/S0009-2509(96)00375-2
http://dx.doi.org/10.1016/S0009-2509(96)00375-2
http://dx.doi.org/10.1002/aic.690450518
http://dx.doi.org/10.1002/aic.10614


conditions in stirred tank, J. Colloid Interface Sci. 319 (2008) 577–589.715

doi:10.1016/j.jcis.2007.12.005.
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gregate size and shape properties under sequenced flocculation in a turbu-

lent Taylor-Couette reactor, J. Colloid Interface Sci. 491 (2017) 167–178.

doi:10.1016/j.jcis.2016.12.042.
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Figure 1: Schematic of an encounter between aggregates i and j in a uniform shear flow. The
grey area represents a quarter of the Smoluchowski cross section for aggregates of size Ri and
Rj .
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Figure 2: Representation of the ordering scheme and sampling technique for a sample popula-
tion composed by 4 particles. The amplitude of each interval is proportional to the probability
of encounter between the two particles. In the reported case, by picking ξ = 0.52 the encounter
of particles 2 and 3 is sampled.
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Figure 3: Encounter cross section in the x − y plane (graph a) and distribution of the prob-
ability that aggregate j crosses the plane at a given x-coordinate (graph b) and y-coordinate
(graph c). Here Rij stands for Ri +Rj .
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Figure 4: Flow chart of the simulation technique.
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Figure 5: Colloidal interaction Fcoll between two primary particles for the system described
in Table 1. Black dotted line: van der Waals attraction (Fcoll = FvdW ); Red solid line: JKR
theory of contact mechanics (Fcoll = FJKR). The coordinates heq and hpo represent the
equilibrium and the pull-off distance, respectively.
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Figure 6: Time evolution of the average size of the clusters 〈P 〉 (a) and mean Sauter diameter
of the population d32 (b) for suspensions at shear stresses of µγ̇ = 750, 875, 1000 Pa. The
inset in graph (a) reports the initial trend for 750 Pa and compares the simulation (continuous
black line) with the initial slope predicted by Eq. (22) (red dashed line).
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Figure 7: Average size of the clusters 〈P 〉 and standard deviation of the size distribution σP
as a function of time for µγ̇=1000 Pa.

48



Figure 8: Particle size distribution as a function of the number of primary particles in the
aggregate (a) and the outer radius of the aggregate (b) in the asymptotic steady state condition
(t = 283 s) for µγ̇ = 1000 Pa.
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Figure 9: Power law dependence between the number of primary particles P and the gyration
radius Rg of the aggregates of the suspension subject to µγ̇ = 1000 Pa. In the inset the change
of the power law exponent over time is shown.
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Figure 10: Clusters from the population sheared at 750 Pa (top) and 1000 Pa (bottom) and
characteristic solid fraction φ based on the sphere of outer radius. (a) 17 monomers, φ = 0.18;
(b) 22 monomers, φ = 0.15; (c) 64 monomers; φ = 0.052, (d) 12 monomers, φ = 0.18; (e) 17
monomers, φ = 0.11; (f) 19 monomers, φ = 0.081.
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Figure 11: Solid fraction of the aggregate structures from the asymptotic population sheared
at 1000 Pa for varying number of primary particles in the aggregate. The total volume is
estimated as the volume of the sphere with same outer radius (black circles) and as the
volume of the inertia equivalent ellipsoid (red squares).
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Figure 12: Aspect ratio of the steady state population of aggregates for µγ̇ = 1000 Pa. a)
PDF of the aspect ratio. b) Correlation between aspect ratio and cluster size for the same
population.
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Figure 13: Relationship between the number of primary particles P and the average coordi-
nation number n̄c for the aggregates of the asymptotic population sheared at µγ̇ = 1000 Pa.
The size of the markers is proportional to the number of aggregates with the same P − n̄c

value.
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Figure 14: Snapshots of an encounter event in simple shear flow (µγ̇ = 750 Pa) leading to
the breakup of the just formed aggregate. (a-b) Aggregate j moves towards aggregate i,
because of the velocity gradient and initial offset. Both aggregates rotate counterclockwise;
(c) immediately after their collision a supercritical aggregate is formed which continues to
rotate counterclockwise; (d) the aggregate breaks into fragments as soon as the orientation of
maximum stress is reached; (e) the fragments are carried away by the fluid flow. The video
of the sequence is available in the Supporting Material.
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Figure 15: Average number of primary particles of the colliding clusters just before breakup
P̄br and mean aggregate size at the steady state 〈P 〉 as a function of the strength of shear
stress µγ̇. Error bars indicate the standard deviation of the data.
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Figure 16: Distribution of the maximum fragment size generated upon breakage for µγ̇ =
1000 Pa.
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Table 1: Main variables of the Monte Carlo - DEM simulations
Parameter Symbol Value
Volume fraction of solid φ 10−4

Hamaker constant AH 0.97 · 10−20 J
Surface energy γs 4.7 · 10−3 J/m2

Monomer radius a 500 nm
Medium viscosity µ 75− 100 cP
Shear rate γ̇ 104 s−1

Elastic modulus E 3.4 GPa
Poisson ratio ν 0.5
Minimum approach distance `0 0.165 nm
Base time-step value ∆tb 10−6 s
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Table 2: Geometries and main characteristics of a sample of clusters of the suspension with
µγ̇ = 750 Pa at the dynamic steady state. P : number of primary particles; Rg : gyration
radius; R: outer radius; A.R.: aspect ratio; n̄c: mean coordination number

.

Geometry P Rg/a R/a A.R. n̄c

21 2.76 5.08 2.25 5.43

54 4.10 8.42 1.69 5.33

27 3.56 7.20 2.90 5.41

15 2.18 4.20 1.43 5.20

15 2.28 4.16 1.38 5.20

18 2.88 5.82 2.90 5.33

22 2.68 4.84 1.74 5.46

30 3.24 6.48 1.49 5.68

29 3.34 6.84 2.44 5.59

19 3.20 6.38 3.64 5.37
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