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Abstract—In recent years there has been a significant increase
in the production of electric vehicles (EVs), in the global strive
to reduce polluting gases produced by conventional fossil-fuel
driven vehicles. Therefore, many optimization algorithms have
been proposed for EV mobility and the charging of battery packs
in the stations connected to power grids. However, there are
situations in which experimental results are not sufficient, and
simulations are needed.

In this work, we address the effects of the charge demands
of an EV fleet on the grid by considering the attitude of EV
drivers, and especially their range anxiety. This influences their
decision of when to recharge the battery pack. To this end, an
agent-based model has been developed for the simulation of a
power grid considering different scenarios based mainly on the
state of charge (SOC) of battery packs at the time of the charging
requests of EVs at service stations. The results indicate that in
general a high battery SOC at the beginning of charging increases
the probability of reaching higher power peaks on the grid.

Index Terms—Electric vehicles, smart grid, peak power, state
of charge

I. INTRODUCTION

The continuous increase of electric vehicles (EVs) and
the consequent installation of new electric charging stations
is attracting considerable attention from electricity suppliers
and researchers. In fact, this new dynamic scenario poses
challenges unknown previously. Therefore, optimization algo-
rithms and methods have been developed, especially during
the last decade, as regards both the power consumption in
distribution networks and the electricity cost and charging
time of EVs. The solution of the problems encountered in
EV mobility, such as overstay in public stations and the fair
distribution of charging requests over time, can be addressed
using real data [1]. However, there are situations that can
hardly be analyzed except through accurate simulations. For
example, the analysis of all possible traffic conditions, the
impact of some power failures on smart grids, and the planning
of new stations to meet an excessive demand of charging
services in a distribution network, require the use of prediction
methods. Furthermore, the study of the general behavior of
drivers also requires a virtual simulation environment. In this
context, range anxiety is one of the most common driver
attitudes towards EVs [2]. It concerns the driver’s uncertainty
of completing the expected journey using the battery as sole
energy source. In fact, full-battery electric vehicles generally
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have a limited driving range compared to conventional vehicles
with gasoline or diesel engines [3]. In addition, although
the number and spatial distribution of charging stations are
continuously being optimized in order to meet the ever-
increasing demands for electricity supply for EVs, sometimes
infrastructures are still below expectations. Figure 1 shows
the current main locations for charging points, where most
charging generally occurs in residential installations.
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Fig. 1: Main locations for EV charging installations.

This work reports some results regarding the effect of the
demand variation in EV charging on the instant power of a
grid, in accordance with different behaviors of EV drivers
based on range anxiety. Simulations have been carried out
using an agent-based model (ABM). This model allows the
characterization of different scenarios for the analysis of the
impact of infrastructure and drivers’ attitude on EV charging.
The paper is organized as follows: Section II reports the
background and related work on charging optimization for
EVs, whereas Section III briefly describes the proposed agent-
based model. Section IV reports results and an analysis on the
data obtained from simulations, and Section V draws some
conclusions.



II. BACKGROUND AND RELATED WORK

Nowadays, the two major limitations in adopting electric
vehicles, especially electric cars, are still (i) the maximum
distance that an EV can travel with the energy of the battery
pack alone and (ii) the recharging time which is generally in
the order of a few hours. Although great progress is being
made in fast charging, an efficient charging of battery packs
in only a few minutes remains one of the primary objectives
in the automotive sector. These long electric recharges over
time can easily involve an overlap of requests for the use of
public recharging columns and, consequently, the possibility
of instantaneous electrical power peaks provided by the grid
[4]. In general, there are mainly two different goals in this
scenario: (i) optimal power distribution in a smart grid and (ii)
optimal EV charging from a cost of ownership perspective.

A. Optimal Power Distribution

Firstly, policies are required that favor the flexibility and
distribution of the power demand from charging stations,
which should be as uniform as possible over time [5], [6].
To this end, possible scenarios in the integration of EVs
in power grids can be simulated and analyzed preliminarly
using models. These can help in the choice of strategies for
the load prediction based on charge behavior [7] and then
optimization [8]. They are generally based on mathematical
methods [9], [10] and computational methods [11]. Among
the latter, agent-based models are of great use for the study
and simulation of complex systems with an emergent property,
which appears when the characteristics of the interaction
between several elements differ from those of a single basic
element. For instance, this is the case of the mobility of an
EV fleet [12]-[14] and its related impact on a power grid
[15]. In this context, an ABM developed with NetLogo [16],
an open-source tool by Northwestern University, was recently
proposed [17]. It focuses on the implementation of an optimal
infrastructure through only to predict the charging demand
of a 24-hour EV mobility. Our work differs from this study
in the long-term analysis, that is, a 300-day simulation of
mobility for each adopted scenario where each EV is generally
independent from another in energy consumption and daily
mileage. Furthermore, our work focuses on the optimization
of the power demand of an existing charging infrastructure
connected to a grid instead of optimizing the location of new
stations.

Another multi-agent model including customer behavior
was also recently proposed [18]. It simulates a time interval
of one year, including weather conditions and the degree of
customer satisfaction with the charging service over time.
Although a threshold for battery SOC is defined in the model
(i.e., SOCLimit, a constraint on the decision to charge the
battery), there is not a description of the possible choices for
different values of this variable and the consequent results.

In the literature, there are therefore many algorithms and
methods for optimizing the use of electricity in grids with
charging stations. They consider different situations according
to various constraints [10], [19] especially battery capacity

and charging rates [20], [21], and also the location of new
planned stations [1]. In general, these techniques are based on
the analysis of real data collected by charging stations and/or
those of each specific EV. These last source of data seems more
suitable for a faster forecast, but presents the disadvantage
of less privacy regarding the habits of the users of charging
services [22]. Other techniques also analyze EV mobility and
parking patterns as optimization keys to flattening the load
profile of a grid [6], [13], also using auxiliary energy storages
to compensate demand flexibility [23].

B. Optimal EV Charging

Methods for optimal charging, from the point of view
of the cost of EV ownership, usually consider the state of
charge (SOC) of battery packs, time-of-use (TOU) price [24],
charging current [20], the minimization of battery aging [25],
and the quality of service [26] as crucial factors. In general,
predictive models and decision-making methods for these
optimizations are based on well-known techniques such as
dynamic programming [9], Markov chain [21], fuzzy theory
[8] and neural networks [27], whereas ABMs are useful
for an exploratory analysis of scenarios involving emergent
behaviors.

III. AGENT-BASED MODEL

The model was developed in NetLogo [16], a tool that
allows the simulation of multi-agent systems through the
development of program code in an agile way. In fact, it
includes specific libraries for the description of the behavior
of individual agents and their interactions, and the definition
of a graphical user interface. Figure 2 shows the interface of
the proposed ABM.

It includes four sliders for setting the following variables:
the number of charging stations, charge power, the number
of EVs, and the maximum SOC of an EV battery at initial
charging. The latter is the threshold that defines the maximum
level of the state of charge of the pack of an EV before it is
parked in a charging station that refills the battery cells. In
other terms, this variable is a constraint that binds an EV to
access the recharge service only if the SOC of its battery is
lower than or equal to this threshold.

The interface also includes nine data monitors, especially
for the real-time display of the most significant simulation
values such as the maximum instantaneous power of the grid,
the number of occupied stations and the number of stations
supplying electricity to any EV. In fact, a station may be
occupied with a vehicle that is no longer actually being
charged (i.e., overstay) as its battery pack already reached
100% SOC. In this case, the station is busy but without
providing energy. At the bottom of the interface, a window
for two different plots is included. These plots concern the
instant power of the EV grid under simulation test and the
average SOC of all the EVs not parked in a charging station,
so that a comparison of the trend of these two quantities is
made possible.
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Fig. 2: The NetLogo interface developed for the proposed
model.

The 24-hour period is divided into two time slots: daytime,
from 7.00 a.m. to 7.00 p.m., and nighttime from 7.00 p.m. to
7.00 a.m. the following day. If an EV is parked in a charging
station during the night, it overstays after its battery has been
fully charged, until the following morning. Moreover, mobility
during the night is very limited compared to the day, but not
absent. Thus, all the constraints adopted have the sole purpose
of creating the typical conditions of the use of EVs.

IV. RESULTS

We developed an ABM with NetLogo 6.1.1, which allows
user-defined variables for the configuration of different simu-
lation scenarios. Table I reports the main settings of the model.
In this case the number of charging stations and EVs are 20
and 40, respectively. These values were defined to guarantee
a mostly comprehensive coverage of possible scenarios and
avoid easy saturation conditions during simluation. The total
energy of the battery pack of each EV is a pre-set variable that
was defined in the program code; it is 40 kWh. In this work,
the charging power depends on the 6.6 kW on-board charger
of each EV. Nonetheless, the actual charging power is lower
than this value because of the efficiency, so that a full charge
(from 0 to 100% SOC) of a 40-kWh battery pack takes about
7.5 hours.

Possible scenarios are indentified by the maximum SOC
threshold value, from 10% to 60% with an increment step
equal to 10%. For each scenario we carried out 10 simulations

TABLE I: Model parameter setting.

Parameter Value
Charging stations 20
Electric vehicles 40
Battery pack 40 kWh
On board charger 6.6 kW
SOC threshold from 10% to 60% (step 10%)

of 30 days each. For each simulation, the initial setting of the
battery SOC of each EV and the battery depletion over time
are mostly random. In this way, the behavior of any vehicle
is independent from another so that this model can generate,
through a stochastic approach, all the situations required for a
comprehensive analysis.

A. Peak power

Figure 3 summarizes the results regarding the range of the
maximum peak power during all the simulations for each
scenario. It is worth noting that, in general, a greater value
of battery SOC at the beginning of a charging phase leads to
a higher maximum power that can be reached. In addition,
the range (see the vertical segments) and the mean value (see
the horizontal line markers) of the maximum peak power also
increase. Nevertheless, the mean value is almost constant at
two different levels, when considering the low and high values
of SOC threshold (i.e., < 30% and > 40%, respectively). In
any case, an attitude of EV drivers to charge their vehicles
when battery packs have a medium or high SOC entails a
larger number of service requests, albeit for a shorter time for
each of them in comparison with the recharge time of batteries
at low SOC level. This situation leads to a greater instability,
and therefore uncertainty, in a power grid.
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Fig. 3: The peak power for different thresholds of battery SOC.

For a sake of clarity, Fig. 4 reports all the results regarding
the maximum peak power for each simulation run. In fact, it is
also important to analyze the probability of high power peaks
from the number of events during the simulations. Although
relatively low power peaks are possible in any scenario, this
map shows that the probability to have the largest values of
peak power increases as the SOC threshold value increases.
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Fig. 4: The maximum peak power [kW] during each simulation

B. Charging stations

As for the effects deriving from the attitude of EV drivers
on charging, Fig. 5 shows (i) the mean value of the maximum
number of stations that simultaneously charge EVs and (ii) the
mean value of the maximum number of busy stations, which
include the stations with EVs being charged and those with
EVs parked after the end of charging. In the first case, the
trend is similar to that of the mean value of maximum peak
power. In fact, these results (blue dots) are mostly grouped
into two different levels of values, when considering low and
high values, respectively, of SOC threshold.
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Fig. 5: The mean maximum number of stations for different
SOC thresholds.

On the other hand, a monotone increasing function is more
evident when analyzing all the busy stations (orange dots).
In this case the trend is almost quadratic according to the
following relation:

Ny, =0.7321e73 - 22 + 0.4761e - 2 + 9.79 (D)

In (1), Ny is the mean value of the maximum number
of busy stations at the same time for each scenario, and x
is the maximum SOC of EV batteries at initial charging.
This function concerns the analysis of busy stations only
for the battery SOC range from 10% to 60%. In fact, we
considered that it is generally rare to charge an EV with an
initial battery SOC outside this range, especially considering
that range anxiety in drivers may rise to a more stressful

level as a battery pack is close to depletion, and that the
life degradation of batteries generally increases at high SOC
values [25]. Furthermore, the gap between the two plots of
Fig. 5 tends to increase as the SOC threshold increases. This
means that, in general, a greater value of the initial SOC in
EV charging leads to a greater probability of non-availability
of a station, so that more stations are needed to efficiently
meet the energy demand of the same fleet from a quality
of service perspective. This drawback should be addressed
by better analyzing the causes for which EVs remain parked
beyond charging times [1]. However, this is outside the scope
of this work.

In this context, we define 7 as the efficiency in the use of
stations, as follows:

max (Sp)

n= (2)

max (Sp)

In (2), S, is the number of stations supplying power to EVs
at the same time, whereas .S}, is the number of busy stations.
These parameters were evaluated during all the simulations
of each considered scenario, with a sample time of 1 minute.
Accordingly, n=1 when each occupied station is charging a
vehicle. Otherwise, it is less than 1 in the case of overstay
of any EV. Figure 6 reports the values of 7 for each of the
ten simulation runs considered in each scenario, and using
different shades of blue for a quick visual analysis. Table
Il reports, in a summarized way, only the minimum and
maximum value of n for each scenario. It is worth noting
that both values tend to decrease with an increase of the SOC
value at initial charging. In this case, 40% is the maximum
threshold value of the SOC to achieve, with a good probability,
an efficiency equal or close to 1. Conversely, 1 could be less
than 0.7 for SOC threshold values of 50% and 60%. This
effect can be explained by the fact that the larger is the SOC
value of an EV battery at the beginning of each recharge, the
higher is the frequency of service requests to charging stations.
Therefore, in this context the SOC threshold value may also
represent the level of range anxiety.
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Fig. 6: The efficiency 7 obtained from each simulation run.
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TABLE II: Efficiency in the use of stations.

SOC threshold [%] 1

min. max.
10 0.8000 | 1.000
20 0.7500 | 1.000
30 0.6923 | 1.000
40 0.7500 | 1.000
50 0.6923 | 0.8750
60 0.6250 | 0.8571

C. Discussion

Firstly, the results suggest that the attitude of EV drivers to
charging their vehicles with an initial SOC value of battery
pack greater than 30% leads to a greater uncertainty for the
forecast of power demand, and that a value greater than 40%
could drastically worsen the optimized use of the infrastruc-
ture. This result reveals that the impact is generally different
when considering the probability of a high peak power and
that of station utilization, although the trend is generally very
similar.

Figure 7 reports two snapshots of two simulations at dif-
ferent SOC thresholds: one at 20% of the other at 60%. They
show the plots of the instant power of the EV grid and the
average SOC of all the vehicles that are not parked at any

charging station. An observation is that high power peaks
generally follow the prolonged declining phase of the mean
SOC value of the fleet, as in the example pointed out in the
circled area of Fig. 7(a). Furthermore, a greater fluctuation of
the average SOC over time leads to a greater probability of
having very different peak power values. On the other hand,
a stable or flat trend of SOC, such as the example reported
in Fig. 7(b), considerably improves grid power peak stability.
From these results, it can be inferred that the analysis of the
battery SOC and position of every vehicle in a certain area
can effectively help in managing the energy distribution in a
smart grid by better predicting possible demand peaks.

V. CONCLUSION

This work reported the impact of the attitude of EV drivers
in charging their plug-in vehicles, based on the state of charge
of battery packs, on a power grid. The results from the
simulation of the agent-based model we developed for this
analysis indicate that driver’s behavior based on range anxiety
impacts on the uncertainty of power peaks in an EV charging
grid and on the efficient use of stations. In fact, it can lead
to an increase of the maximum peak power of about 45%
and reduce the efficiency by about 40%, for a range of the
maximum battery SOC at initial charging from 10% to 60%.
In this context, these latter values can also reflect the levels
of driver anxiety.
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