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Towards fully automated high-dimensional
parameterized macromodeling

Alessandro Zanco, Graduate Student Member, IEEE, Stefano Grivet-Talocia, Fellow, IEEE

Abstract—This paper presents a fully automated algorithm for
the extraction of parameterized macromodels from frequency
responses. The reference framework is based on a frequency-
domain rational approximation combined with a parameter-
space expansion into Gaussian Radial Basis Functions (RBF).
An iterative least-squares fitting with positivity constraints is
used to optimize model coefficients, with a guarantee of uniform
stability over the parameter space. The main novel contribu-
tion of this work is a set of algorithms, supported by strong
theoretical arguments with associated proofs, for the automated
determination of all the hyper-parameters that define model
orders, placement and width of RBFs. With respect to standard
approaches, which tune these parameters using time-consuming
tentative model extractions following a trial-and-error strategy,
the presented technique allows much faster tuning of the model
structure. The numerical results show that models with up to ten
independent parameters are easily extracted in few minutes.

I. INTRODUCTION

Compact macromodeling techniques are quite common in
Computer-Aided Design (CAD) flows in the electronic in-
dustry. Complex system-level verification via numerical sim-
ulation may be drastically simplified by using macromodels,
resulting in major speedup in runtime at almost no loss of
accuracy [1]. Therefore, reliable and robust algorithms for
macromodel extraction are required to enable such optimized
workflows. This paper presents a number of new results and
related algorithms in this context.

Most recent macromodeling approaches were developed
for passive device and interconnects [2]–[5]. Among the
data-driven model extraction methods on which this work
is focused, we mention the popular approaches based on
Vector Fitting [4] and Loewner matrix frameworks [6]–[8],
[18], which construct a rational approximation to the system’s
transfer functions through numerically robust algorithms. The
resulting mathematical expressions are easily cast as state-
space systems of Ordinary Differential Equations (ODEs)
and can be synthesized as SPICE equivalent netlists [9],
compatible with any standard circuit solver.

The remarkable robustness of these algorithms led to a
number of notable extensions in the recent years. Exam-
ples are distributed circuits modeled through delay-rational
functions [10]–[13], and multivariate extensions allowing to
embed in the model a closed-form dependence on external
parameters, possibly related to geometry, materials, ambient,
or bias conditions [1], [14]–[16]. This work concentrates on
the latter extension, by providing a novel and fully-automated
approach for model extraction, which has the potential to scale
very favorably with the number of independent parameters.

We assume that the responses of the devices under modeling
can be accurately reproduced by the class of Linear Time

Invariant (LTI) systems. Therefore, the proposed approach is
applicable both to natively linear structures such as all types of
interconnects, but also to active nonlinear devices represented
by small-signal transfer functions. The proposed approach
builds on several known results and assumptions. For instance,
as model functional form we exploit the so-called rational
barycentric model structure, originally introduced in [17]–[19]
and extended to the parameterized framework in [16].

Standard parameterized macromodeling schemes have
proven to be extremely effective when dealing with few in-
dependent parameters (up to five) but, on the other hand, have
shown poor scalability properties in case of larger dimensions.
In [20], [21], the Authors proposed a novel parameterized
macromodeling framework with excellent properties in terms
of model compactness, breaking the dependence of the model
complexity on the parameter space dimension. The main
enabling factor is the adoption of an unstructured approach
based on Radial Basis Functions (RBFs), see e.g. [22], [23],
to capture parametric variability in the model structure.

The main drawback is that an RBF-based approach requires
the selection of a number of free hyper-parameters, whose
optimization is not trivial. Indeed, considering the class of
Gaussian RBFs, the approximation capabilities strongly de-
pend upon their shape (how “fat” or “thin” are the RBFs), as
well as the number and position of their centers. Concerning
the optimization of the RBF shape, classical techniques range
from simple grid search [20], [21] to a more sophisticated
optimization of cross validation indicators and maximum like-
lihood estimators [24]–[26]. These strategies, however, require
the extraction of many intermediate macromodels that, in our
setting, would require unacceptable computational efforts. In
regard to the selection of the RBF number and centers, a
common choice is to pick (or generate) data samples from the
input space according to some predefined rule [27]–[29]. Other
techniques, instead, rely on more advanced schemes, such as
clustering algorithms [30]–[32] and forward (or backward)
selection through Recursive Orthogonal Least Squares [33].

In the framework of parameterized macromodeling, we have
recently proposed a number of heuristic strategies to optimize
both the RBFs shape [21] and centers [34]. In these previous
works, the free hyper-parameters were deliberately chosen as
common between model numerator and denominator in order
to simplify the problem. Even though this choice does not
seem to affect the model accuracy, it may drastically increase
its complexity, still requiring time-consuming repeated model
extractions.

This work tries to overcome the above limitations, by:
1) providing a comprehensive and detailed analysis on how

the RBF shape affects both the model accuracy and the
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numerical conditioning of the associated fitting problem;
2) exploiting these results to set-up a sub-optimal algorithm

(already presented in preliminary form in [48]) to choose
an adequate RBF shape;

3) describing a simple yet effective iterative procedure
aimed at selecting the least necessary number of RBFs
as well as their centers, in order to appropriately capture
the parametric variability;

4) finally and most importantly, providing a thorough theo-
retical background in support of the presented strategies.

The proposed automated approach is validated on various
linear passive and nonlinear (linearized) active test-cases, with
up to ten independent parameters. The results show that
compact, accurate, uniformly stable parameterized macromod-
els are extracted in few minutes, thus validating the overall
framework.

II. GENERAL FRAMEWORK

We start by introducing the general framework on which
the proposed automated macromodeling flow builds. This
framework is not new [16], [20], [35]. We summarize here the
main assumptions, definitions, and consolidated formulations,
in order to set notation and make this paper reasonably self-
contained.

We consider a device, component, interconnect or sub-
system with P interface ports, and we assume that a LTI
representation is adequate for capturing the dominant phys-
ical processes that have an influence on its behavior. The
P × P transfer function of the system depends on frequency
s = jω and on ρ additional parameters, collected in vector
ϑ = [ϑ1, . . . , ϑρ] ∈ Θ. These parameters may be related to
geometry (e.g., width or separation of traces), materials (e.g.,
relative permittivity), or ambient (e.g., temperature).

We assume an available characterization of the system re-
sponse through a set of tabulated samples H̆k,m = H̆(sk,ϑm)
known at a discrete set of k̄ frequency sk = jωk and m̄
parameter points ϑm. For modeling purposes, the set of all
available parametric responses corresponding to parameter
values in R = {ϑ1, . . . ,ϑm̄} is split in mutually disjoint
training T (with cardinality m̄t) and validation V (with
cardinality m̄v) subsets, i.e. T ∪ V = R. A common scenario
enabling this characterization is a multi-dimensional frequency
and parameter sweep calling a frequency-domain field solver.
Throughout this work, we assume this initial dataset to be
precomputed and available, e.g. as a set of Touchstone files.

The main objective is the extraction of a black-box pa-
rameterized model H(s,ϑ), whose frequency- and parameter-
dependent response matches as closely as possible the avail-
able data

H(sk,ϑm) ≈ H̆k,m ∀k, ∀ϑm ∈ T (1)

over the parameter space and frequency band of interest. The
model should be not only accurate, but it should have a
structure allowing a synthesis into an equivalent parameterized
SPICE netlist, to be used as a parameterized library component
for simulation-based design optimization, what-if, sensitivity,
and Monte Carlo analyses.

A. Model structure

We adopt the well consolidated model structure [16]

H(s;ϑ) =
N(s;ϑ)

D(s;ϑ)
=

∑n̄
n=0

∑¯̀
N

`=1 Rn,` ξ`(ϑ)ϕn(s)∑n̄
n=0

∑¯̀
D

`=1 rn,` ξ`(ϑ)ϕn(s)
. (2)

Frequency dependence is captured by the basis functions
ϕn(s), here assumed to be the standard partial fraction basis1

ϕn(s) = (s − qn)−1 for n = 1, . . . , n̄ associated with pre-
scribed Vector Fitting (VF) ”basis” poles qn, with ϕ0(s) = 1.
Parameter variability is captured by the basis functions ξ`(ϑ),
discussed below. Given this model structure, for any choice
of the free coefficients Rn,`, rn,`, we have that H(s;ϑ) is a
rational function of frequency, which enables a straightforward
translation to an equivalent SPICE netlist [9].

B. Model parameterization

This paper specifically addresses high-dimensional parame-
terized models, where the number ρ of independent parameters
can grow beyond few units. With the exception of [20], [21],
previous works on parameterized modeling provided only
examples with up to ρ = 2 and in some cases ρ = 3 pa-
rameters. This limitation was due to several factors, including
model structure and specific choice of parameter-dependent
basis functions ξ`(ϑ). In particular, any choice of multivari-
ate polynomials based on a (structured) Cartesian product
of univariate polynomials is likely to be poorly scalable to
high parameter dimensions. Here, we want to overcome this
limitation and provide a formulation that is limited only by
the data variability in the parameter space and not on the
parameter space dimension.

It has been already shown in [20], [21] that high-
dimensional modeling is only possible through mesh-free and
unstructured descriptions, such as provided by Radial Basis
Functions (RBF). The results in [20] confirm that up to ρ = 10
independent parameters can be efficiently handled. Therefore,
we will adopt as parameter basis functions the Gaussian RBFs,
defined as

ξε` (ϑ) = e−ε
2‖ϑ−ϑ̊`‖2 (3)

where ϑ̊` denotes their centers, and the shape parameter ε
controls their width hence their smoothness. Both number and
location of centers and shape parameters are free variables in
the determination of the model structure; this paper proposes
a general algorithm for their automated determination.

C. Model identification

Given a set of basis functions, with predefined basis
poles qn, RBF centers ϑ̊` and shape parameter ε, the free
model coefficients Rn,`, rn,` are determined using the well-
established Parameterized Sanathanan Koerner (PSK) itera-
tion2 [16], [37]. Model-data error minimization is achieved

1Suitable modifications apply in case of complex-valued basis poles αn ±
jβn.

2The PSK framework, as well as standard Vector Fitting, are generally not
guaranteed to converge [36]. However, lack of convergence can be usually
associated to the presence of large noise components in the data. Assuming
sufficient data quality, no convergence issues are expected.
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through an iteration µ = 1, 2, . . . , that solves at each step a
linear relaxation of the data fitting (1)

Nµ(jωk;ϑm)−Dµ(jωk;ϑm)H̆k,m

Dµ−1(jωk;ϑm)
≈ 0. (4)

A compact matrix notation for (4) is readily obtained by
collecting all elements of Rn,`, rn,` at iteration µ in a vector
xµ, obtaining

Ψµ(ε)xµ ≈ 0, (5)

to be suitably constrained to avoid the trivial all-zero solution
xµ = 0, e.g. by setting ‖xµ‖ = 1. Note that we highlight
the dependence on all matrices on ε in order to enable the
developments of Sec. IV.

The matrix Ψµ(ε) ∈ Ck̄m̄tP
2×(n̄+1)(P 2 ¯̀

N+¯̀
D) is defined as

Ψµ(ε) =

Γµ(ε) Ξ(1,1)(ε)
. . .

...
Γµ(ε) Ξ(P,P )(ε)

 (6)

where individual blocks read

Γµ(ε) = Wµ−1XN (ε),

Ξµ
(i,j)(ε) = −Wµ−1H̆(i,j)XD(ε).

(7)

The two matrices Wµ−1 and H̆(i,j) are diagonal and collect,
respectively, the values of (known) denominator available
from previous iteration Dµ−1(jωk,ϑm) for all k,m, and all
frequency-parameter samples of the response Hi,j(jωk,ϑm).
Matrices

XN (ε) = Φ⊗KN (ε), XD(ε) = Φ⊗KD(ε) (8)

where ⊗ is the Kronecker product, collect products of fre-
quency and parameter basis functions, individually stored in

Φ =

ϕ0(s1) · · · ϕn̄(s1)
...

...
ϕ0(sk̄) · · · ϕn̄(sk̄)

 (9)

KN,D(ε) =

 ξε1(ϑ1) · · · ξε¯̀(ϑ1)
...

...
ξε1(ϑm̄t

) · · · ξε¯̀(ϑm̄t
)

 (10)

where ¯̀= ¯̀
N and ¯̀= ¯̀

D for KN and KD, respectively.

D. Fast PSK implementation

The solution of the fully-coupled system (5) is usually
achieved through the so-called Fast PSK iteration [35]. For
each input-output port combination (i, j) we compute in-
dependently the following QR factorizations (we omit the
dependence on ε for readability)

Qµ
(i,j)R

µ
(i,j) =

(
Γµ Ξµ

(i,j)

)
(11)

where

Rµ
(i,j) =

Rµ
(i,j;1,1) Rµ

(i,j;1,2)

0 Rµ
(i,j;2,2)

 (12)

When the bottom-right blocks Rµ
(1,1;2,2), . . . ,R

µ
(P,P ;2,2) are

available, the least squares problemRµ
(1,1;2,2)

...
Rµ

(P,P ;2,2)

dµ = R̄µdµ ≈ 0 (13)

is assembled and solved, where dµ collects all denominator
coefficients rn,` at iteration µ. These coefficients allow in turn
the setup of the PSK system for the next iteration, by updating
the weighting matrix Wµ. When the coefficient estimates dµ

stabilize at iteration µ̄, the numerator coefficients are found as

Γµ̄C ≈ B (14)

where the matrix unknown is

C =
(
c(1,1) . . . c(P,P )

)
(15)

with vectors c(i,j) collecting all elements (i, j) of numerator
matrix coefficients Rn,`, and where

B =
(
−Ξ(1,1)d

µ̄ · · · −Ξ(P,P )d
µ̄
)
. (16)

E. Uniform stability

In order to guarantee reliable time-domain simulations, the
macromodel must be guaranteed stable for all the possible pa-
rameter instances ϑ in the parameter space (uniform stability)

<{pn(ϑ)} < 0 ∀ϑ ∈ Θ , (17)

where pn(ϑ) are the parameter-dependent model poles of the
model (2) written in pole-residue form

H(s;ϑ) = Υ0(ϑ) +

n̄∑
n=1

Υn(ϑ)

s− pn(ϑ)
. (18)

We remark that the adopted model structure (2) parameterizes
the poles pn(ϑ) only implicitly. These poles can only be
computed a-posteriori by fixing ϑ and evaluating the ze-
ros of the denominator in (2). Therefore, direct constraints
in the form (17) cannot be exploited as in standard (non-
parameterized) VF. However, it has been shown [9] that
uniform stability is guaranteed by a strictly positive-real de-
nominator

<{D(s,ϑ)} > γ <{s} > 0, ∀ϑ ∈ Θ (19)

for any given positive constant γ > 0. In turn, this condition
is guaranteed [20], [21] by the simpler algebraic conditions{

rn,` > γ

−αn · r′n,` ± βn · r′′n,` > γ
(20)

on the denominator coefficients associated to real qn and
complex αn±jβn basis poles, with corresponding real rn,` and
complex conjugate r′n,`± jr′′n,` residues, respectively, provided
that positive definite basis functions ξ`(ϑ) > 0, ∀ϑ (such as
the Gaussian RBFs) are used. Uniformly stable models are
therefore obtained by solving a convex optimization problem
that minimizes the (quadratic) least squares error associated
to (13) subject to the linear inequality constraints (20).
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III. PROBLEM STATEMENT

The general framework discussed in Section II provides
a state-of-the-art flow for the generation of parameterized
models based on a model structure (2) with Gaussian RBF
bases (3), provided that

1) the dynamic order n̄ and the basis poles qn are known;
2) the number ¯̀

N and ¯̀
D of RBF basis functions for

numerator and denominator is fixed;
3) the centers ϑ̊` where these basis functions are placed

are given;
4) the shape parameter ε is fixed.

All these elements are collectively denoted as hyper-
parameters in the following. Under these assumptions, no
user interaction is required for model generation, and all steps
discussed in Sec. II are well defined.

Unfortunately, the four above assumptions are not satisfied
in practical situations. All hyper-parameters are generally not
known to the user and should be initialized before actual
model identification can start. In some cases, this selection
can be based on some prior knowledge of the structure under
modeling. For instance, a fixed and predefined number of poles
can be used for well-defined components such as inductors or
capacitors. However, the general selection of hyper-parameters
is still regarded as an open problem, for which either time-
consuming trial and error procedures are routinely applied, or
alternatively heuristic selections are performed, which are far
from being optimal.

The main contribution of this paper is a full set of algorithms
providing an automated suboptimal choice of all these hyper-
parameters. With the proposed automated framework, high-
dimensional parameterized model generation becomes a “one-
click” process, with obvious speedup in model extraction with
respect to trial and error attempts. Before proceeding, we
emphasize that
• all derivations are based on a fixed initial dataset of

samples H̆k,m. No interaction between model generation
and initial data calculation (e.g. via an on-demand request
of new samples from a field solver) is considered.

• model passivity verification and enforcement is not con-
sidered in this work. Several results are available in the
context of (low-dimensional) parameterized macromod-
eling [38], [39]. Extension to a high-dimensional setting
is still an open problem under the computational cost
perspective. This problem is not discussed here, except
for few remarks on the numerical examples in Sec. VI-D.

The proposed contributions are organized as follows. Sec-
tion IV concentrates on the automated determination of the
shape parameter ε once all other hyper-parameters are fixed.
Section V-A discusses determination of dynamic model order
(number of poles). Section V-B discusses an efficient (greedy)
strategy for the selection of appropriate number and location
of RBFs for both numerator and denominator.

IV. AUTOMATED SELECTION OF THE GAUSSIAN SHAPE
PARAMETER

The approximation capabilities of a finite set of basis
functions ξε` (ϑ) strongly depends on the free parameter ε,

which must be carefully selected. In the past years, many
efforts have been devoted to establish a direct link between the
RBF approximation error and the Gaussian shape parameter
ε. For instance, some error bounds have been found as a
function of the shape parameter and data point distribution
(see [40]). Others [41]–[43] found some peculiar properties of
infinitely flat (ε→ 0) RBFs, exploited in [44]–[47] to develop
numerically stable algorithms for RBF-based approximation.
The main drawback of such techniques is that they do not scale
favourably in high-dimensional spaces and, thus, turn out to
be of limited use in our scope.

A standard approach in machine learning is to infer a
suitable shape parameter value based on statistical consider-
ations (see [24], [25]). In principle, these techniques rely on
optimizing some predictor function, such as cross validation
or maximum likelihood estimators. All these strategies require
therefore the repeated extraction of intermediate macromod-
els, evaluated for different values of ε. In our framework,
this procedure may take unacceptably long runtimes. In the
following, we discuss a very efficient strategy, which was
presented heuristically in preliminary form in [48]. Here, we
provide a solid ground for the basic algorithm, by proving a
number of results on the spectral properties of all PSK matrices
introduced in Sec. II viewed as a function of ε. The main
algorithm is motivated and presented without proofs in the
following subsections. All the theoretical results in support of
this algorithm are collected in the Appendix, which may be
skipped at first reading.

A. Shape parameter, model accuracy, and conditioning

In this section, we investigate the relation between the
shape parameter ε, the expected model accuracy, and the
condition number of the PSK matrix (6) on which the model
identification is based. The various observations that follow
are supported by Fig. 1, which refers to an integrated inductor
parameterized by its sidelength. The observations are however
general and apply to all test cases included in this work.

We analyze the two asymptotic cases.
1) Case ε → ∞: The shape parameter ε is inversely

proportional to the standard deviation of the Gaussian RBF,
viewed as a probability density function. Therefore, when
ε → ∞ the width of ξε` (ϑ) tends to vanish, and the RBF
concentrates more and more around its center ϑ̊`. The asymp-
totic limit is

ξ∞` (ϑ) =

{
1 if ϑ = ϑ̊`

0 if ϑ 6= ϑ̊`
(21)

A corresponding model provides exact interpolation at the
RBF centers, but it is identicaly vanishing elsewhere; it will be
unable to provide a continuous parameterization, leading the
overall model accuracy to be poor. This behavior is highlighted
in the top panel of Figure 1, region C, which reports the model-
data error as a function of ε on an illustrative test case.

On the other hand, when approaching this limit the resulting
fitting problem is expected to be very well conditioned. Indeed,
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Fig. 1. Dependence on the shape parameter ε of model-data error (top panel),
condition number of matrix Ψ(ε) (middle panel), and least singular value of
matrix Ψ(ε) (bottom panel). For all panels three regions are highlighted:
A (numerical instabilities associated with small ε), B (acceptable model
accuracy), C (loss of approximation capabilities). Green region: candidate
sub-optimal shape parameter values.

under suitable rows and columns permutations, the kernel
matrix KN,D(ε) becomes

KN,D(∞) =

(
I¯̀

0

)
(22)

where I¯̀ denotes the identity matrix of dimension ¯̀. A matrix
of this form has optimal condition number κK(∞) = 1. Thus,
with the assumption that matrix Φ collecting the basis poles is
numerically well-conditioned, such good numerical properties
are inherited by Ψµ(ε) (or, equivalently by R̄µ). The middle
panel of Figure 1 confirms this statement (see region C, for
large ε).

2) Case ε → 0: When ε → 0 the Gaussian RBF becomes
increasingly flat around its center. A set of remarkable re-
sults [41]–[43] show that under these conditions a Gaussian
RBF approximant is equivalent to the De Boor/Ron ”least
polynomial” interpolant. Therefore, polynomial accuracy is
expected for small ε, a condition that is particularly attractive
when approximating smooth functions.

However, as Figure 1 suggests, this limit is computation-
ally unattainable. As ε → 0 the conditioning of the fitting
problems degrades (Fig. 1, middle panel, region A), resulting
in increasingly inaccurate models (Fig. 1, top panel, region
A). This result is very intuitive, since when ε → 0 all basis
functions approach uniformly constant planes and become
linearly dependent. The kernel matrix approaches the limit

KN,D(0) = 1m̄×¯̀ (23)

where 1m̄×¯̀ is a matrix of all ones, which has only rank
one.

It seems therefore that a good compromise is to choose ε
sufficiently small to ensure accuracy, but not too small in order
to prevent numerical conditioning issues. These statements are
made more precise in the following.

B. Singular values as a proxy for model accuracy
The behavior of the condition number κΨ(ε) depicted in

Fig. 1 is typical in Gaussian RBF approximation. Let us recall
that κΨ(ε) = σ̄Ψ(ε)/σΨ(ε), where σ̄Ψ(ε) and σΨ(ε) are,
respectively, the leading and the least singular values of matrix
Ψ(ε). These two singular values are analyzed below.

1) The least singular value: A complete characterization
of σΨ(ε) requires an in-depth analysis of the singular values
spectra of PSK matrices, which is provided in the Appendix.
The main result (see Theorem 2 in the Appendix) states that,
for ε → 0, the least singular value σΨ(ε) decreases with an
integer power τ that is at least 4, provided that the number
of RBFs is larger than the dimension of the embedding space
plus two, ¯̀> ρ+ 2. More precisely,

σΨ(ε) = O(ετ ) as ε→ 0, τ ∈ N, τ ≥ 4. (24)

Hence, as confirmed by the bottom panel of Figure 1 (region
B), the least singular value σΨ(ε) decays linearly when
visualized in a log-log scale, with a well-defined slope τ
(the flattening in region A is determined solely by machine
precision and truncation errors when evaluating the singular
values).

2) The leading singular value: The leading singular value
σ̄Ψ(ε) is not expected to vary significantly as ε changes and
approaches 0. Considering the two limit cases of the kernel
matrix KN,D(ε) in (22) and (23), for which the leading sin-
gular value is analytically known respectively as 1 and

√
m̄¯̀,

it is expected that σ̄K(ε) remains bounded in the interval[
1,
√

¯̀m̄
]

for 0 ≤ ε ≤ ∞. Based on (8), we conclude that
also the variations of σ̄Ψ(ε) are bounded within an interval
that does not depend on ε. Hence, we can conclude that

κΨ(ε) =
σ̄Ψ(ε)

σΨ(ε)
∼ C

σΨ(ε)
ε→ 0 (25)

where C is a positive constant.
Recalling now (24), we conclude that the condition number

κΨ(ε) blows up as O(1/ετ ) for ε → 0, as depicted in
region B of Figure 1. Middle and bottom panels confirm that
condition number and least singular value are nearly inversely
proportional within region B (results in region A are unreliable
due to machine precision). In summary,

1) large values of ε lead to inaccurate models (Fig. 1, region
C), since the RBF are too narrow;

2) small values of ε result in accurate models but the asso-
ciated fitting problem is prone to numerical instabilities
when ε is too small (Fig. 1, region A).

We can thus identify the region B of Fig. 1 as a good candidate
on which to search for a sub-optimal value of ε, that

1) must be small enough to ensure a proper model param-
eterization;

2) must be sufficiently large to guarantee a proper condi-
tioning of the fitting problem.

These two requirements are clearly conflicting. In addition, in
order to guarantee the best possible numerical conditioning
and robustness, we aim at picking ε that minimizes κΨ(ε). In
this scope, we narrow our search to the green-shaded area at
the interface of regions B and C, where both the requirements
on numerical conditioning and model accuracy are fulfilled.
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Fig. 2. Algorithm 1: iterative regression (black thick line) on shape parameter-
singular value pairs {εt, %t} (red dots).

C. An algorithm for choosing the shape parameter

We now describe our proposed fast algorithm for the se-
lection of a sub-optimal shape parameter ε∗. With reference
to Fig. 1, we aim at identifying the green-shaded area at the
intersection between regions B and C. Using the least singular
value σΨ(ε) as a proxy for the condition number κΨ(ε) of
the fitting matrix, we locate the point where its trajectory in
a log-log scale begins to flatten. This point is at the corner
between the scaling range of σΨ(ε) as O(ετ ), and the range
where it becomes nearly constant.

As initially proposed in [48], we compute in advance a set
of pairs (red dots in Figure 2)

{(εt, σΨ(εt)), t = 1, . . . , t̄}

on a set of increasing logarithmically spaced candidate shape
parameter values {ε1, ε2, . . . , εt̄} (3–4 points per decade are
sufficient). Accordingly, we define εt = log εt and %t =
log σΨ(εt). To localize the corner point we exploit the result
in Theorem 2, that guarantees a power-law decay of σΨ(ε)
for small values of ε. Hence, we set up an iterative scheme
with iteration index J . At each step, a log-log regression
line ζJ(ε) = αJ log ε + βJ (black thick line in Figure 2) is
computed on the pairs {(εt, %t), t = 1, . . . , J}. Then, if the
relative deviation ∆J+1 = |ζJ(εJ+1)− %J+1| /%J+1 exceeds
a predefined threshold ∆th we assume to be in correspondence
of the corner point we are looking for. Thus, assuming that at
iteration J∗ we have ∆J∗+1 > ∆th, we stop the iterations and
we set ε∗ = εJ∗ . Algorithm 1 reports a high-level pseudo-code
for this procedure.

D. From regressor to kernel matrices

As described in Sec. IV-C and Algorithm 1, the identifi-
cation of the optimal shape parameter is based on the least
singular value of the regressor matrix Ψ(ε) in (6). This
matrix is iteration-dependent and large-sized. Therefore, an
expensive and repeated (least) singular value calculation would
be required multiple times at each PSK iteration, in order
to estimate the appropriate shape parameter for the model.
Fortunately, this calculation is not necessary. In fact:
• Although the Ψµ(ε) changes at each PSK iteration µ, its

spectral properties and in particular the dependence on ε
of its least singular value are practically invariant through
iterations. Therefore, Algorithm 1 can be run only once

Algorithm 1 Sub-optimal shape parameter selection [48]
Require: Log-spaced samples {ε1, . . . , εt̄}.
Require: Stopping threshold ∆th

Require: Reference matrix Z(ε): Ψ(ε), R(ε), or KN,D(ε)
1: Compute εt = log εt and %t = log σZ(εt) for t = 1, . . . , t̄
2: for J = 2, . . . , t̄ do
3: Build regression line ζJ(ε) = αJ log ε+ βJ

using pairs {(εt, %t), t = 1, . . . , J}
4: Evaluate ∆J+1 = |ζJ(εJ+1)− %J+1| /%J+1

5: if ∆J+1 > ∆th then
6: Set ε∗ = εJ
7: break
8: end if
9: end for

10: return Sub-optimal shape parameter ε∗.

at the first iteration µ = 1, and the corresponding optimal
ε∗ reused at all subsequent iterations.

• The behavior of the least singular value of Ψµ(ε) is
inherited, by construction, also by matrix R̄µ(ε) in (13)
resulting from the Fast PSK formulation, whose size is
significantly smaller. Therefore, evaluating the singular
values of R̄µ(ε) instead of Ψµ(ε) enables a significant
speed-up of the entire procedure.

• A third significantly faster implementation is based on
the kernel matrices KN (ε), KD(ε) associated to numer-
ator and denominator, respectively. These matrices are
significantly smaller than Ψµ(ε) and R̄µ(ε), so that their
construction and singular values computation requires
negligible time. As we will prove in the Appendix, also
these kernel matrices share similar spectral properties
with Ψµ(ε) and R̄µ(ε). In particular, their least singular
values σKN

(ε) and σKD
(ε) have the the same depen-

dence with ε as σΨ(ε), σR̄(ε).
Based on the above considerations, our proposed implemen-
tation applies Algorithm 1 to matrices KN (ε) and KD(ε) for
the identification of the sub-optimal shape parameters ε∗N and
ε∗D defining the numerator and denominator Gaussian RBFs,
respectively.

V. MODEL ORDER SELECTION

In order to properly capture the broadband and parametric
variations of the system responses, the number and the position
of the Radial Basis Functions as well as the number and
location of the basis poles should be carefully determined. A
direct search among all the possible triplets {n̄, ¯̀

N , ¯̀
D} while

maximizing the model accuracy is clearly unfeasible.

A. Dynamic order selection
In order to estimate the proper dynamic order (number of

model poles), we setup an iterative scheme, that is run in a
preprocessing stage. A set of candidate dynamic orders is first
collected in ascending order as {n̄1, . . . , n̄q̄}. Then, we iden-
tify a suitable subset of frequency responses corresponding to
some predefined parameter values

P = {ϑz ∈ T : z = 1, . . . , z̄}. (26)
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In our strategy, P contains the data points in the training set
corresponding to the nearest neighbors to the parameter space
vertices as well as its center. This choice is not restrictive.

The well-established VF algorithm [4] is applied inde-
pendently to all frequency responses corresponding to the
z̄ parameter values in set P , by iteratively increasing the
dynamic order n̄ = n̄1, n̄2, . . . . As the iterations proceed,
since the number of poles is gradually increased, the worst
case model-data error EI among all the possible z̄ models is
expected to reduce. The process stops at iteration I∗ when the
error EI∗ is uniformly below a prescribed threshold Eth, and
the corresponding dynamic order n̄ = n̄I∗ is selected. The set
of basis poles {qn} is then initialized by picking the poles of
the VF model corresponding to the nearest neighbor of the
parameter space center.

We remark that the above procedure is conventional, heuris-
tic, and well established in common macromodeling flows
and even in commercial tools, at least for non-parameterized
macromodeling. It is included here in order to provide the
Reader with a complete set of “recipes” for setting up a
parameterized macromodeling code.

B. Parameter order and RBF selection

A greedy approach for selecting both number and location
of RBFs was proposed by the Authors in [34], leading to
quite accurate results. However, this approach proves to be
computationally inefficient and, more importantly, it may lead
to models that are likely to be more complex than strictly
required (see Section VI-B for a numerical example).

Here, we propose a different strategy in the interest of model
compactness and required computational runtime. First, we do
not seek for an optimal placement of the RBFs in the parameter
space. Although several techniques have been proposed in the
past years [27]–[32] for this optimal placement, they are inap-
plicable to the adopted rational model structure, which presents
RBF expansions both at numerator and denominator. In fact,
many numerical experiments suggest that, in the framework
of parameterized macromodeling, the accuracy improvement
deriving from optimizing the position of the centers is not
justified by the required computational overhead. Instead, we
assume an a-priori distribution of the RBF centers, with the
only requirement that they cover uniformly the parameter
space. With this assumption, the only free hyper-parameters
are the number of RBFs. Differently from [34], we allow for
different RBF orders ¯̀

N , ¯̀
D of numerator and denominator,

preventing the model to be unnecessarily complex.
The proposed search for RBF orders is performed on two

sets of candidate numerator and denominator orders ΛN =
{¯̀1N , . . . , ¯̀̄r

N} and ΛD = {¯̀1D, . . . , ¯̀̄t
D}, whose elements are

sorted in ascending order. Each element of these sets is
associated with a set of predefined RBF centers

CrN = {ϑm ∈ T : m = 1, . . . , ¯̀r
N} r = 1, . . . , r̄

CtD = {ϑm ∈ T : m = 1, . . . , ¯̀t
D} t = 1, . . . , t̄

(27)

for numerator and denominator, respectively, whose elements
are selected as the nearest neighbors in T of a truncated space-
filling Sobol sequence [49]. This choice guarantees uniform

coverage of the parameter space, thus improving both model
uniform model accuracy and numerical conditioning of the
fitting problem. Once numerator and denominator orders are
chosen, the associated RBF center location is automatically
determined via (27).

All elements in sets ΛN,D must fulfill two types of con-
straints. On one hand, each of the candidate RBF orders
must ensure applicability of the proposed algorithm for shape
parameter estimation, see Sec. IV. Therefore, we must have
¯̀1
N,D > ρ+2. On the other hand, the least squares problem (1)

must be sufficiently over-determined to avoid overfitting condi-
tions. This is achieved by setting 2(¯̀̄r

N+¯̀̄t
D) < m̄t. Therefore,

the maximum allowed order of numerator and denominator
expansions is not predefined, but their cumulative order is.
The main objective is to choose appropriate model orders ¯̀

N ,
¯̀
D from sets ΛN and ΛD that minimize the difference between

model and data.

The scheme we use here is similar to [50], which was
proposed in the context of a multivariate Loewner framework.
Tentative models are generated by increasing either numerator
or denominator order, until the model-data error is acceptable.
In principle, this process would require the repeated extraction
of many sub-models, each evaluated for different orders ¯̀

N ,
¯̀
D. In turn, each model extraction may require several PSK

iterations. In order to boost the performances, we do not wait
for PSK convergence and we perform only one PSK iteration.
The resulting model-data error is considered as a proxy of the
model accuracy at convergence. This is justified noting that
the accuracy at convergence is higher than the one at the first
iteration.

The model orders are determined using a sub-optimal
greedy approach. We proceed iteratively, by updating a current
pair of model orders, denoted as ¯̀r

N , ¯̀t
D and indexed by pair

(r, t). Let us denote with E(¯̀
N , ¯̀

D, ε) the model-data error
(at the first PSK iteration) evaluated with orders ¯̀

N and ¯̀
D.

Moreover, we denote with E∗(¯̀
N , ¯̀

D) = minεE(¯̀
N , ¯̀

D, ε)
as obtained by the shape parameter optimization based on
Algorithm 1. This algorithm is actually applied to the small-
size Gaussian kernel matrices KN,D(ε) and requires negligible
runtime. At each iteration, we test the errors

E∗(¯̀r+δ
N , ¯̀t

D) and E∗(¯̀r
N ,

¯̀t+δ
D ), (28)

where δ = 1, . . . , δ̄ is a step size, and we update indices r
and or t depending on which combination of orders results
in smaller error. This strategy amounts to increasing either the
numerator or the denominator order according to the best local
model improvement. Initial orders are initialized as ¯̀1

N = 4ρ,
¯̀1
D = 2ρ, and the process is then repeated until a sub-optimal

order pair {¯̀N , ¯̀
D} is found.

Figure 3 illustrates the RBF order selection algorithm on the
structure presented in Section VI-A. Starting from the initial
guess ¯̀1

N = 5 and ¯̀1
D = 5, the algorithm follows the steepest

descent path, highlighted with a red thick line, until it reaches
the minimum among the available choices in ΛN and ΛD.
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Fig. 3. Steps of the greedy RBF order selection algorithm. The surface
represent the error E∗(¯̀

N , ¯̀D) after shape parameter optimization; the red
thick line shows the steepest descent path followed by the algorithm.

TABLE I
HYPER-PARAMETERS SELECTED BY PROPOSED ALGORITHM FOR THE

MULTI-BOARD INTERCONNECT.

Number of poles n̄ 24
Numerator parameter order ¯̀

N 10
Denominator parameter order ¯̀

D 8
Numerator shape parameter ε∗N 0.4642
Denominator shape parameter ε∗D 0.4642

VI. EXAMPLES

A. A multi-board interconnect

We start with a low-complexity two-dimensional example
(ρ = 2) to illustrate the proposed automated procedure for
hyper-parameter selection. The structure under modeling is a
multiboard link that interconnects two multilayer PCBs [51]
through stripline segments, a connector, and its corresponding
via fields. The link is parameterized by the via pad (ϑ1) and
anti-pad (ϑ2) radii, which vary in the ranges [100, 300] µm
and [400, 600] µm, respectively. A parameterized model was
constructed starting from a dataset of m̄ = 81 parametric
frequency responses spanning the band [0, 5] GHz (courtesy
of Prof. C. Schuster and Dr. J. Preibisch, Technische Univer-
sität Hamburg-Harburg, Hamburg, Germany). Half of these
responses was used for training the model, leaving the second
half for self-validation.

The proposed automated parameterized macromodeling
flow was executed as follows:

1) Dynamic order selection: the optimal number of poles
was selected among the candidate orders {10, . . . , 30}, using
a stopping threshold Eth = 10−3.

2) Parameter order selection: numerator and denominator
orders were chosen from the sets ΛN = ΛD = {5, . . . , 10}
using a step size δ̄ = 2 and a stopping threshold 10−2.

3) Shape parameter selection: the RBF width was opti-
mized in terms of the shape parameter ε among a set of 10
logarithmically spaced candidates ranging from 10−3 to 10,
using a stopping threshold ∆th = 4× 10−2.

Table I lists the optimal values returned by proposed
scheme. The whole procedure required about 41 seconds to
find an appropriate model structure and synthesize the model,

Fig. 4. Model responses compared with validation data for the multi-board
interconnect example. Blue lines: randomly-selected validation data. Red
dashed lines: corresponding model responses.

Fig. 5. Multiboard interconnect: iterations of the dynamic order selection
algorithm. Blue markers: worst-case model data error (among the selected
parameter values) for subsequent candidate number of poles; red-dashed line:
stopping threshold; green circle: selected dynamic order.

with a worst-case error of 7 × 10−3 with respect to the
validation samples (not used for model generation). Figure 4
confirms the model accuracy by plotting the model responses
corresponding to a randomly selected subset of validation data.

We now focus on each step of proposed algorithm, docu-
menting the optimality of its automated choices by comparing
to the results from a full grid search.

Dynamic order selection: Fig. 5 depicts the individual steps.
Starting from n̄1 = 10, the algorithm keeps increasing the
dynamic order until the worst-case model data error EI is
uniformly below the threshold Eth = 10−3. In the presented
example, this occurs at iteration I∗ = 15 (highlighted with
a green circle) corresponding to a number of poles n̄ = 24.
Note that the error saturates to 10−4 for large candidate orders,
denoting the presence of noise and/or non-causal components
in the data. In such scenarios this saturation imposes a bound
for the attainable accuracy in any rational approximation
applied to this dataset, and Eth must be set to a larger value.

Parameter order selection: Figure 3 shows adaptive steps
of the greedy algorithm proposed in Sec. V-B to determine
numerator and denominator RBF orders. As depicted in Fig-
ure 3, the algorithm follows the steepest descent path until, in
5 iterations, it stops at ¯̀5

N = 10, ¯̀5
D = 8. The surface (not used

for actual computations) represents the results of a standard
grid search over all candidate orders. This figure confirms that
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Fig. 6. Shape parameter selection algorithm. The contour plot represents the
model-data error as a function of numerator and denominator shape parameter
values εN , εD . The green cross pinpoints the sub-optimal combination ε∗N ,
ε∗D selected by the proposed algorithm.

the proposed algorithm was able to find the global minimum
in the search set.

Shape parameter selection: Figure 6 depicts the model-data
error evaluated on a uniform grid spanning the same shape
parameter values εN , εD used to run the automated selection
algorithm. The green cross corresponds to the selected sub-
optimal combination ε∗N = ε∗D = 0.4642, which coincides
with the lowest error instance among all the available samples
in the grid.

In terms of computational performance, the presented strat-
egy provides several advantages. In particular, with respect to
a standard non-optimized grid search, the proposed parameter
order selection algorithm is twice as fast. The major advantage
is however due to the identification of the shape parameters ε∗N
and ε∗D: the proposed algorithm results 464 times faster with
respect to a brute-force search based on repeated model-data
error computation over the two-dimensional grid.

B. A Parameterized Low Noise Amplifier

In this second example, we compare the performance of the
proposed automated strategy with respect to the preliminary
technique presented in [34]. The latter was based on a search
for sub-optimal RBF centers without any additional optimiza-
tion on the associated shape parameters. The results will con-
firm that proposed algorithm provides accurate macromodels
with a reduced model complexity and in a fraction of time.

We consider the same Low Noise Amplifier (LNA) dis-
tributed circuit adopted in [34] and originally presented in [52].
The scattering responses of this structure depend on 10 in-
dependent parameters, six of which are lumped parasitics of
BJTs and the other four refer to the geometry of distributed
transmission lines (for additional information on the parame-
terization see [20]). The training dataset includes m̄ = 2000
frequency responses, each with 701 linearly spaced frequency
samples in the range 1−10 GHz. These m̄ responses are dis-
tributed in the parameter space according to a Latin Hypercube
sampling strategy [53] for best coverage.

The hyper-parameter selection algorithm was run in the
same configuration as in Sec. VI-A, but with a more stringent
stopping threshold Eth = 10−5. The proposed scheme resulted

Fig. 7. LNA test case: validation of model responses (res dashed lines) against
corresponding reference data (blue solid lines), randomly selected in the 10-
dimensional parameter space.

in n̄ = 14 poles, ¯̀
N = 72 and ¯̀

D = 17 RBF orders
for numerator and denominator, respectively, with associated
shape parameter values ε∗N = ε∗D = 0.0215. The final 10-
dimensional parameterized macromodel was characterized by
a worst-case absolute model-data error below 1%. Figure 7
compares model and reference data responses for a randomly-
selected subset among the available m̄ = 2000 parameter
values, confirming uniform model accuracy throughout the
parameter space. The total model extraction time was 7.5
minutes: 6.3 minutes were required to optimize the model
structure, while the model extraction took only the remaining
75 seconds. As a comparison, using the strategy presented
in [34], we were able to extract a parameterized model of
comparable accuracy in approximately 45 minutes which is
about 6 times slower than than proposed automated algorithm.

As anticipated, the presented strategy is able to optimize
model structure and is likely to produce more compact (or,
equivalently, less complex) macromodels. Indeed, defining the
model complexity as η = ¯̀

N + ¯̀
D, the approach in [34]

provided η = 144, in contrast with proposed approach for
which η = 89 for the same final model accuracy, resulting in
a compression of approximately 40%.

C. A transmission line network

As a final example, we consider a distributed network
with four cascaded lossy microstrip segments (with length
li) and three internal stubs (with length si) terminated with
purely resistive loads Ri. The copper microstrip conductor
has width w and thickness t = 30 µm and is placed on a
dielectric substrate with height h, relative dielectric constant
εr = 4.1 and loss tangent tan δ = 0.02. The input/output
responses depend on ten free parameters ϑi: Table II reports
their nominal values ϑ̄i and the associated relative variation
ranges ∆ϑi. The parameters li are constrained to ensure that
the total line length remains constant and equal to 15 mm.

A 10-dimensional parameterized model was constructed
starting from a set of m̄ = 300 scattering frequency responses,
each composed of k̄ = 401 linearly spaced samples in the
band Ω = [0, 20] GHz. These responses were pre-computed



10

TABLE II
TRANSMISSION LINE NETWORK PARAMETERS. li, si : LENGTH OF

TRANSMISSION LINE AND STUB SEGMENTS; w: CONDUCTOR WIDTH; h:
SUBSTRATE HEIGHT; Ri : STUB TERMINATION RESISTANCES.

# Parameter ϑi ϑ̄i ∆ϑi
1 l1 (mm) 10 5 %
2 l2 (mm) 10 5 %
3 l3 (mm) 10 5 %
4 l4 (mm) 10 5 %
5 s1,2,3 (mm) 3.75 2 %
6 w (µm) 150 10 %
7 h (µm) 200 10 %
8 R1 (Ω) 50 10 %
9 R2 (Ω) 50 10 %

10 R3 (Ω) 50 10 %

Fig. 8. Transmission line network: validation of the parameterized model
responses (red dashed lines) through corresponding reference data (blue solid
lines).

using the HSPICE circuit solver [54]. The proposed algorithm
automatically determined a model structure with n̄ = 27 poles,
numerator and denominator orders ¯̀

N = 40 and ¯̀
D = 27,

respectively, with associated shape parameter values ε∗N =
ε∗D = 0.0599. The modeling procedure required 14 minutes to
optimize the model structure and only 30 seconds to synthesize
a uniformly stable model with complexity η = 69 and whose
accuracy with respect to validation samples is 11.2 × 10−3.
Figure 8 reports a model-data comparison over a subset of
these validation samples. Adopting the approach presented
in [34], a model of comparable accuracy was obtained in
1.5 hours, with a complexity η = 112. Thus, the presented
strategy enables for a 6× speed-up in terms of runtime
and approximately a 39% compression in terms of model
complexity.

D. Passivity

When dealing with passive EM structures (as in Examples A
and C), their models should reflect this property. Therefore, we
applied an (experimental) modified version of the sampling-
based multivariate passivity check of [57]. Both the models A
and C presented marginal passivity violations in the fitting
band and relevant out-of-band violations, with largest singular
values equal to 7 and 6, respectively, located at infinite

frequency. An experimental modification of the multivariate
passivity enforcement scheme [39] combined with [57] was
thus applied to both cases, resulting in perturbed models of
comparable accuracy, for which the check [57] did not find
residual passivity violations. However, due to the experimental
nature of the latter algorithm, we can not exclude the presence
of residual violations in these final models.

VII. CONCLUSIONS

This paper presented a complete framework for the gener-
ation of high-dimensional parameterized macromodels. With
respect to earlier documented work, we provided a number
of theoretical results that support a fully automated flow for
model extraction from a given set of precomputed frequency
responses in the parameter space of interest. In particular, the
proposed framework automatically selects number, placement,
and width of Gaussian Radial Basis Functions enabling the
model to represent variations in a possibly high-dimensional
parameter space.

The presented approach is able to guarantee uniform model
stability for any parameter combination. Model passivity is
instead not guaranteed and, if appropriate, should be enforced
as a post-processing step, as common in well-established
macromodeling flows. The state of the art algorithms for
passivity enforcement are not expected to scale favorably with
parameter space dimension. Therefore, our future research
efforts will be dedicated to incorporate passivity constraints
in model generation, so that a good scalability of the entire
passive macromodeling flow can be ensured.

APPENDIX

We provide here the theoretical background in support of
the proposed algorithms for shape parameter selection. The
results are presented and proved formally, following a bottom-
up approach.

A. Euclidean Distance Matrices

We start with two preliminary results on Euclidean Distance
Matrices (EDM), which form a basis for the main develop-
ments. The following Lemma collects some known results [55]
on rank and column space of square EDMs.

Lemma 1. Consider a set of known vectors {ϑm ∈ Rρ, m =
1 . . . , m̄}, and define the square Euclidean Distance Matrix
D̄ ∈ Rm̄×m̄ whose (i, j)-th element is ‖ϑi − ϑj‖2. Then,

1) there exists a unique vector p ∈ Rm̄ such that

D̄ p = 1m̄ (29)

2) rank (D̄) ≤ ρ+ 2.

Proof. See [55].

The following result builds on Lemma 1 and extends it to
non-square EDMs.

Lemma 2. Consider a set of known vectors {ϑm ∈ Rρ, m =
1, . . . , m̄} and assume ρ+ 2 < ¯̀< m̄. Define the rectangular
Euclidean Distance Matrix D1 ∈ Rm̄×¯̀, whose (m, `)-th
element is ‖ϑm − ϑ`‖2. Then,
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1) rank (D1) ≤ ρ+ 2.
2) denoting as V1 the null space of D1, it holds that V1 6= ∅

and V1 ⊥ 1¯̀.

Proof. Consider a square Euclidean Distance Matrix D̄ ∈
Rm̄×m̄ generated by vectors ϑm. From Lemma 1 we know
that rank (D̄) ≤ ρ + 2. The rectangular matrix D1 ∈ Rm̄×¯̀

is obtained from D̄ by deleting m̄− ¯̀ columns. Therefore, its
rank cannot be larger than the rank of D̄. Hence, we conclude
that

rank (D1) ≤ ρ+ 2 (30)

which proves 1).
Under the assumption that ¯̀ > ρ + 2, the ¯̀ columns of

matrix D1 are linearly dependent. Therefore, its null space
V1 6= ∅ and

dimV1 ≥ ¯̀− ρ− 2. (31)

Applying now Lemma 1 to D̄ and deleting the last m̄ − ¯̀

rows from (29), proves the existence of a vector p ∈ Rm̄ such
that DT

1 p = 1¯̀. Hence, the Fundamental Theorem of Linear
Algebra [56] states that

V1 ⊥ 1¯̀ (32)

which proves 2).

B. Least Singular Values of Gaussian Kernel Matrices

Using now Lemma 2, we can state and prove one of the
main results of this paper, which establishes that the least
singular value of a non-square Gaussian kernel matrix K(ε)
(without loss of generality, from now on we will omit the
subscripts (N,D) when referring to the kernel matrix K(ε))
decays sharply as the shape parameter ε→ 0. This is the main
theoretical result that supports the proposed Algorithm 1. We
have the following

Theorem 1. Consider a Gaussian Kernel Matrix K(ε) as
defined in (10), with m̄ > ¯̀ > ρ + 2. For ε → 0, the least
singular value σK(ε) decays asymptotically as

σK(ε) = O(εν) as ε→ 0, ν ∈ N, ν ≥ 4. (33)

Proof. Consider the Euclidean Distance Matrix D1 ∈ Rm̄×¯̀,
whose (m, `)-th element is ‖ϑm − ϑ`‖2. The Gaussian kernel
matrix K(ε) defined in (10) is obtained by D1 by multiplying
each element by −ε2 and taking the exponential. Since we are
interested in ε→ 0, we can form the elementwise MacLaurin
expansion, which can be compactly written as

K(ε) =

∞∑
p=0

(−1)p

p!
ε2pDp (34)

where Dp denotes the p-th element-wise (Hadamard) power
of matrix D1, i.e. (Dp)m,` = ‖ϑm − ϑ`‖2p.

The least singular value σK(ε) of K(ε) is characterized as

σK(ε) = min
‖z‖=1

‖K(ε)z‖ . (35)

Using (34) we can write (35) as

σK(ε) = min
‖z‖=1

∥∥∥∥∥
∞∑
p=0

(−1)p

p!
ε2pDpz

∥∥∥∥∥ , (36)

which expresses the least singular value as the minimum length
of a vector expressed as an even power series of ε. Therefore,
the leading power of σK(ε) for ε → 0 corresponds to the
first term ν = 2p in (36) for which Dpz that does not vanish
identically, for any possible choice of the testing vector z. This
information is obtained by characterizing the null spaces Vp
of matrices Dp for increasing p.
• p = 0. The null space V0 is readily obtained noting that

D0 = 1m̄×¯̀ is the matrix of all ones. Thus, the null
space V0 is composed by all the vectors z ∈ R¯̀ that are
orthogonal to 1¯̀, i.e.

V0 = {z ∈ R¯̀
: zT · 1¯̀ = 0}. (37)

Taking any z ∈ V0 with ‖z‖ = 1 leads to Dpz = 0. This
proves that the least singular value σK(ε)→ 0 for ε→ 0
with a leading power at least ν = 2.

• p = 1. Since by assumption ¯̀> ρ + 2, Lemma 2 states
that the null space V1 of D1 is non-empty with dimension
larger than ¯̀− ρ− 2. Lemma 2 further states that V1 is
orthogonal to the vector 1¯̀. Recalling definition (37), we
conclude that V1 ⊆ V0 and that V1∩V0 = V1 6= ∅. Thus,
it is always possible to find a nontrivial vector z ∈ V1

that cancels both the terms D1z and D0z in (36). This
proves that the leading power of σK(ε) for ε → 0 is at
least ν = 4.

• p = 2. An explicit characterization of the null space V2

of matrix D2 is not available, so we cannot draw any
conclusion on whether D2z vanishes for some nontrivial
vector z.

We therefore conclude that the scaling exponent for the least
singular value σK(ε) for ε→ 0 is at least ν ≥ 4.

C. From Kernel to Regressor Matrices

Given the asymptotic scaling estimate for the least singular
value of K(ε) provided in Theorem 1, we now show that the
same scaling exponent propagates to the various PSK matrices
and applies also to the regressor matrix Ψ(ε). We proceed
in steps, since the latter is constructed by assembling block
matrices with a particular structure, see Sec. II.

First, we consider how the least singular value σΦ⊗K(ε)
of matrix Φ ⊗K(ε) behaves as ε → 0. A standard result in
linear algebra states that the singular values of a Kronecker
product Φ ⊗ K(ε) are obtained as all product combinations
between the singular values of the two individual matrices Φ
and K(ε). Therefore, the least singular value σΦ⊗K(ε) is the
product of the least singular values of both matrix terms

σΦ⊗K(ε) = σK(ε) · σΦ (38)

where σΦ is constant with respect to ε. This implies that

σΦ⊗K(ε) = O(εν) as ε→ 0, (39)

with the same power law ν ≥ 4 that applies to σK(ε).
The above consideration enables us to proceed with matri-

ces Γµ(ε) and Ξµ
(i,j)(ε) forming the building blocks of the

regressor matrix in (6). These matrices share the same basic
structure, addressed in the following
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Lemma 3. Let Φ and K(ε) be defined as in (9) and (10).
Assuming ∆ to be a generic real-valued nonsingular square
matrix of compatible size, for ε → 0 the least singular value
of ∆ · (Φ⊗K(ε)) decays as εν , ν ∈ N, ν ≥ 4.

Proof. For any fixed ε, let us denote the singular value decom-
position of Φ⊗K(ε) as U(ε)Σ(ε)VT(ε). The singular values,
stacked in descending order along the diagonal of matrix Σ(ε),
are denoted as σt(ε), t = 1, . . . , t̄, and UT(ε)U(ε) = I,
VT(ε)V(ε) = I. We know from (39) that σt̄(ε) = σΦ⊗K(ε)
decays as O(εν), with ν ≥ 4, for ε→ 0.

Consider now

∆ · (Φ⊗K(ε)) = ∆ ·U(ε)Σ(ε)VT(ε) (40)

and evaluate the QR decomposition ∆ · U(ε) = Q(ε)R(ε),
where R(ε) ∈ Rt̄×t̄ is upper triangular and QT(ε)Q(ε) = I.
We have

∆ · (Φ⊗K(ε)) = Q(ε)R(ε)Σ(ε)V(ε)T. (41)

For later use, we denote the columns of R(ε) as rt, i.e.
R(ε) =

(
r1 · · · rt̄

)
. Since the columns of U(ε) are

mutually orthogonal and ∆ is nonsingular, then ∆U(ε) has
full column rank, which implies that R(ε) is square and
invertible and its columns rt are linearly independent.

Now, we evaluate the singular value decomposition of the
inner matrix product R(ε)Σ(ε) = Û(ε)Σ̂(ε)V̂T(ε), whose
singular values are denoted as σ̂t(ε), for t = 1, . . . , t̄ with
ÛT(ε)Û(ε) = I and V̂T(ε)V̂(ε) = I. A direct substitution
in (41) leads to

∆ · (Φ⊗K(ε)) = Ũ(ε)Σ̂(ε)ṼT(ε) (42)

where matrices Ũ(ε) = Q(ε)Û(ε) and Ṽ(ε) = V(ε)V̂(ε)
inherit the orthogonality conditions on their factors, as
ŨT(ε)Ũ(ε) = I and ṼT(ε)Ṽ(ε) = I. Thus, expression (42)
provides a singular value decomposition of ∆ · (Φ ⊗K(ε)),
which is unique up to a reordering of the singular values. As
usual, we assume the latter to be sorted in descending order.
The result in (42) highlights that R(ε)Σ(ε) and ∆·(Φ⊗K(ε))
share the same singular values. Hence, the asymptotic behav-
ior of the least singular value of ∆ · (Φ ⊗ K(ε)) can be
inferred from the behavior of the least singular value σ̂t̄(ε)
of R(ε)Σ(ε), which is characterized as

σ̂t̄(ε) = min
‖w‖=1

‖R(ε)Σ(ε)w‖ . (43)

Let us now define wt̄ = (0, · · · , 0, 1)T, so that any unit
length vector w can be written as

w = αwt̄+βv, v ⊥ wt̄, ‖v‖ = 1, α2 +β2 = 1. (44)

Applying matrix product R(ε)Σ(ε) to this vector leads to

R(ε)Σ(ε)w = αR(ε)Σ(ε)wt̄ + βR(ε)Σ(ε)v (45)

Noting that R(ε)Σ(ε)wt̄ = σt̄(ε)rt̄(ε), we can write

‖R(ε)Σ(ε)w‖ =

∥∥∥∥∥ασt̄(ε)rt̄ + β
∑
t<t̄

rtσt(ε)vt

∥∥∥∥∥ (46)

where vt is the t-th component of vector v. We know that
for ε → 0 the least (and last) singular value σt̄(ε) decays as

O(εν) with ν ≥ 4, and that any other singular value σt(ε) for
t < t̄ cannot decay faster than σt̄(ε). We have two possible
cases

1) σt(ε) = O(εν), ∀t
In this case it holds that ‖R(ε)Σ(ε)w‖ = O(εν) for
any w written as in (44), since all terms in (46) have
the same scaling law for ε→ 0.

2) σt(ε) = O(εγ), with γ < ν for some t
In this case there exists a vector wt for which ηt(ε) =
‖R(ε)Σ(ε)wt‖ = O(εγ) (pick an all-zero vector with
a single unit entry at component t). For this choice of
vector, the term ηt(ε) = ‖R(ε)Σ(ε)wt‖ decays slower
than ηt̄(ε) = ‖R(ε)Σ(ε)wt̄‖ for ε→ 0. However, even
if for some ε it may be the case that ηt(ε) < ηt̄(ε),
there exists a value ε∗ so that ηt̄(ε) < ηt(ε) for ε < ε∗.
Therefore, asymptotically the vector w = wt̄ leads to
the smallest value of η(ε) for ε→ 0.

These considerations lead us to conclude that

min
‖w‖=1

‖R(ε)Σ(ε)w‖ = σ{∆ · (Φ⊗K(ε))} = O(εν) (47)

with a scaling exponent ν ≥ 4.

To keep our analysis as general as possible, we should recall
that matrices Γµ(ε) and Ξµ

(i,j)(ε) in (7) are built, respectively,
from Gaussian kernel matrices KN (ε) and KD(ε) associ-
ated to numerator and denominator, which may be different.
Therefore, if we assume that for ε → 0 the associated least
singular values σKN

(ε) and σKD
(ε) decay as ενN and ενD ,

respectively, Lemma 3 ensures that

σΓ(ε) = O(ενN ), σΞ(i,j)
(ε) = O(ενD ) (48)

as ε→ 0, with both νD ≥ 4 and νN ≥ 4.

D. Assembling regressor matrices

Now that all the main building blocks have been charac-
terized, we can derive an asymptotic estimate for the singular
value σΨ(ε) of matrix Ψµ(ε) in (6). To this end, we define
two auxiliary matrices

Ψµ
L(ε) =

Γµ(ε)
. . .

Γµ(ε)

 , Ψµ
R(ε) =

Ξµ
(1,1)(ε)

...
Ξµ

(P,P )(ε)


(49)

so that
Ψµ(ε) =

(
Ψµ
L(ε) Ψµ

R(ε)
)

(50)

We study Ψµ
L(ε) and Ψµ

R(ε) separately.
By construction, the singular values of Ψµ

L(ε) are the same
of matrix Γµ(ε), replicated P 2 times. Therefore, it is trivial
to see that also σΨL

(ε) = O(ενN ) as ε→ 0.
In case of matrix Ψµ

R(ε), we have the following result

Lemma 4. Let Ψµ
R(ε) be defined as in (49). Assuming that

for all i, j = 1, . . . , P the least singular value of each block
σΞ(i,j)(ε)

= O(ενD ) as ε→ 0, then also

σΨR
(ε) = O(ενD ), ε→ 0. (51)
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Proof. From Section II we recall that

Ξ(i,j)(ε) = −H̆(i,j)W
µ−1XD(ε) (52)

Let us denote the singular value decomposition of XD(ε) as
U(ε)Σ(ε)VT(ε). The singular values, stacked in descending
order along the diagonal of matrix Σ(ε), are denoted as σt(ε),
t = 1, . . . , t̄, with UT(ε)U(ε) = I and VT(ε)V(ε) = I. We
can thus write

Ψµ
R(ε) =

−H̆(1,1)W
µ−1U(ε)

...
−H̆(P,P )W

µ−1U(ε)


︸ ︷︷ ︸

L(ε)

Σ(ε)VT(ε) (53)

which has the same structure as (40) with L(ε) replacing ∆ ·
U(ε). Therefore, following the same steps in the proof of
Lemma 3 leads to the conclusion

σΨR
(ε) = O(ενD ) (54)

as ε→ 0.

Now that we have a complete characterization of the sin-
gular values of σΨL

(ε) and σΨR
(ε), we can state our final

result

Theorem 2. Let Ψµ(ε) be defined as in (50). If for ε→ 0 it
holds that σΨL

(ε) = O(ενN ) and σΨR
(ε) = O(ενD ), then

σΨ(ε) = O(ετ ), τ = max {νN , νD}. (55)

Proof. The least singular value to be characterized is

σΨ(ε) = min
‖w‖=1

‖Ψµ(ε)w‖ . (56)

We assume
w =

(
αwL

βwR

)
(57)

with ‖wL‖ = ‖wR‖ = 1 and α2 +β2 = 1 to ensure ‖w‖ = 1.
Defining the the following singular value decompositions

Ψµ
L(ε) = UL(ε)ΣL(ε)VT

L(ε)

Ψµ
R(ε) = UR(ε)ΣR(ε)VT

R(ε) (58)

we can write

Ψµ(ε)w = αUL(ε)ΣL(ε)VT
L(ε)wL

+ βUR(ε)ΣR(ε)VT
R(ε)wR (59)

For any fixed ε, let us consider the first term in (59), and
pick wL = vL, where vL is the last column of VL(ε).
Then, VT

L(ε)vL = (0, . . . , 1)T. The matrix ΣL(ε) contains the
singular values of Ψµ

L(ε) sorted in descending order, therefore
ΣL(ε)VT

L(ε)vL = (0, . . . , σΨL
(ε))T and the first term of (59)

reduces to

αUL(ε)ΣL(ε)VT
L(ε)vL = αuLσΨL

(ε) (60)

where uL is the last column of UL(ε). Repeating the same
procedure on the second term of (59), we choose vector wR =
vR to be the last column of VR(ε), obtaining

βUR(ε)ΣR(ε)VT
R(ε)vR = βuRσΨR

(ε) (61)

where uR is the last column of UR(ε). For this particular
choice of w we have

w =

(
αvL
βvR

)
→ Ψµ(ε)w = αuLσΨL

(ε) + βuRσΨR
(ε)

(62)
where all vector components w, vL,R, uL,R have unit norm
and the two least singular value terms σΨL,R

(ε) scale as
O(ενN,D ) for ε → 0, respectively. Therefore, when w is
chosen as in (62), we have

min
‖w‖=1

∥∥αuLσΨL
(ε) + βuRσΨR

(ε)
∥∥ = O(ετ ) (63)

with τ = max {νN , νD}, where the maximum is attained by
choosing α = 1, 0 and β = 0, 1 respectively.

Using a similar argument as in the proof of Lemma 3, it is
easy to show that any different choice of w leads to a scaling
exponent for ε→ 0 that is cannot be larger than τ . Therefore,
the minimum is attained by (63) and we conclude that

σΨ(ε) = min
‖w‖=1

‖Ψµ(ε)w‖ = O(ετ ) (64)

with τ = max {νN , νD}.

Since both νN ≥ 4 and νD ≥ 4, we also have τ ≥ 4, which
provides the sharp least singular value decay estimate that
supports and justifies in the procedure proposed in Section IV
for shape parameter estimation.
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