
29 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Access Strategies for Network Caching / Cohen, Itamar; Einziger, Gil; Friedman, Roy; Scalosub, Gabriel. - In: IEEE-ACM
TRANSACTIONS ON NETWORKING. - ISSN 1063-6692. - ELETTRONICO. - 29:2(2021), pp. 609-622.
[10.1109/TNET.2020.3043280]

Original

Access Strategies for Network Caching

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNET.2020.3043280

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2921032 since: 2021-09-03T14:55:36Z

IEEE

1

Access Strategies for Network Caching
Itamar Cohen∗, Gil Einziger†, Roy Friedman‡, and Gabriel Scalosub†

∗Politecnico di Torino, Italy †Ben-Gurion University of the Negev, Beer Sheva, Israel ‡Technion, Haifa, Israel
itamar.cohen@polito.it, gilein@bgu.ac.il, roy@cs.technion.ac.il, sgabriel@bgu.ac.il

Abstract—Having multiple data stores that can potentially
serve content is common in modern networked applications. Data
stores often publish approximate summaries of their content to
enable effective utilization. Since these summaries are not entirely
accurate, forming an efficient access strategy to multiple data
stores becomes a complex risk management problem. This paper
formally models this problem as a cost minimization problem,
while taking into account both access costs, the inaccuracy of
the approximate summaries, as well as the penalties incurred by
failed requests. We introduce practical algorithms with guaran-
teed approximation ratios and further show that they are optimal
in various settings. We also perform an extensive simulation
study based on real data and show that our algorithms are more
robust than existing heuristics. That is, they exhibit near-optimal
performance in various settings, whereas the efficiency of existing
approaches depends upon system parameters that may change
over time, or be otherwise unknown.

Index Terms—Cooperative caching, replica selection, cache
sharing, access strategies, content delivery networks, network
caching, information centric networks.

I. INTRODUCTION

Having access to multiple network connected data stores is
common in modern network settings such as 5G in-network
caching [2], [3], content delivery networks (CDN) [4], [5],
information centric networking [6], wide-area networks [7], as
well as in any multi data center servie provider. Data stores
can be cache enabled network devices, memory layers within a
server, virtual machines, physical hosts, remote data centers or
any combination of the above examples. In such settings, each
data store acts as a network cache by holding a potentially
overlapping fraction of the entire data that may be accessed
by applications and services hosted in the network.

Accessing a data store incurs a certain cost in terms of
latency, bandwidth, and energy [8]. Hence, smart utilization of
data stores may reduce the operational costs of such systems
and improve their users’ experience. Naturally, knowing which
item is stored in each data store at any given moment is
a key enabler for efficient utilization, but maintaining such
knowledge may not be feasible. Instead, it is more practical to
occasionally exchange space-efficient indicators of the content
available at the various data stores [7]. Bloom filters [9] are a
common implementation for such indicators, but many other
space-efficient approximate membership representations can
also be used [4], [10]–[15].

The shortcoming of relying on such indicators is that they
may exhibit false positives, meaning that they may indicate
that a given item is available at a particular data store while it

An earlier version of this work was published in [1]. This work adds the
DSPGM access strategy and provides an extended simulation study.

*The work was done while this author was with Ben-Gurion University.

(a) The client is looking for item x and needs to select which data stores to
access. Data stores provide an indication (I(x)) if they store x. The grayed
content (C(x)) indicates if they actually store x. Notice the false-positive in
Data store 1. The client pays the cost for the selected data stores, and in case
of a failure to find x in any of the accessed data stores, it incurs a miss penalty.

sc
0 0.2 0.4 0.6 0.8 1

0

50

100

Per Data Store Hit Ratio

E
xp

ec
te

d
A

cc
es

s
C

os
t

Perfect Indicators FPO EPI CPI No Indicators

0 0.2 0.4 0.6 0.8 1
0

50

100

Per Data Store Hit Ratio

E
xp

ec
te

d
A

cc
es

s
C

os
t

Perfect Indicators FPO EPI CPI No Indicators

(b) An example of the average access cost of different strategies (lower is better),
when varying the cache hit ratio. The number of data stores here is 20, the access
cost to each of them is 1 while the miss penalty is 100 and the false-positive ratio
is 0.02.

Fig. 1. Motivation for the access strategy problem.

is actually not there. Indeed, the work of [14] formally showed
that naively relying on indicators for accessing even a single
data store may do more harm than good. In this work, we
are interested in the general case of accessing multiple data
stores. The difference is that we require an access strategy
that selects a subset of the data stores to access per request.
Existing strategies for this problem include: (i) the Cheapest
Positive Indication (CPI) [11], [16] strategy that accesses the
cheapest data store with a positive indication for the requested
item, and (ii) the Every Positive Indication (EPI) [7] strategy
that accesses every data store with a positive indication. The
access is considered successful if the item is stored in one of
the accessed data stores, and incurs no further cost. Otherwise,
we pay a miss penalty for retrieving the requested item, e.g.,
due to the need to fetch it from an external remote site.

In the example of Fig. 1a, CPI accesses only data store 1,
which is the cheapest with a positive indication (captured by
I(x) = Yes), and incurs a cost of 1 for this. However, since x
is not in data store 1 (captured by C(x) = No), this indication
is a false-positive, incurring an additional miss penalty of 100,
for a total cost of 101 imposed on CPI. Alternatively, the EPI
policy accesses every data store with a positive indication (data
stores 1, 2, and 3), implying an access cost of 1 + 2 + 5 = 8.

2

No additional miss penalty is incurred, since item x is indeed
available in one of the accessed data stores (e.g., in 2). One
can also consider an ideal strategy equipped with a perfect
indicator with no false-positives. Such a strategy would require
a cost of merely 2 incurred for accessing data store 2 alone.

Fig. 1b provides a numerical example motivating this work
(see Section IV for the exact settings). The figure illustrates
the expected access cost for varying strategies with a false-
positive ratio of FP = 0.02. The strategies are compared to the
performance of two baseline scenarios. The No Indicators (blue)
line illustrates the best that can be obtained without indicators
(which can be viewed as using indicators with FP = 1, or
equivalently, using indicators that always return ’Yes’). In
contrast, the Perfect Indicators (red) line corresponds to having
no false-positives (FP = 0) in any of the indicators.

The area between the plots describing the performance of
the two baseline scenarios (blue and red) exhibits the potential
gains of employing indicator based access policies. Specifically,
we observe that EPI is near-optimal when the per data store
hit ratio is low but becomes highly inefficient when it is high.
In fact, even the No Indicators approach outperforms EPI once
the hit ratio is above a certain threshold (in our plot, this occurs
at a hit-ratio of around 0.45). In contrast, CPI is near-optimal
when the hit ratio is very high but performs poorly when it is
low. Between these two extremes, there is a gap where both
strategies are inefficient, as highlighted in the magnified area
of Fig. 1b. Our proposed strategies, described in Sections IV-
VII, aim at providing near-optimal performance, independent
of the actual hit ratio. In particular, the performance of our
false-positive-aware optimal policy, FPO, depicted by the pink
line, comes extremely close to the Perfect Indicators (red) line
despite relying on indicators whose FP = 0.02.

Our Contribution: As mentioned, despite the popularity of
indicators, the problem of efficiently working with indicators
and of forming a successful access strategy has remained
unexplored. In Section III, we formally model this problem in
very general and heterogeneous settings with varying access
costs, per data store hit ratios and miss penalties. In Section IV,
we analyze the case of fully homogeneous settings. Our analysis
shows that even in such highly-simplified settings, previously
suggested strategies are too simplistic and implicitly rely on
specific assumptions about the workload or the underlying
system. Thus, in general, an access strategy that works well in
one scenario may be inefficient for another.

In Sections V-VII, we propose and analyze several
polynomial-time approximation algorithms for the fully het-
erogeneous case. We evaluate our proposed algorithms via
extensive simulation in Section VIII. We base our evaluation
on real data with varying system parameters. Our results show
that our algorithms are more stable than existing approaches.
That is, they outperform or achieve very similar access costs
to the best competitor for any tested system configuration. We
conclude in Section IX with a discussion of our results.

II. RELATED WORK

A. Approximate Set Membership
Approximate set membership indicators are data structures

used for encoding a set of items, such as the content of a

data store, in a space-efficient manner. Intuitively, an accurate
representation requires storing all identifiers, which may be
prohibitively expensive. Alternatively, space can be conserved
by allowing a small number of false-positives. Bloom filters [9]
offer space-efficient encoding but do not support the removal
of items. Other works [7], [12], [13], [15], [17] improve on
them in various aspects, such as support for removals [13],
[18], [19], a more efficient access pattern [12], [15], and lower
transmission overheads [20].

Such indicators are extensively used in multiple domains,
including 5G network caching [2], [3], content delivery
networks (CDN) [4], [5], [21], information centric networking
(ICN) [6], and wide-area networks [22]. Many systems leverage
that Bloom filter variants [9], [12], [13], [18] do not exhibit
false-negatives. Thus, a negative indication guarantees that
the datum is not stored in the data store. Examples for such
usage include Akamai’s content delivery network [21], Squid
Web cache [23] and Google’s Bigtable [24]. We note that the
usage of indicators is not restricted to network caching. E.g.,
such indicators are also used as part of deep packet inspection
systems [25], as well as in routing mechanisms [11].

B. Access Strategies and Replica Selection

The work of [7] suggests an architecture for distributed
caching in wide area networks. In this solution, caches share
an approximation of their content. Clients use this information
to contact only the caches with positive indications (EPI). A
similar architecture is also considered in [11], [16]. There,
clients access the cheapest cache with a positive indication
(CPI). However, the impact of the access strategy and its
optimization in the face of false-positive replies is overlooked
in previous works.

The work of [8] studied access strategies to data stores in a
commercial content delivery network. Access strategies to data
stores have been extensively studied also in the context of data
grid systems. In such systems, the problem of selecting which
data store to access is commonly referred to as the replica
selection problem. A comprehensive survey of replica selection
algorithms can be found in [26]. However, all these works
do not use indicators, but instead assume the existence of an
exact and always-fresh list of locations of every stored datum.
Maintaining such a repository incurs high overhead in terms
of bandwidth consumption and synchronization mechanisms.

The work of [14] considers the special case of a single data
store, equipped with a Standard Bloom Filter [9] or a Counting
Bloom Filter [27]. They identify cases where following a
positive indication may increase the overall cost. Thus, they
suggest that in those cases the data store should be ignored,
regardless of its indicator value. We, on the other hand, address
the more general problem, which involves any number of data
stores, equipped with any kind of indicators.

III. SYSTEM MODEL AND PRELIMINARIES

This section formally defines our system model and notations.
For ease of reference, our notation is summarized in Table I.

We consider a set N of n data stores, containing possibly
overlapping subsets of items. We denote by Sj,s the set of items

3

TABLE I
LIST OF SYMBOLS. THE TOP PART CORRESPONDS TO OUR SYSTEM MODEL

(SECTION III), THE MIDDLE PART CORRESPONDS TO THE DSPot AND
DSKnap ALGORITHMS (SECTIONS V-VI), AND THE BOTTOM PART

CORRESPONDS TO THE DSPGM ALGORITHM (SECTION VII).

Symbol Meaning

N All data stores

n Number of data stores, n = |N |
Nx Data stores with positive indications for requested datum x

nx Number of positive indications for requested datum x (|Nx|)
Sj The set of data items in data store j

phj Hit ratio of data store j

Ij(x) Indication of data store j for datum x

qj Probability of positive indication by Ij : Pr(Ij(x) = 1)

FPj False positive ratio for Ij : FPj = Pr(Ij(x) = 1|x /∈ Sj)
ρj Misindication ratio for a data store j

ρD Misindication ratio for a set of data stores D

ci Access cost for data store i

cD Total access cost (sum of costs of all data stores in set D)

φ Cost function: φ(D) =
∑
i∈D ci + β

∏
i∈D ρi

β Miss penalty

O* Set of data stores used by some optimal solution OPT

Hk(Lk) Access cost for the k highest (lowest) data stores in Nx

P (k∗) Potential function: P (k∗) = Lk∗ + β
∏k∗

j=1 ρ`j

M M = min
{∑

j∈Nx
cj , β

}
r r = log β

N`
j Partition of Nx in level `

O`j Subset of data stores which OPT selects out of N`
j

V `j Candidate sub-solutions which DSPGM considers out of N`
j

stored at data store j at time s. For every request x, issued at
time s, drawn from some distribution, we let phj,s denote the
probability that x ∈ Sj,s. We note that the average phj,s over
the entire sequence is commonly referred to as the hit ratio,
i.e., the fraction of requests in σ that were available in data
store j. Our work assumes that the past hit ratio is a reasonable
estimate of phj,s [28], [29]. We refer to this estimation as the
probability that the next accessed item x is stored in Sj,s.1

Each data store j maintains an indicator Ij,s, which ap-
proximates the set of items in data store j at time s; given
an item x, Ij,s(x) = 1 is a a positive indication while
Ij,s(x) = 0 is a negative indication. Our model assumes
indicators that may exhibit only one-sided errors, i.e., they
never err when providing a negative indication.2 In practice,
most approximate set solutions satisfy this assumption [7],
[12], [13], [15]. The false positive ratio of Ij,s is defined by
FPj,s = Pr(Ij,s(x) = 1|x /∈ Sj,s). It captures the probability
that given a request for x, issued at time s, drawn from some
distribution, that is not in Sj,s, the indicator would mistakenly
indicate that it is in Sj,s. For every data store j, given its
indicator Ij,s(x), we let ρj,s ∈ [0, 1] denote its misindication

1We provide further details of how to obtain such an estimation in
Sec. VIII-B.

2This means having no false-negatives, i.e., Pr(Ij,s(x) = 0|x ∈ Sj,s) = 0.

ratio ρj,s = Pr(x /∈ Sj,s|Ij,s(x) = 1). When clear from the
context, we abuse notations and omit the subscript s.

Given an item x within sequence σ, a query for x triggers
a data access, which consists of selecting a subset of the
data stores D and accessing this subset in parallel. The data
access is considered successful, or a hit, if the item x is
found in at least one of the data stores being accessed and
is considered unsuccessful, or a miss, otherwise. Since by
our assumption all indicators might have a one-sided error,
we focus our attention only on subsets of data stores which
all provide a positive indication. Given such a subset of the
data stores D all providing a positive indication, we denote
by ρD the misindication ratio of D, i.e., the probability that
an item is not available in any of the data stores in D,
despite their positive indications. Note, that if D = ∅, then
ρD = 1. We make no assumptions on the sharing policy
among the data stores. Yet, in the analysis sections we assume
that the misindication ratios are mutually independent, that is,
ρD =

∏
j∈D ρj . Under this assumption our analysis provides

a baseline for understanding the performance of such systems.
We note, however, that in the evaluation of our algorithms,
we also consider environments where the misindication ratios
need not be mutually independent (Section VIII).

Each data store has some predefined access cost, cj , which
is incurred whenever data store j is being accessed. These
access costs induce the overall cost for accessing a set D of
data stores, defined by cD =

∑
j∈D cj . We assume without

loss of generality that minj cj = 1. In case the data access
results in a miss, it incurs a miss penalty of β, for some β ≥ 1.
For a subset of data stores D, which all provide a positive
indication, we define its (expected) miss cost by β · ρD.

For any query item x, let Nx ⊆ N denote the sub-
set of data stores with a positive indication, i.e., Nx =
{j ∈ N |Ij(x) = 1}, and denote the size of this set by nx =
|Nx|. The expected cost of accessing any D ⊆ Nx is defined
to be the sum of its access cost and its expected miss cost, i.e.,

φ(D) = cD + β · ρD. (1)
When misindication ratios are mutually independent we have

φ(D) = cD + β · ρD =
∑

j∈D
cj + β

∏
j∈D

ρj . (2)

The Data Store Selection (DSS) problem is to find a subset
of data stores D ⊆ Nx that minimizes the expected cost φ(D).

We denote by qj the probability that indicator j positively
replies to a query for an item x. This happens when either
x ∈ Sj ; or x /∈ Sj , and a false-positive occurs. Therefore,

qj = Pr(Ij(x) = 1) = phj + (1− phj) FPj . (3)
Using Bayes’ theorem and Eq. 3, the misindication ratio ρj is

ρj ≡ Pr(x /∈ Sj |Ij(x) = 1)

= FPj(1− phj)/[phj + (1− phj) FPj]. (4)
To simplify expressions throughout the paper, we always

use logarithms of base 2, and omit the base of the logarithm.

IV. THE FULLY HOMOGENEOUS CASE

To gain some insight about the challenges in developing an
access strategy, we start with a simplified fully-homogeneous
case. In this setting, the cost of accessing each data store is the

4

same (c = 1). The per data store hit ratios and false-positive
ratios are uniform, i.e., for each j, phj = ph and FPj = FP,
for some constants ph,FP ∈ [0, 1]. Consequently, the per data
store misindication ratios, captured by Eq. 4, are also uniform,
i.e., for each j, ρj = ρ for some constant ρ ∈ [0, 1]. Recall that
our objective is to pick a subset of data stores with positive
indications, D ⊆ Nx, so as to minimize the overall expected
cost of a query, φ(D) =

∑
j∈D cj + β

∏
j∈D ρj . In the fully-

homogeneous case considered here, the expected cost reduces
to φ(D) = |D| + βρ|D|, which merely depends on the size
of the chosen set D of data stores to be accessed. The task
of choosing which subset of data stores to access is reduced
to deciding on the number 0 ≤ k ≤ nx of data stores one
should access. For any such potential number k, we denote
the expected cost of accessing k data stores by

φ̃(k) = k + βρk, (5)
and focus our attention on studying the cost φ̃(·) incurred by
different data store selection schemes.

The size of the selected subset is clearly upper-bounded
by the number of positive indications, nx. So we start by
calculating the distribution of nx. Ideally, one can interpret
each positive indication as a result of an independent Bernoulli
trial with success probability q. By Eq. 3, q = ph+(1−ph) FP.
Hence, nx is binomially distributed such that

Pr(nx = j) =

(
n

j

)
qj(1− q)n−j . (6)

Using equations 5 and 6 we now derive the expected costs
of several selection schemes, where we let DX denote the set
of data stores selected by selection scheme X .

The EPI policy accesses all the data stores with positive
indications, and therefore its expected overall cost is

φ(DEPI) =

n∑
j=0

[
Pr(nx = j) · φ̃(j)

]
=

n∑
j=0

[Pr(nx = j) · j] + β ·
n∑
j=0

[
Pr(nx = j) · ρj

]
= E[nx] + β · PGFnx

(ρ) (7)
= n · q + β (1− q + q · ρ)

n
,

where PGFX(t) denotes the probability generating function
for random variable X at point t.

CPI accesses either a single data store with a positive
indication, if one exists, or no data store if there are no positive
indications. The expected overall cost of CPI is therefore

φ(DCPI) = Pr(nx = 0) · φ̃(0) + Pr(nx > 0) · φ̃(1)

= (1− q)nβ + [1− (1− q)n] (1 + βρ).
(8)

We now turn to analyze the false-positive-aware optimal
policy, FPO, which minimizes the expected overall cost,
given the false positive ratio, FP. In the fully homogeneous
case, this translates to finding arg mink φ̃(k). Consider the
extension of φ̃, as defined in Eq. 5, as a function defined
over the reals, φ̃(y). This function is convex since its second
derivative is non-negative, and it obtains its minimum at
y∗ = − ln(−β ln(ρ))/ ln(ρ) for 0 < ρ < 1. In practice, the
number of data stores accessed must be an integer between
0 and nx. The optimal number m∗(nx) of data stores to

access given that there are nx positive indications satisfies
m∗(nx) ∈ {0, nx, by∗c, dy∗e}, where by∗c and dy∗e should
be considered only if y∗ ∈ [0, nx]. Hence, The expected overall
cost of FPO is

φ(DFPO) =

n∑
j=0

[(
n

j

)
qj(1− q)n−j φ̃ (m∗(j))

]
. (9)

Having studied the overall cost of the above policies, we
may revisit Fig. 1b. The expected costs of each of the policies
are presented as a function of ph, using Equations 7-9. In
particular, in the special case where FP = 0, the expected
overall costs of CPI, FPO and the perfect indicators benchmark
are identical. This fits our intuition that when there are no
false indications, the optimal policy is to access a single data
store among those with positive indications if such a data store
exists. At the other extreme, we have the case where FP = 1,
in which we always have nx = n, i.e., all the indicators are
positive. This extreme case renders the indicators useless and
is thus equivalent to not having indicators at all. In particular,
note that depending on the values of n and β, EPI might end
up being worse than not having any indicators at all.

In this section, we addressed the fully homogeneous case,
in which minimizing our objective function φ(D) was made
tractable due to the uniformity of the settings. However, many
systems are heterogeneous, making the minimization of φ(D)
a much more challenging task. In the following sections, we
describe several approximation algorithms for solving the DSS
problem in fully heterogeneous settings and provide a rigorous
analysis of their performance. In particular, we also study
trade-offs between the time complexity and the performance
guarantees of our proposed solutions.

V. A POTENTIAL-BASED ALGORITHM

In this section, we describe our first approximation algorithm
for solving the DSS problem in fully heterogeneous settings
and provide a rigorous analysis of its performance.

Recall that our goal is to select a subset D ⊆ Nx of data
stores with positive indications minimizing the expected cost

φ(D) = cD + βρD =
∑

i∈D
cj + β

∏
j∈D

ρj ,

as defined in Eq. 2. This can be viewed as a combined bi-
criteria optimization problem, of minimizing two objectives
simultaneously: (i) cD, which is monotone non-decreasing as
we pick more data stores to include in D, and (ii) ρD, which
is monotone non-increasing as we pick more data stores to
include in D, where the latter objective is “regularized” by β.

In the special case where the non-decreasing orderings of
data stores by access costs and by misindication ratios are
the same, a simple substitution argument shows that a greedy
approach will yield an optimal solution D which consists of a
prefix of this ordering.

In what follows we generalize the above observation and
suggest an algorithm for the general case based on the special
case described above. We denote by Lk and Hk the sum
of the k smallest access costs of data stores in Nx and
the sum of the k largest access costs of data stores in Nx,
respectively. Our algorithm, DSPot (where Pot stands for
Potential), described in Algorithm 1, considers the data stores

5

Algorithm 1 DSPot(Nx,c,ρ,β)
1: Lk ← sum of k smallest cj-s, k = 1, . . . , nx
2: `1, . . . , `nx ← Nx in non-decreasing order of ρj
3: for k = 1, . . . , nx do
4: Dk ← {`1, . . . , `k} . prefix of length k
5: k∗ = arg mink

{
P (k) = Lk + β

∏k
j=1 ρ`j

}
6: return D = Dk∗

ordered in non-decreasing order of miss-ratio, `1, . . . , `nx
, such

that ρ`j ≤ ρ`j+1
for all j = 1, . . . , nx − 1. The algorithm

iterates over all prefixes of indices in this order, and picks a
subset of data stores corresponding to a prefix which minimizes
the potential function P (k) = Lk + β

∏k
j=1 ρ`j .

We now turn to analyze the performance of our proposed
algorithm DSPot. In particular, we show the following theorem:

Theorem 1. Let O* be an optimal set of data stores for the
DSS problem, and let D be the solution found by DSPot. Then
φ(D) ≤ H|D|

L|D|
φ(O*).

Proof. Let k = |D|. We therefore have

φ(D) =
∑k

j=1
c`j + β

∏k

j=1
ρ`j ≤ Hk + β

∏k

j=1
ρ`j

≤ Hk

Lk

(
Lk + β

∏k

j=1
ρ`j

)
=
Hk

Lk
P (k), (10)

where the penultimate inequality follows from the definitions of
Lk and Hk, and the last equality follows from the definition of
the potential function P (k). Let k∗ =

∣∣O*
∣∣. Since data stores

are ordered in non-decreasing order of misindication ratio, it
follows that

∏k∗

j=1 ρ`j ≤
∏
j∈O* ρj , and by the definition of

Lk∗ as the sum of the k∗ smallest access costs of data stores
in Nx, it follows that

P (k∗) = Lk∗ + β
∏k∗

j=1
ρ`j (11)

≤
∑

j∈O*
cj + β

∏
j∈O*

ρj = φ(O*).

Since D is chosen to be the set of data stores that minimizes
P (k), where k is the length of the prefix of Nx considered in
non-decreasing order of miss-ratio, we have P (k) ≤ P (k∗).
Combining this with Eqs. 10 and 11, the result follows.

Since for every k we have Hk

Lk
≤ maxj {cj} and the running

time of DSPot is dominated by the time required to sort the
data stores, we obtain the following corollary:

Corollary 2. DSPot is a (maxj {cj})-approximation algo-
rithm, running in time O(nx log nx).

In particular, Corollary 2 implies that for the case where all
access costs are equal, DSPot yields an optimal solution to the
DSS problem.

VI. A KNAPSACK-BASED ALGORITHMIC FRAMEWORK

In this section, we develop an alternative algorithm for the
DSS problem and provide guarantees on its performance. We
begin by recalling that the main difficulty in solving the DSS
problem stems from the fact that our objective function is
composed of a additive (or linear) component (the access
cost) and a multiplicative component (the miss cost). The

Algorithm 2 DSPP(Nx,c,ρ,β, (1+ε)-approximation algorithm
AKnap for Knapsack)

1: wj ← − log(ρj) for all j ∈ Nx
2: for B ∈

{
0, 1, . . . ,min

{∑
j∈Nx

cj , β
}}

do
3: DB ← AKnap(B,Nx, w, c)

4: return D = arg minB {φ(DB)}

algorithmic framework we propose in the sequel is based
on carefully “linearizing” the multiplicative component, and
defining a collection of knapsack problems. The solution space
of these knapsack problems contains a good approximate
solution to the DSS problem.

We associate each data store j with its log-hit weight, defined
by wj = − log(ρj). We therefore have for every subset of data
stores D ⊆ N , − log(ρD) =

∑
j∈D wj . Therefore, any set

of data stores has a minimal miss cost if and only if it has
a maximal log-hit weight. We will make extensive use of
instances of the Knapsack problem, defined as follows: Given
a budget B, and collection of items U , such that each item
j ∈ U has some profit πj and cost γj , the goal is to find a
subset of items S ⊆ U such that

∑
j∈S γj ≤ B and

∑
j∈S πj

is maximized. We refer to such an instance as the (B,U, π, γ)-
Knapsack problem, and denote by AKnap(B,U, π, γ) the set
of items produced as output by an algorithm AKnap for the
Knapsack problem. The Knapsack problem is known to be
NP-hard, but it can be solved exactly by dynamic programming
in pseudo-polynomial time, and can be approximated to within
a (1 + ε) factor in polynomial time by an FPTAS [30].

A. Pseudo-polynomial Algorithms for DSS
Our design of pseudo-polynomial algorithms for the DSS

problem is based on defining a collection of Knapsack problems,
and considering their solutions as provided by an approximation
algorithm that solves the Knapsack problem. We assume in
this section that cj is an integer for every data store j ∈ N .
We recall that given a query x, Nx ⊆ N denotes the subset
of data stores for which their indicator is positive. In the
following we let M = min

{∑
j∈Nx

cj , β
}

. Clearly, M is an
upper bound on the access cost of any optimal solution for
the DSS problem. For any B ∈ {0, 1, . . . ,M}, consider the
(B,Nx, w, c)-Knapsack problem, i.e., the Knapsack problem
with budget B over a collection of items Nx, such that each
item j ∈ Nx has profit wj (the log-hit weight of data store j)
and cost cj (the access cost of data store j).

Our algorithm, dubbed DSPP (where PP stands for Pseudo-
Polynomial), formally defined in Algorithm 2, makes use of
a (1 + ε)-approximation algorithm AKnap for the knapsack
problem, for some ε ≥ 0. The complexity and performance
guarantee both depend upon the value of ε. DSPP essentially
iterates over all possible values for the access cost, and solves
the associated Knapsack problem using the algorithm AKnap

as a subroutine for each such value. DSPP then selects the
subset of data stores D ⊆ Nx which minimizes φ(D) over all
Knapsack solutions calculated by AKnap in all iterations.

We first show that if AKnap finds an optimal solution to the
Knapsack problem in each iteration, then our algorithm finds

6

an optimal solution to the DSS problem. In terms of running
time, since the best exact algorithm for the Knapsack problem
over n items with budget B runs in pseudo-polynomial time
of O(nB) [30], our algorithm also runs in pseudo-polynomial
time. These properties are formalized in the following theorem:

Theorem 3. When using the pseudo-polynomial algorithm
AKnap which finds an optimal solution to the Knapsack problem
over n items with budget B in time O(nB), DSPP is a pseudo-
polynomial algorithm that finds an optimal solution to the DSS
problem in time O(nxM

2).

Proof. We first show that DSPP, defined in Algorithm 2, finds
an optimal solution to the DSS problem. Consider an optimal
solution O* ⊆ Nx for the DSS problem, and let B∗ = cO* .
Since by optimality B∗ ≤ M , and by our assumption cj is
an integer for every j ∈ N , we are guaranteed that DSPP

considers B = B∗ in one of the iterations of the for-loop in
lines 2-3. Let DB denote the solution of the knapsack problem
being solved in that iteration, where the knapsack budget is
B. Since algorithm AKnap finds an optimal solution for the
knapsack problem in this iteration

DB = arg max
D⊆Nx|cD≤B

{∑
j∈D

wj

}
.

By the definition of wj and the monotony of the log function,
such a DB also satisfies

DB = arg min
D⊆Nx|cD≤B

{ρD} . (12)

Assume by contradiction that DB is not optimal for the DSS
problem, i.e., that φ(DB) = cDB

+ βρDB
> cO* + βρO* =

φ(O*). Since cO* = B∗ = B ≥ cDB
, it must follow that

ρDB
> ρO* , for cO* ≤ B, which contradicts Eq. 12. For

bounding the running time of DSPP, note that the algorithm
performs M iterations, where in each iteration it solves a
knapsack problem using an algorithm that runs in O(nxM)
time. It follows that the running time of DSPP in this case, is
O(nxM

2), as required.

In many cases, the value of M = min
{∑

j∈Nx
cj , β

}
is

polynomially bounded by nx. The following is an immediate
corollary of Theorem 3 in such cases:

Corollary 4. If M = min
{∑

j∈Nx
cj , β

}
is polynomially

bounded by nx, then DSPP solves the DSS problem in
polynomial time.

We now turn to study the tradeoff between the running
time of DSPP and its performance guarantee, when using a
polynomial-time approximation algorithm for Knapsack instead
of the pseudo-polynomial time exact algorithm. We first show
in Theorem 5 how the approximation guarantee of an algorithm
for Knapsack translates to an approximation guarantee for the
DSS problem, while still in pseudo-polynomial time.

Theorem 5. If there exists some constant δ < 1 such that ρj ≤
δ for all j ∈ Nx and algorithm AKnap is a (1 + ε)-polynomial
time approximation algorithm for Knapsack running in time
O(f(nx, ε)), then DSPP is a pseudo-polynomial algorithm that
finds an O(β

ε
1+ε)-approximate solution for the DSS problem

in time O(f(nx, ε) ·M).

Proof. First, note that by its definition, the running time of
DSPP is as required since it makes M iterations, and in every
iteration solves an instance of Knapsack in time O(f(nx, ε)).
It remains to bound the approximation ratio of DSPP.

Consider an optimal solution O* ⊆ Nx to the DSS problem,
and let B∗ = cO* and ` be an integer such that

2−(`+1) ≤ ρO* ≤ 2−`. (13)
By our assumption there exists some constant δ < 1 such
that for all j ∈ Nx we have ρj ≤ δ. We are therefore
guaranteed to have ` = O(log β), since for ` > log1/δ β
we have ρO*β < 1, in which case the optimal solution would
not benefit from accessing more data stores than it currently
does. By the definition of the log-hit weight, we therefore have
` ≤

∑
j∈O* wj ≤ `+ 1.

Consider the iteration of DSPP where B = B∗, and let
DB denote the solution obtained by algorithm AKnap for
solving the Knapsack problem in this iteration. Since AKnap

is a (1 + ε)-approximation algorithm, we are guaranteed to
have

∑
j∈DB

wj ≥ 1
1+ε

∑
j∈O* wj since O* is an optimal

solution with an access cost of B∗, and therefore maximizes
the objective function in the Knapsack problem being solved
in this iteration. It follows that∏

j∈DB

ρj ≤
∏

j∈O*
ρ

1
1+ε

j ≤ 2
−`
1+ε (14)

= 2−`+
ε`

1+ε = 2−(`+1)+(1+ ε`
1+ε)

≤ 21+
ε`

1+ε

∏
j∈O*

ρj ≤ O
(
β

ε
1+ε
)∏

j∈O*
ρj ,

where the first inequality follows from our Knapsack ap-
proximation guarantee, the following two inequalities follow
from Eq. 13, and the last inequality follows from the fact
that ` = O(log β). For B = B∗ we are guaranteed to have∑
j∈DB

cj ≤ B∗. Hence,

φ(DB) =
∑

j∈DB

cj + β
∏

j∈DB

ρj

≤ B∗ +O
(
β

ε
1+ε
) (
β
∏

j∈O*
ρj

)
=
∑

j∈O*
cj +O

(
β

ε
1+ε
) (
β
∏

j∈O*
ρj

)
≤ O

(
β

ε
1+ε
) (∑

j∈O*
cj + β

∏
j∈O*

ρj

)
= O

(
β

ε
1+ε
)
φ(O*)

(15)

which completes the proof.

B. A Polynomial-time Approximation Algorithm for DSS
In what follows, we present a polynomial-time approximation

algorithm for the DSS problem, which we dub DSKnap (where
Knap stands for Knapsack). We begin with a high-level
overview of DSKnap, and then turn to a detailed description
and a formal proof of the algorithm’s approximation guarantees
and run time.

1) High-Level Overview of DSKnap: To develop a fully-
polynomial Knapsack-based solution for the DSS problem, we
observe that our pseudo-polynomial solution, DSPP, iterates
over every possible budget (line 2), which may translate to
an excessive number of iterations. We, therefore, strive to
significantly decrease the number of iterations while keeping
strong performance guarantees.

7

V = 14
W = 10

V = 11
W = 10

V = 10
W = 15

V = 9
W = 10

V = 10
W = 20

V = 15
W = 20

(a) Input to the Knapsack problems.

V = 11
W = 10

V = 10
W = 10

V = 14
W = 15

V = 9
W = 10

V = 15
W = 20

V = 10
W = 20

(b) Knap2, Stage 1: sort by non-increasing value-per-cost

V = 11
W = 10

V = 10
W = 10

V = 14
W = 15

V = 9
W = 10

V = 15
W = 20

V = 10
W = 20

(c) Knap2, Stage 2.1: consider the longest feasible prefix

V = 11
W = 10

V = 10
W = 10

V = 14
W = 15

V = 9
W = 10

V = 15
W = 20

V = 10
W = 20

(d) Knap2, Stage 2.2: consider the most profitable single feasible item

V = 11
W = 10

V = 10
W = 10

V = 14
W = 15

V = 9
W = 10

V = 15
W = 20

V = 10
W = 20

(e) DSKnap, iteration 1: consider only items with weight ≤ 10

V = 11
W = 10

V = 10
W = 10

V = 14
W = 15

V = 9
W = 10

V = 15
W = 20

V = 10
W = 20

(f) DSKnap, iteration 2: consider only items with weight ≤ 15

V = 11
W = 10

V = 10
W = 10

V = 14
W = 15

V = 9
W = 10

V = 15
W = 20

V = 10
W = 20

(g) DSKnap, iteration 3: consider only items with weight ≤ 20

Fig. 2. High-level design of Algorithm DSKnap. For each item, V represents
the profit, and W represents the cost. (a) shows the input collection of items.
(b)-(d) exemplify a run of the 2-approximation algorithm Knap2, when the
budget is 30. (e)-(g) exemplify a run of our fully-polynomial approximation
algorithm, DSKnap. At each iteration, DSKnap ignores the shaded-gray items.

As an illustrative example, consider Fig. 2, which shows
a list of 6 input items, where each item has some profit
V , and cost W (Fig. 2a). Our solution is based upon the
celebrated 2-approximation algorithm for Knapsack [30], which
we hereafter dub Knap2, for short. Knap2 works as follows:
In the first stage, it prunes all items with a cost greater than the
budget B, and orders the remaining items in non-decreasing
order of their profitability, captured by their profit-to-cost ratio
(Fig. 2b). In the second stage, Knap2 considers two options:
(i) greedily adding elements to the solution, starting from the
most profitable one, as long as their overall cost does not exceed
the given budget, and (ii) taking the single, most-profitable
item. For instance, if the budget is 30, Knap2 considers taking
either (i) the two items highlighted in Fig. 2c, which is the
longest feasible prefix (adding the third item would increase
the total cost to 35), or (ii) the item with a profit of 15, which
is the most profitable single item (Fig. 2d).

A straightforward solution for the DSS problem is to run
Knap2 once for every possible budget. However, this naive
approach may result in a prohibitive number of iterations. For
instance, for the given input items (Fig 2a), the possible budgets
(sum of costs of subsets of items) are 10, 15, 20, . . . , 75, and

Algorithm 3 DSKnap(Nx,c,ρ,β)
1: wj ← − log(ρj) for all j ∈ Nx
2: for u ∈ {cj |j ∈ Nx} do
3: Nu

x ← {j ∈ Nx|cj ≤ u}, let nux = |Nu
x |

4: k1, . . . , knu
x
← Nu

x in non-increasing order of wj/cj
5: for all 1 ≤ t ≤ nux do
6: Du

t ← {k1, . . . , kt}
7: D̃u

t ← {kt}
8: return D = arg minD∈{Du

t }u,t
∪{D̃u

t }u,t
∪{∅} {φ(D)}

85, namely, 15 possible budgets.
However, a careful analysis provides the following obser-

vation: It suffices to run Knap2 only once for every distinct
weight of the input items. In our example, this observation
implies that it suffices to run Knap2 only thrice: first, while
considering only the items with cost up to 10 (Fig. 2e); second,
considering only the items with cost up to 15 (Fig. 2f); and
finally, considering only the items with cost up to 20 (Fig. 2g).
Note that the order of the items in different runs may differ
from each other, as captured by comparing Fig. 2e and Fig. 2f.
In what follows, we provide our analysis of DSKnap, which
formally defines and proves the observation above.

2) Approximation and Run-time Analysis: Our fully-
polynomial Knapsack-based algorithm, DSKnap, is formally
defined in Algorithm 3. The details of DSKnap are presented
and discussed in the proof of Theorem 6, which provides
bounds on the approximation ratio and the run-time of DSKnap.

Theorem 6. If there exists some constant δ < 1 such that
ρj ≤ δ for all j ∈ Nx, then Algorithm DSKnap is a
polynomial O(

√
β)-approximation algorithm running in time

O(n2x log nx).

Proof. The proof draws its intuition from the proof of Theo-
rem 5, combined with the properties of the 2-approximation
algorithm for Knapsack, Knap2.

Consider a run of Knap2, given a set of items and some
budget constraint B. Knap2 first prunes all elements with a cost
greater than the budget. In particular, there exists some element
j such that cj is the maximal cost of an element not violating
the budget. DSKnap simulates the same pruning by iterating
over all potential values for this maximal cost, and maintaining
only the data stores with cost not exceeding this maximal cost
(lines 2-3). It follows that there is a u ∈ {cj |j ∈ Nx} for which

Nu
x = {j ∈ Nx|cj ≤ B} . (16)

Now that Knap2 only considers items with cost not violating
the budget B, it orders the items in non-increasing order of
wj/cj , and scans the items in this order, starting from the
most profitable, until reaching the first item in this order, ktB ,
such that

∑tB
j=1 ckj ≤ B, but

∑tB+1
j=1 ckj > B. Knap2 then

picks the best between two possible candidate solutions: the
set {1, . . . , ktB}, and the set {ktB+1}.

Our algorithm iterates over all potential candidates of this
form, namely, all sets of data stores {1, . . . , kt}, and all sets of

8

data stores {kt}. Consider an optimal solution O* ⊆ Nx to the
DSS problem, and denote by B∗ the access cost contributing
to the overall cost of O*. Consider the iteration of DSKnap

where Nu
x = {j ∈ Nx|cj ≤ B∗} (as shown in the argument

leading to Eq. 16, such a cost u necessarily exists).
Consider the items in Nu

x ordered in non-increasing order
of wj/cj , and let tB∗ be the first item in the order for
which

∑tB∗
j=1 ckj ≤ B∗, but

∑tB∗+1
j=1 ckj > B∗. The algorithm

will choose either {1, . . . , ktB∗}, which is candidate Du
t in

the iteration where t = tB∗ of lines 5-3; or it will choose
{ktB∗+1}, which is candidate D̃u

t in the iteration where
t = tB∗ + 1 of lines 5-7. By the proof of Theorem 5, the
best of these two candidate solutions is an O(β

ε
1+ε) = O(

√
β)

approximate solution for the DSS problem, since we are using
a 2-approximation algorithm for knapsack, implying ε = 1.

Since DSKnap picks the candidate solution with the minimal
overall cost, the solution returned by the algorithm is itself
an O(

√
β)-approximate solution for the DSS problem. The

running time of the algorithm is dominated by the outer for-
loop in lines 2-7 which has nx iterations, where in each
iteration we order all elements in Nu

x , which takes O(nx log nx)
time. Hence, the overall running time of the algorithm is
O(n2x log nx), which completes the proof.

VII. A PARTITION-AND-MERGE ALGORITHMIC
FRAMEWORK

In this section, we develop an alternative algorithm for the
DSS problem and provide guarantees on its performance. We
first provide a high-level description of the algorithm and then
turn to a detailed description and analysis of its approximation
ratio and run-time.

A. High-level Description of the Algorithm

Our proposed algorithm, DSPGM (where PGM stands for
Partition, Generate and Merge), is based on a sequence of three
basic operations: (i) Partition the set of data stores with positive
indications Nx into disjoint subsets, based on a logarithmic
scaling of the access costs, (ii) Generate from each subset a
few candidate sets of data stores with minimal miss ratio, and
(iii) Merge the candidate sets iteratively, until obtaining a set
of candidate complete-solutions for the DSS problem.

Fig. 3 provides an illustration of the partition and generate
stages of DSPGM. In the partition stage, DSPGM partitions
Nx into r = log β disjoint subsets: N0

0 , N
0
1 , . . . , N

0
r−1, where

subset N0
j contains all the data stores with positive indications

with an access cost that lies in the range [2j , 2j+1). We note
that each solution D ⊆ Nx to the DSS problem can be viewed
as the union of r disjoint sets of the form Dj = D ∩ N0

j .
This view will be useful in what follows as we will target
bounding the cost and the miss ratio of our solution within
each N0

j independently, for j = 0, . . . , r − 1. In particular,
we will be considering the disjoint subsets Oj = O* ∩N0

j for
some optimal solution O* to the DSS problem.

In the generate stage, DSPGM sorts the data stores within
each subset N0

j in non-decreasing order of the miss ratio
and considers all possible prefixes as its initial candidate sub-
solutions. We will later show that the sub-solution eventually

c

1
0

2

2j

2j+1

β
2

β

ρ
1

N0
0

N0
j

N0
r−1

..
.

..
.

..
.

..
.

XXX

..
.

XXXXX

..
.

XX

. . .

Fig. 3. DSPGM’s partition and generate steps. In the y-axis, we show the
possible cost ranges of the data stores contributing to each N0

j . X represents
a datastore, and within each subset N0

j the datastores are assumed to be sorted
in non-decreasing order of miss ratio, from left to right. Marked prefixes
within N0

j represent the candidate sub-solutions considered by the algorithm.

picked by DSPGM for each j = 1, . . . , (r − 1) would have
cost no more than twice the cost of the said Oj , and no worse
overall miss ratio than Oj .

Fig. 4a provides and illustration of the merge stage, in
which DSPGM iteratively merges candidate sub-solutions. The
merging procedure can be viewed as generating candidate subs-
solutions along a bottom-up scan of a binary tree; each leaf in
this tree represent some initial candidate sub-solutions produced
by the partition and generate stages, and each intermediate
node represents several unions of sub-solutions available at its
children. At the end of the merge stage, the algorithm picks the
candidate sub-solution available at the root of the tree which
minimizes the objective function φ(·).

In what follows we present some preliminaries, and then
use them to describe DSPGM in details.

B. Preliminaries

Denote r = log β. We iteratively partition Nx to sub-
sets, based on access costs, as follows. Initially, at level
` = 0, we define a logarithmic-scale partitioning N0

j ={
d ∈ Nx|2j ≤ cd < 2j+1

}
, for j = 0, . . . , r − 1. In each

level ` = 1, . . . , log r we let N `
j = N `−1

2j ∪ N `−1
2j+1, for

j = 0, . . . , r
2`
− 1. i.e., each higher-level subset is the union

of two adjacent subsets in the lower level.
Given some optimal solution O*, for each ` = 0, . . . , log r

and j = 0, . . . , r
2`
− 1, let O`j = O* ∩N `

j , i.e., the subset of
data stores which an optimal solution O* selects out of N `

j .
By the definition of N `

j , it follows that O`j = O`−12j ∪O
`−1
2j+1

for ` = 1, . . . , log r.
DSPGM considers candidate subsets of data stores V `j ⊆ 2N

`
j

(i.e., a subset of the powerset of N `
j) as some specifically chosen

subsets of N `
j , for each ` = 0, . . . , log r and j = 0, . . . , r

2`
−1.

As a data store with zero hit ratio is of no use, DSPGM

assumes without loss of generality that for each j = 1, . . . nx,
phj > 0. By Eqs. 3 and 4 this implies that ρj < 1.

9

Algorithm 4 DSPGM(Nx, c, ρ, β)

Partition and Generate sub-solutions
1: for j = 0, 1, . . . , r − 1 do . r = log β
2: N0

j ←
{
d ∈ Nx|2j ≤ cd < 2j+1

}
3: sort N0

j in non-decreasing order of miss ratio
4: V 0

j ← {D|D is a prefix of N0
j , 0 ≤ |D| ≤ nx}

Merge sub-solutions
5: for ` = 1, . . . , log r do . level `
6: for j = 0, . . . , r

2`
− 1 do . node in level `

7: for t = 0, 1, . . . , r do

8:
Xt ← arg min{ρD|D = A ∪B, . . .

A ∈ V `−12j , B ∈ V `−12j+1, cD ∈ [2t−1, 2t)}
9: V `j ← V `j ∪ {Xt}

Pick best candidate solution
10: return D̃ = arg minX∈V log r

0
{φ(X)}

C. The DSPGM Algorithm

We now describe the details of DSPGM, formally defined
in Algorithm 4. In lines 1-4 DSPGM partitions the data
stores and generates candidate sub-solutions as follows. First,
the algorithm partitions the set of data stores with positive
indications Nx into r disjoint subsets, N0

0 , N
0
1 , . . . , N

0
r−1 based

on the access costs, using a logarithmic scale (line 2). Then the
algorithm sorts the elements in each of the partitions by a non-
decreasing order of miss ratios (line 3). Next, the algorithm
generates initial candidate sub-solutions by considering all
possible prefixes of each partition (line 4). Recall that the
partition and generate stages are illustrated in Fig. 3. It is
important to note that the empty prefix is also always taken as
one of the candidate sub-solutions. The empty set has a cost
of 0, and a miss ratio of 1.

The second part of the algorithm (lines 5-9) iteratively
generates additional candidate sub-solutions across r levels. At
level ` it merges pairs of candidate sub-solutions from level
`− 1 into new candidate sub-solutions at level `. This merge
process essentially generates new sub-solutions across a binary
tree where the leaves are the initial sets of candidate solutions
V 0
0 , . . . V

0
r−1, and the root is a set of complete solutions for

the DSS problem V log r
0 , as depicted in Fig. 4a.

In particular, in each run of lines 7-9 DSPGM merges
candidate sub-solutions corresponding to two sets of level
` − 1, V `−12j and V `−12j+1, into a single set V `j of level ` as
follows. First note that DSPGM always adds the empty set
to V `j , since for t = 0 we have Xt = ∅. For t ≥ 1, the
algorithm considers all the edges in the complete bipartite
graph between the set of candidate sub-solutions in V `−12j , on
one side, and the set of candidate sub-solutions in V `−12j+1, on
the other side. Each edge in the bipartite graph represents the
union of the two sub-solutions it connects, and is associated
with (i) the access cost of the union of sub-solutions, which
is the sum of their costs, and (ii) the miss ratio of the union
of sub-solutions, which is the product of their miss ratios. For

each t = 1, . . . , r, DSPGM selects the edge (and hence union
of two sub-solutions) with minimal miss ratio among all the
edges with access cost in the range

[
2t−1, 2t

)
. This results in at

most one candidate sub-solution being part of the sub-solutions
in V `j , for each of the r possible access cost ranges. After
applying the merge procedure iteratively over all levels, and
all nodes, the algorithm finds and returns the best candidate
complete solution available at V log r

0 (line 10).
Fig. 4 depicts the merge stages of DSPGM. In particular,

Fig. 4a shows the binary merge tree. Observe that each node
contains at most one sub-solution for each of the ranges
[2t−1, 2t), t = 0, . . . , r, of the access costs. In particular, the
illustration in Fig. 4 shows the details of V 1

0 : the empty set
(represented by an empty circle, corresponding to the range
defined by t = 0), a single sub-solution in the range [1, 2); and
a single sub-solution in the range [2, 4). The node V 1

0 contains
no candidate sub-solution in the range [4, 8). Each sub-solution
is marked by some pair (a, b) where a is the sub-solution’s
access cost, and b is the miss ratio of the sub-solution.

Fig. 4b illustrates the merging of two sets of candidate sub-
solutions into a single set in the subsequent level. The leftmost
part of the figure shows the two sets of sub-solutions which
DSPGM merges, V `−12j and V `−12j+1. The algorithm considers
all the edges in the complete bipartite graph whose vertices
are the candidate sub-solutions. These edges appear as dashed
edges. The middle part of the figure shows the selection of
merged sub-solutions for t = 1, 2, 3 (since for t = 0 the merge
simply results in the empty set).

When t = 1, DSPGM considers all the unions of sub-
solutions for which the access cost of the union is within the
range [1, 2). In our case, this translates to a single candidate
union – the union of the empty set (represented by the empty
circle) and the set of data stores with a total cost of 1. This
union is hence considered as the unique candidate sub-solution
corresponding to range [1, 2) in V `j , depicted in the rightmost
part of the figure.

For t = 2, DSPGM has two edges to consider, corresponding
to two sub-solutions with access cost within the range [2, 4). By
the definition of DSPGM, it picks to retain the solution with the
minimal miss ratio among the two (captured by the solid edge
in the figure). This union is hence considered as the unique
candidate sub-solution corresponding to range [1, 2) in V `j . We
note that the chosen candidate sub-solution is actually one of
the candidate sub-solutions that are part of V `−12j+1 (unioned
with the empty set in V `−12j).

For t = 3, DSPGM again has two edges to consider,
corresponding to two sub-solutions with access cost within
the range [4, 8). DSPGM maintains the sub-solution with the
minimal miss ratio among the two (again captured by the solid
edge in the figure). This sub-solution is the only candidate
sub-solution in V `j whose cost is in the range [4, 8). We note
that in this case this candidate sub-solution is taken as the
union of two non-empty sets.

D. Performance and Run Time Analysis

Our performance analysis involves a careful comparison
of the access cost, and miss ratio of candidate sub-solutions

10

` = 0

V 0
r−1

V 0
r−2

V 0
1

V 0
0

..
.

` = 1

V 1
r
2
−1

V 1
0

..
.

. . .

..
.

..
.

..
.

` = log(r)

V
log(r)
0

V 1
0

(0, 1) (1, 0.9) (3, 0.6)

0 1 2 4 8

(a) DSPGM’s merge tree. The tree’s leaves contain the initial sub-solutions
(sets of data stores with positive indications), while the root contains full
solutions for the DSS problem. The bottom right part shows a zoom of
the node V 1

0 , which contains 3 candidate sub-solutions, captured by 3
circles. The pair of values above each circle represents the access cost,
miss ratio of this sub-solution. The dotted vertical lines capture log-scale
ranges of the access costs. DSPGM stores at most a single sub-solution
per each such range.

V `−1
2j+1

(0, 1) (1, 0.9) (2, 0.6)

V `−1
2j (0, 1) (3, 0.7)

0 1 2 4

(1, 0.9)

(0,1)

(0, 1) (2, 0.6)

(0,1) (3,0.7)

(1, 0.9) (2, 0.6)

(3, 0.7)

0 1 2 4

V `j

(0, 1) (1, 0.9) (2, 0.6) (5, 0.42)

0 1 2 4 8
t=1

t=2

t=3

(b) An example of a merge of two sets of candidate sub-solutions, V `−1
2j and V `−1

2j+1,
into the set V `j . Each edge represents a union of sets which the algorithm considers.
In particular, a solid line represents a union taken for the next level, while a dashed
line represents a union which the algorithm considers but decides to dismiss. Note that
the algorithm takes (at most) one union of sets for each of the log-scale ranges of the
access costs.

Fig. 4. DSPGM’s merge step. Each circle represents a candidate sub-solution for the DSS problem.

considered by DSPGM out of every partition N `
j with the access

cost, and miss ratio of a respective optimal sub-solution.
The following proposition shows that in each level `,

{
N `
j

}
j

is a partition of Nx into disjoint sets, based on the access costs
of the data stores.

Proposition 7. In each level `,
{
N `
j

}
j

is a partition of Nx,
satisfying

N `
j =

{
d ∈ Nx|2j·2

`

≤ cd < 2(j+1)2`
}
. (17)

Proof. We prove the claim by induction on `. Setting
` = 0 in Equation 17 simply yields the definition N0

j ={
d ∈ Nx|2j ≤ cd < 2j+1

}
, which is a partition by definition,

thus completing the base case. For the induction step, assuming
that for each j in level `, the set N `

j is part of a partition of
level ` which satisfies Equation 17, we conclude that

N `+1
j = N `

2j ∪N `
2j+1 ={

d ∈ Nx|22j·2
`

≤ cd < 2(2j+1)2`
}
∪{

d ∈ Nx|2(2j+1)·2` ≤ cd < 2(2j+2)2`
}

={
d ∈ Nx|2j·2

`+1

≤ cd < 2(j+1)2`+1
}
,

which therefore forms a partition of level `+1, thus completing
the proof.

In what follows, we let O* denote some optimal solution,
and let O`j = O* ∩N `

j . We note that the proof of Proposition 7
implies that

N log r
0 =

{
d ∈ Nx|20 ≤ cd < 22

log r
}

= Nx.

The following corollary is therefore an immediate consequence
of Proposition 7.

Corollary 8. Given any optimal solution O*, for any level `,
the set

{
O`j
}
j

forms a partition of O*, and

Olog r
0 = O* ∩Nx = O* (18)

The following lemma shows that at each level `, one can
bound the cost and miss ratio of some candidate sub-solution
available to DSPGM, compared to those of an optimal sub-
solution.

Lemma 9. If cO* < β
2·log β then for each ` = 0, . . . , log r and

j = 0, . . . , r
2`
− 1, V `j contains a set X s.t. cX ≤ 2`+1 ·cO`

j

and ρX ≤ ρO`
j
.

Proof. Note first that for each ` and j s.t. O`j = ∅ the claim
holds true since we can take X = ∅ which is always a member
of V `j (added in the iteration considering t = 0). We may
therefore focus our attention only on ` and j for which O`j 6= ∅.

We prove the claim by induction over `. For the base case
(` = 0) we have to prove that if cO* < β

2·log β then for each
j = 0, 1, . . . r − 1 there exists a set of data stores X ∈ V 0

j s.t.
cX ≤ 2 · cO0

j
and ρX ≤ ρO0

j
. Denote kj =

∣∣O0
j

∣∣. As the access
cost of each item in O0

j is in
[
2j , 2j+1

)
, we have

kj · 2j ≤ cO0
j

(19)

Denote by Dj the kj-size prefix of items in N0
j , when sorted

in non-decreasing order of miss ratio. Note that DSPGM inserts
Dj to V 0

j (line 4). The access cost of each item in Dj is within[
2j , 2j+1

)
, and hence

cDj
< kj · 2j+1. (20)

Combining Equations 19 and 20, we obtain cDj
≤ 2 · cO0

j
.

Furthermore, as Dj is a prefix of N0
j when sorted in a non-

decreasing order of miss ratio and |Dj | = kj = |O0
j |, we have

ρDj
≤ ρO0

j
, thus completing the proof of the induction’s base.

11

For the induction step, we assume that the claim holds for
level `, and prove it for level `+ 1. Assume cO* < β

2 log β . We
have to show that there exists a set X ∈ V `+1

j that satisfies
cX ≤ 2`+2 ·cO`+1

j
and ρX ≤ ρO`+1

j
.

By the induction hypothesis, there exist sets A∗ ∈ V `2j and
B∗ ∈ V `2j+1 s.t. cA∗ ≤ 2`+1 ·cO`

2j
and cB∗ ≤ 2`+1 ·cO`

2j+1
.

Consider the set D∗ = A∗ ∪B∗. We first show that D∗ 6= ∅.
Recall that O`+1

j = O`2j ∪O`2j+1. Since it suffices to focus on
the case where O`j 6= ∅, we have either O`2j 6= ∅ or O`2j+1 6= ∅,
and therefore either ρO`

2j
< 1 or ρO`

2j+1
< 1. By the induction

hypothesis ρA∗ ≤ ρO`
2j+1

and ρB∗ ≤ ρO`
2j

. Therefore, either
ρA∗ < 1 or ρB∗ < 1. As a result, either A∗ 6= ∅ or B∗ 6= ∅,
and hence D∗ 6= ∅.

Recall that D∗ = A∗ ∪ B∗, and by definition O`+1
j =

O`2j ∪O`2j+1. Therefore,

cD∗ ≤ cA∗ + cB∗

≤ 2`+1
(
cO`

2j
+ cO`

2j+1

)
= 2`+1 ·cO`+1

j
(21)

≤ 2`+1 ·cO*

< 2`+1 · β

2 · log β
,

where the second inequality is by the induction hypothesis.
Recalling that ` ≤ log r and r = log β we also have 2`+1 ≤

2 · 2log(log β) = 2 · log β. Combining the reasoning above we
have cD∗ < β. Therefore (and recalling that D∗ 6= ∅), there
exists some t ∈ {1, 2 . . . , r} s.t.

2t−1 ≤ cD∗ < 2t. (22)
As a result, one of the iterations of the merge loop (lines 7-9)
inserts to V `+1

j a set Xt s.t.

2t−1 ≤ cXt
< 2t. (23)

Combining Equations 21, 22, and 23, we have
cXt

< 2 ·cD∗ ≤ 2`+2 ·cO`+1
j
.

Furthermore, by lines 8-9, Xt minimizes the miss ratio; and
by the induction hypothesis we have that ρA∗ ≤ ρO`

2j
and

ρB∗ ≤ ρO`
2j+1

. We conclude that
ρXt
≤ ρD∗ = ρA∗ · ρB∗ ≤ ρO`

2j
· ρO`

2j+1
= ρO`+1

j
,

which completes the proof.

We are now in a position to prove an upper-bound the
approximation ratio and run-time of DSPGM.

Theorem 10. DSPGM is a (2 · log β)-approximation algorithm,
running in time O

(
n2x + log3 β

)
.

Proof. For proving the approximation ratio of DSPGM, con-
sider some optimal solution O*. We recall that in every iteration
– and, in particular, in the last iteration – DSPGM considers
using the empty set. Hence, φ(D̃) ≤ φ(∅) = β. Therefore, if
cO* ≥ β

2·log β , the claim is true.

If cO* < β
2·log β , then by Lemma 9 there must exist a set

X ∈ V log r
0 such that

cX ≤ 2log r+1 ·cOlog r
0

= 2 · log β · cOlog r
0

.

TABLE II
APPROXIMATION GUARANTEES AND RUN-TIME OF PROPOSED ALGORITHMS

Alg Approx. Run time Based on

DSPP O
(
β

ε
1+ε

)
O
((
nx + ε−2.4

)
·M
)

Knapsack FPTAS

DSKnap O
(√
β
)

O
(
n2
x lognx

)
Knapsack 2-approx.

DSPot maxj{Cj} O (nx lognx) Potential function
DSPGM O(log(β)) O

(
n2
x + log3(β)

)
Divide & conquer

Using Equation 18, we obtain
cX ≤ 2 log β · cO* . (24)

Furthermore, by Lemma 9 we have
ρX ≤ ρO* . (25)

Combining Equations 24 and 25 and recalling that D̃
minimizes φ over V log r

0 , we obtain that
φ(D̃) ≤ φ(X) ≤ 2 log β · φ(O*).

We now turn to analyze the runtime of algorithm DSPGM.
Lines 1-4 require only a single sort of the nx data stores with
positive indications, which takes O(nx log nx) time.

When ` = 1, the worst-case run time of lines 6-9 occurs
when there exists some j such that |N0

2j | = Θ(nx) and
|N0

2j+1| = Θ(nx), in which case considering all the edges
of the full bipartite graph between N0

2j and N0
2j+1 requires

Θ(n2x) steps.
For each ` = 2, 3, . . . , log(r), DSPGM inserts to V `j at most

one candidate sub-solution for every t = 1, 2, . . . , r. Therefore
when ` > 1, each iteration of the merge block (lines 7-9)
requires considering the complete bipartite graph where the
number of nodes in each side is at most O(r). Hence, each
iteration of the merge block requires DSPGM O(r2) steps. As
the merge tree contains O(r) nodes (recall Fig. 4a), DSPGM

performs O(r) such merge operations. Thus, the time required
to run lines 5-9 when ` > 1 is O(r3). It follows that the runtime
of DSPGM is O(n2x + r3), which completes the proof.

Table II compares the approximation guarantees and the run-
times of our algorithms. For DSPP we use the state-of-the-art
(1+ε)-approximation for the Knapsack problem, whose running
time is O

(
nx + ε−2.4

)
[31]. Our algorithms suggest various

trade-offs between run-time and approximation guarantees. In
particular we note that none of our algorithms strictly dominates
another in terms of our analytic guarantees. The choice of the
best algorithm therefore depends upon the relations between
the parameters β, nx and {cj}j in a specific system, and any
constraints imposed in such a system.

VIII. SIMULATION STUDY

This section provides the results of our simulation study,
which uses real-life access trace, and a system deployment
based on a real content distribution network topology. Our
results provide insights into the performance of various access
strategies in versatile settings.

A. System Topology and Costs

We use the topology of the OVH [32] content distribution
network. The OVH network [32] includes 19 Points of Presence

12

1 5 9 13 17 21 25 29

0.05

0.10

Access Cost

PD
F

Fig. 5. Histogram of ci,j values for the OVH network, based on Eq. 26,
using α = 0.5 and T = 500.

(PoPs) in Europe and North America along with the available
bandwidth between PoPs. We interpret each PoP as containing
both a data store and a co-located client. Queries are generated
at clients and each such query triggers an access to a subset
of the data stores according to the prescribed policy.

We assume that clients use the shortest hop-count path
between their location and the data store they access. Ties
are broken by picking the path with maximal bottleneck link
bandwidth. The cost for a client located at node i to access a
data store at node j is:

ci,j = d1 + α · dist(i, j) + (1− α) · T

BW(i, j)
e, (26)

where (i) dist(i, j) is the hop-count between node i and node j,
where dist(i, i) = 0, (ii) BW(i, j) is the maximum bottleneck
bandwidth of a minimum length path from node i to node j,
where BW(i, i) =∞, (iii) T is a design parameter satisfying
T ≥ maxi,j BW(i, j), that relates the increased cost of having
a smaller bandwidth with the increased cost due to having
a higher hop-count. Lastly, (iv) α is a design parameter that
helps balance the effects of hop-count distance and bottleneck
bandwidth on the cost. In particular, for α = 1 the cost is
fully dominated by the hop-count distance and for α = 0 it
is fully dominated by the bottleneck bandwidth, regularized
by the parameter T . Unless stated otherwise, throughout our
simulations we set α = 0.5 and T = maxi 6=j BW(i, j).
Specifically, T = 500 for the OVH network.

Fig. 5 presents the histogram of the default access cost used
in our evaluation between all pairs of clients and data stores
in the OVH network.

B. Data Store Characteristics

Data stores are initially empty, and each can contain a
maximum of S data elements. Once an item is added to a full
data store, it evicts an item according to the Least Recently
Used (LRU) policy. The indicators are implemented using
Counting Bloom Filters [27], each consisting of B(S) 8-bit
counters and 5 hash functions, where B(S) is chosen as the
number of counters required to obtain a target false positive
ratio of 0.02 [10]. For example, in most of our simulations,
we set S = 1000, which implies B(S) = 8181. We assume
that up-to-date indicators are available at all time as can be
efficiently realized by compressed Bloom filters [20], or by
only transmitting the changes as in [4].

Each data store estimates its own misindication ratio by
evaluating an exponential moving average over epochs of R

requests made to the data store. Formally, let mj(s, t) denote
the number of misses occurring at data store j during the
requests s + 1, . . . , t made to data store j3. For any t ≤ R
we let the estimated misindication ratio after handling request
t be ρj(t) =

mj(0,t)
t . For t > R, we let ρj(t) be the most

recent estimate over epochs of R requests, ρj(bt/Rc · R),
where for every non-negative integer k this estimate is updated
after handling request (k + 1)R such that ρj((k + 1)R) =
δ ·mj(kR, (k+ 1)R)/R+ (1− δ) ·ρj(kR). In our simulations,
we take δ = 0.1 and R = 100, as we found this configuration
to yield a stable ρ at each data store and to work well in
practice.

We consider a system-wide request distribution policy where
an item can only be placed in k data stores that are chosen by
a hash function based on the requests’ content. Such a policy is
inspired by ideas such as replication and partitioning to increase
the hit ratio [33]. We consider values of k ranging from 1 to
5, where the latter value implies that an item may be placed in
26% of the 19 data stores in the system. Notice that in these
experiments, the misindication ratios of different data stores are
not mutually-independent, as our model assumes (see Sec. III).
Depending upon the varying value of k, these misindication
ratios may be either mutually independent, positively correlated,
or negatively correlated. Hence, we evaluate our algorithms
in versatile domains and, in particular, in domains where the
misindication ratios are mutually dependent.

C. Traffic Trace, Metrics, and Simulated Scenarios

We used a publicly available Wikipedia trace [34] consisting
of 357K read requests to Wikipedia pages during 5 minutes 4.
We assign each request to a random client, and the requests
appear according to their order in the trace. For handling the
requests, we consider the following access policies applied
by the clients for choosing the set of data stores to access:
(i) CPI, (ii) EPI, (iii) DSKnap, (iv) DSPot, and (v) DSPGM.5

The evaluation factors the total cost, where all clients are
running the same algorithms. We also considered the benchmark
performance provided by using perfect indicators (PI). This
benchmark is used to normalize the costs of the various policies
considered. We measure the total cost (TC) incurred by each
access strategy for serving the entire trace. We normalize the
TC of each access strategy by the TC of the perfect indicator
PI. This normalization aims to compare the performance in
various settings while alleviating some of the exogenous effects
specific to the evaluated scenario.

D. Heterogeneous Case (OVH network)

In our first experiment, we compare the performance of
various access strategies when varying the number of locations
per item k, and the miss penalty β. For each configuration,
we measure the normalized total cost (TC). Recall that the
total cost (TC) is the sum of the access cost and the miss cost.

3Recall that we only access a data store if it has provided a positive
indication.

4The trace includes requests made on Sep. 22, 2007, from 06:12 to 06:17
5We focused our attention on the fully-polynomial approximation algorithms

due to the exorbitant runtime of our pseudo-polynomial scheme.

13

TABLE III
OVH NETWORK SIMULATION. RESULTS PRESENT FOR EVERY SCENARIO

AND EVERY POLICY THE ACCESS COST (AC) AND TOTAL COST (TC). THE
VALUES ARE NORMALIZED BY THE TC OF THE PERFECT INDICATORS

POLICY.

β Policy
1 location 3 locations 5 locations
AC TC AC TC AC TC

102

CPI 0.16 1.20 0.10 1.11 0.08 1.08
EPI 0.23 1.09 0.43 1.39 0.49 1.55
DSKnap 0.19 1.10 0.16 1.10 0.13 1.09
DSPot 0.20 1.11 0.18 1.13 0.20 1.16
DSPGM 0.19 1.10 0.16 1.11 0.14 1.09

103

CPI 0.02 1.22 0.01 1.10 0.01 1.07
EPI 0.03 1.01 0.05 1.05 0.07 1.08
DSKnap 0.03 1.01 0.03 1.04 0.02 1.03
DSPot 0.03 1.01 0.04 1.04 0.03 1.04
DSPGM 0.03 1.01 0.03 1.04 0.03 1.03

104

CPI 0.00 1.22 0.00 1.10 0.00 1.07
EPI 0.00 1.00 0.00 1.02 0.01 1.02
DSKnap 0.00 1.00 0.00 1.02 0.00 1.02
DSPot 0.00 1.00 0.00 1.02 0.00 1.02
DSPGM 0.00 1.00 0.00 1.02 0.00 1.02

Hence, to obtain better insights into the dominant source for
the cost of access strategies, we show for each access strategy
also its access cost (AC). We normalize both the AC and the
TC of each access strategy by the TC of the perfect indicator
PI. The outcome of this evaluation is provided in Table III,
where we present the PI-normalized results for various β and
k values.

The results show that that CPI has minimal AC across the
board as it always selects the data store with the minimal access
cost. When k is high, CPI obtains low total cost because when
there are many true-positives, CPI is less likely to follow a
false-positive indication. Also, when β is low (β = 100), the
relative part of the AC within the TC is high (recall that the
total cost of the PI normalizes all costs). Hence, CPI obtains
the lowest TC in the combination where k = 5 and β = 100.
However, CPI is highly sensitive to false-positives as it only
accesses a single data store. Thus when k is low, there are
fewer true-positive indications, which makes CPI more likely
to pay the miss penalty of β.

EPI, on the other hand, is very useful for k = 1 but becomes
less attractive as we increase k, due to the fact it ends up
accessing too many data stores, which is captured by increasing
AC. This effect is mitigated when β is high because a high
miss penalty implies that one should better access multiple
data stores in aim to minimize the probability of a miss, even
at the cost of some unnecessary accesses.

Our proposed algorithms – DSPot, DSKnap and DSPGM –
outperform the two heuristics (CPI and EPI) in all configu-
rations, except for β = 100 and k = 1, where CPI obtains a
slightly lower cost. Focusing on our three algorithms, DSPot

does slightly worse than DSKnap and DSPGM, which can
be explained by the higher AC of DSPot. Intuitively, DSPot

optimizes for reducing the miss cost, even at the cost of a
slightly higher access cost. DSKnap and DSPGM are the best
strategies in almost all scenarios, but most importantly, they

TABLE IV
OVH NETWORK SIMULATION WITH VARYING FALSE POSITIVE (FP) RATIOS.

THE MISS PENALTY IS SET TO β = 100.

Policy
1 location, varying FP 5 locations, varying FP

0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04

CPI 1.11 1.20 1.29 1.35 1.04 1.08 1.12 1.15
EPI 1.04 1.09 1.13 1.17 1.51 1.55 1.60 1.64
DSKnap 1.06 1.10 1.14 1.18 1.05 1.09 1.12 1.14
DSPot 1.06 1.11 1.16 1.21 1.12 1.16 1.19 1.23
DSPGM 1.06 1.10 1.14 1.18 1.06 1.09 1.12 1.15

are never bad strategies: even when underperforming compared
to some other strategy, the difference is marginal.

Our next experiment explores the effect of the False Positive
(FP) ratio on the performance of different access strategies. As
seen in the results of our previous experiment, the differences
are better pronounced for smaller values of β, so we consider
the settings where β = 100. Furthermore, as our previous
experiment implied that CPI and EPI do best when k = 5 and
k = 1, respectively, we focus hereafter on these two values
of k. The results are shown in Table IV. The results show
that CPI and EPI are highly sensitive to the FP ratio. For
instance, when k = 1 and FP = 0.04, CPI incurs an excessive
cost of 35% above OPT. When k = 5 and FP = 0.04, EPI
incurs an excessive cost of 64% above OPT. In contrast, all our
proposed algorithms – DSKnap, DSPot and DSPGM – show
only a mild increase in the cost when incrementing FP. In
particular, DSKnap and DSPGM obtain again minimal, or close
to minimal, costs across the board.

E. Homogeneous Case: Varying Data Store Size

Our next experiment considers homogeneous settings, where
the access costs of all 19 data stores in fixed 1. We aim at
studying the effect of the data store size in these settings.
We examine the system’s performance with a miss penalty
β = 100, and a false positive ratio of 0.02. Fig. 6 shows the
results for k = 1 and k = 5 locations per item, where we
vary the size of each data store from 200 up to 1600. In these
homogeneous cost settings, all our algorithms – namely, DSPot,
DSKnap and DSPGM – are equivalent to the scheme which
minimizes the expected overall cost, FPO. Furthermore, their

200 600 1000 1400
1

1.05

1.1

1.15

1.2

1.25

Data Store Size

N
or

m
al

iz
ed

C
os

t

1 location

200 600 1000 1400

Data Store Size

5 locations

CPI EPI DSKnap, DSPot, DSPGM

Fig. 6. Homogeneous network with varying data store size. The miss penalty
is set to β = 100, and the target false positive ratio is 0.02.

14

performance is always very close to the one achieved with
perfect indicators. In contrast to our previous experiments, CPI
does not do very well, even with k = 5 locations per item. The
reason is that in such homogeneous settings, when there exist
multiple positive indications, none of them is “cheapest”. As a
result, CPI randomly selects a single data store. That is, CPI
always accesses a data store, which neither minimizes the miss
ratio nor minimizes the access cost. The homogeneous case
results show again that the existing heuristics are too simplistic
to fit all system configurations, whereas our algorithms are
extremely robust to various system settings.

IX. DISCUSSION

Our work closes an important knowledge gap concerning
indicator based caching in network systems. Namely, it answers
the fundamental question of providing a stable access strategy
that achieves near-optimal results in a wide variety of scenarios.

Our work shows that the access strategy problem was
roughly ignored until now and that the existing solutions
are only attractive for some system parameters. That is, their
effectiveness is determined by uncontrolled variables that may
change throughout the system’s lifetime, and may not be known
in advance. In contrast, we present algorithms for which we
provide provable performance guarantees that are robust to
the various system parameters, and further demonstrate via
extensive simulation that our proposed solutions exhibit near-
optimal performance in various system settings.

As a future work, we aim to combine our access strategies
with schemes for periodically advertising the indicators while
complying constraints on the bandwidth consumption, or on
the freshness of the indicators [35], [36].

ACKNOWLEDGEMENTS

The work was supported by the Israel Science Foundation
(grants No. 1036/14 and 1505/16).

REFERENCES

[1] I. Cohen, G. Einziger, R. Friedman, and G. Scalosub, “Access strategies
for network caching,” in IEEE INFOCOM, 2019, pp. 28–36.

[2] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung, “Cache
in the air: exploiting content caching and delivery techniques for 5g
systems,” IEEE Comm. Mag., vol. 52, no. 2, pp. 131–139, 2014.

[3] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5g,” IEEE Comm. Mag., vol. 52,
no. 2, pp. 74–80, 2014.

[4] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An architecture for global-scale persistent storage,”
SIGPLAN Not., vol. 35, no. 11, pp. 190–201, 2000.

[5] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery network,”
in NSDI, 2017, pp. 483–498.

[6] M. Bilal and S. G. Kang, “A cache management scheme for efficient
content eviction and replication in cache networks,” IEEE Access, vol. 5,
pp. 1692–1701, 2017.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw.,
vol. 8, no. 3, pp. 281–293, 2000.

[8] X. Guo, T. Wang, and S. Wang, “Joint optimization of caching and
routing strategies in content delivery networks: A big data case,” in IEEE
ICC, 2019, pp. 1–6.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[10] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[11] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Commun. Surveys Tuts.,
vol. 14, no. 1, pp. 131–155, 2012.

[12] G. Einziger and R. Friedman, “Tinyset: An access efficient self adjusting
bloom filter construction,” IEEE/ACM Trans. Netw., vol. 25, no. 4, pp.
2295–2307, 2017.

[13] ——, “Counting with tinytable: Every bit counts!” in IEEE Access, 2019.
[14] O. Rottenstreich and I. Keslassy, “The bloom paradox: When not to use

a bloom filter,” IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 703–716,
2015.

[15] Y. Kanizo, D. Hay, and I. Keslassy, “Access-efficient balanced bloom
filters,” Comput. Commun., vol. 36, no. 4, pp. 373–385, 2013.

[16] A. Rousskov and D. Wessels, “Cache digests,” Computer Networks and
ISDN Systems, vol. 30, no. 22-23, pp. 2155–2168, 1998.

[17] L. Luo, D. Guo, R. T. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-
cations Surveys & Tutorials, vol. 21, no. 2, pp. 1912–1949, 2018.

[18] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in ESA, 2006, pp.
684–695.

[19] W. Li, K. Huang, D. Zhang, and Z. Qin, “Accurate counting bloom filters
for large-scale data processing,” Mathematical Problems in Engineering,
2013.

[20] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 604–612, 2002.

[21] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Comp. Comm. Rev., vol. 45, no. 3, pp. 52–66,
2015.

[22] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable
wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw., vol. 8,
no. 3, pp. 281–293, 2000.

[23] “Squid cache wiki.” [Online]. Available: https://wiki.squid-
cache.org/SquidFaq/CacheDigests

[24] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” ACM Transactions on Computer Systems
(TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[25] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep
packet inspection using parallel bloom filters,” in Hot Interconnects, 2003,
pp. 44–51.

[26] R. K. Grace and R. Manimegalai, “Dynamic replica placement and
selection strategies in data gridsa comprehensive survey,” Journal of
Parallel and Distributed Computing, vol. 74, no. 2, pp. 2099–2108,
2014.

[27] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in ESA, 2006, pp.
684–695.

[28] G. Einziger, O. Eytan, R. Friedman, and B. Manes, “Adaptive software
cache management,” in ACM Middleware, 2018, pp. 94–106.

[29] G. Einziger, R. Friedman, and B. Manes, “Tinylfu: A highly efficient
cache admission policy,” TOS, vol. 13, no. 4, pp. 35:1–35:31, 2017.

[30] D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[31] T. M. Chan, “Approximation schemes for 0-1 knapsack,” in Symposium
on Simplicity in Algorithms (SOSA), 2018, pp. 5:1–5:12.

[32] “The OVH CDN network,” 2018. [Online]. Available:
https://www.ovh.co.uk/cdn/cdn-network-map.xml

[33] G. Einziger, R. Friedman, and E. Kibbar, “Kaleidoscope: Adding colors
to kademlia,” in IEEE P2P, 2013, pp. 1–10.

[34] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, vol. 53, no. 11, pp.
1830–1845, 2009.

[35] Y. Zhu and H. Jiang, “False rate analysis of bloom filter replicas in
distributed systems,” in ICPP, 2006, pp. 255–262.

[36] I. Cohen, G. Einziger, and G. Scalosub, “Self-adjusting advertisement of
cache indicators with bandwidth constraints,” in IEEE INFOCOM, 2021.

