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Abstract—Performance in analog integrated circuits strongly
depends on the mismatch between nominally identical devices.
In this work we derive closed-form asymptotic expressions
describing mismatch variance in multifinger structures, under
the assumption of Gaussian autocorrelation for the mismatch-
generating stochastic process. The analysis is performed on inter-
digitated geometries, eventually modified to make them common-
centroid. Comparison with the numerical results provided by an
independent model validates the theoretical expressions presented
here.

I. INTRODUCTION

Variability in electronic devices is one of the key issues
limiting performance of analog integrated circuits [1]. To get
the most out of a given technological process, designers are
used to adopt layout strategies allowing at least a partial
compensation of this unwanted effect. Commonly accepted
guidelines are based both on rules-of-thumb and analytical
considerations, and typically require each device to be split
into several identical segments (also knows as fingers) placed
according to specific patterns. An example is the interdigitated
layout, which alternates segments of different devices.

However, these layout strategies are often analyzed only
with respect to deterministic effects such as gradients along
the wafer, neglecting any stochastic variation. The well known
work by Pelgrom et al. [2], considers random variations only
in the case of adjacent devices always being uncorrelated.
Under this simplifying assumption, we will actually prove that
geometry does not play any role on the spreading of device
parameters caused by stochastic variations.

In recent years, many works have proposed an improvement
over the original Pelgrom’s model for mismatch variance
[3]–[6]. In [5] the hypothesis of short correlation length is
removed, and in [7], the authors analyze numerically the
effects of different layout strategies. The same model has
been extended by Poiroux et al. in [6], accounting for wide
sense stationary (WSS) stochastic processes whose second-
order statistic (i.e., correlation) can be expressed as a linear
combination of Gaussian functions. WSS processes are charac-
terized by statistical properties that do not depend on absolute
positions but are only distance-dependent.

In this paper, starting from the theoretical model in [6],
we derive an approximated model of the effects of geom-
etry on mismatch variance, under the assumption of strong
device correlation. This allows us to extend the theoretical
analysis conducted on pairs of devices to complex multi-finger

structures, deriving closed-form expressions in the case of
interdigitated layouts.

The paper is organized as follows. In Section II we will
introduce the analytical model of mismatch variance on which
the analysis is built, taken directly from the original paper [6]
and only adapting the notation when required. In Section III
we describe the geometry of interest and the approximations
of the model both for extremely slow and fast decay of
device correlation over distance, observing that, in the latter
condition, the resulting variance is independent of the layout
of the segments. In Sections IV and V we obtain simplified ex-
pression of the variance in terms of device size and placement
for the multi-finger structures considered. Finally, we analyze
the results in VI and then conclude the discussion.

II. ANALYTICAL MODEL OF MISMATCH VARIANCE

Mismatch is defined as the difference in the parameters
describing two nominally identical devices. It is convenient
to model mismatch as a random variable, with a probability
distribution that depends on its original causes. The mean
of such a variable stems from deterministic effects, whereas
variance is caused by random fluctuations [8]. In this work
we focus on the spreading of device parameters due to the
latter effect. Since a large spreading might result in circuits not
satisfying their design specifications, hence limiting the yield,
quantifying variance becomes of paramount importance. The
analysis proposed here is based on the results obtained in [6],
and relies on the following assumptions.

Let us consider two nominally identical devices occupying
rectangular regions A and B on the Euclidean plane with
Cartesian coordinates (x, y) as schematized in Figure 1(a).
Both devices are characterized by dimensions Dx and Dy ,
and their centroids are separated by distances Px and Py .
The lowercase names appearing in the figure refer to these
dimensions normalized by a suitable parameter introduced
later in this section. We investigate the variation of a device
parameter p that is defined pointwise on the euclidean plane
by means of the WSS process p(x, y). The actual value of
the parameter for the two structures is indicated with p̄A and
p̄B , and is computed as the average value p̄ of the process
p(x, y) over the area occupied by the two devices. Let finally
be 〈p〉 the average value of p(x, y) over the entire area of
interest (i.e., the whole die, or the region where the structure
is placed).

The original model in [6] represents processes p(x, y)
defined by means of a linear combination of Gaussian au-
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Fig. 1. (a) Geometry of devices A and B. (b) Interdigitated layout on a grid of Nr rows and Nc columns. Device segments are named linearly, starting
from the bottom left corner. (c) Invariance of centroid distance on the number of columns Nc for a given number of rows Nr (negligible spacing between
segments). In parenthesis, the couple (Nr , Nc) for each layout. (d) Mirroring half of the array to obtain a common centroid structure for Nc even and Nr

odd. The centroids of the half arrays are also highlighted in the mirrored structures.

tocorrelations, here we will limit our analysis to a single
multivariate normal component, with independent x and y
contributions. This assumption allows us to mathematically
define the correlation lengths Λx and Λy along the two plane
directions as

√
2σx and

√
2σy , respectively, with σx and σy

being the standard deviations of the Gaussian functions under
consideration.

Instead of the actual values of Dx, Dy , Px and Py , it
is convenient to handle their dimensionless counterparts dx,
dy , px, and py , obtained after a normalization by Λx or Λy .
Employing this notation, the main result of [6] is to express,
for A and B, the autocorrelation of the difference p̄− 〈p〉 as

Γp̄−〈p〉(px, py) =
α

4d2
xd

2
yΛxΛy

γ(px, dx)γ(py, dy), (1)

where α is a scaling parameter expressed in the appropriate
units, and the remaining dimensionless factors are

γ(p, d) = θ(p+ d)− 2θ(p) + θ(p− d),

being
θ(u) = u× erf(u) + e−u

2

/
√
π.

The variance of ∆p̄ = p̄A − p̄B , representing the spread of
the difference between the parameters describing devices A
and B, can then be expressed as

σ2
∆p̄ = 2

[
Γp̄−〈p〉(0, 0)− Γp̄−〈p〉(px, py)

]
. (2)

Table 1 in the original work [6] collected asymptotic approx-
imations for this formula under the limiting conditions of px,
py , dx and dy . In the following, this procedure will be extended
to multi-finger devices placed on a generic 2D grid.

III. GEOMETRY AND MODEL APPROXIMATION

Consider a 2D grid of Nr rows and Nc columns. The
original devices A and B, with physical dimensions Dy = W
and Dx = L, are divided into Nf = NrNc segments each,
preserving the total area. The segment length is assumed to
be the same of the original device L, hence the height has to
be scaled by 1/Nf . Each grid cell contains one segment of A
and one of B, as depicted in Figure 1(b), so that segments
of different devices alternate on the plane (interdigitation),
separated by distances Sx and Sy . Given the extension of

the grid, the size of the devices, and the spacing between
their segments, our goal is to obtain an approximation of the
mismatch variance simple enough to be used for paper-and-
pencil calculations.

The generalization of (2) to multi-finger structures is:

σ2
∆p̄ =

2

N2
f

Nf∑

i=1

Nf∑

j=1

[
Γp̄−〈p〉

(
pAA
x (i, j), pAA

y (i, j)
)

−Γp̄−〈p〉
(
pAB
x (i, j), pAB

y (i, j)
)]
,(3)

where i and j are linear indices defined on the grid (e.g.
starting from the bottom-left corner with segments A1 and
B1 as in Figure 1(b)) and pAA

x (i, j) is the distance between
segments i and j of device A, while pAB

x (i, j) is computed
between segment i of device A and segment j of device B.
Similar definitions stand for pAA

y (i, j) and pAB
y (i, j). Closed-

form expressions for the double summation can be obtained
for asymptotic values of the normalized dimension, as shown
in the following.

A. Small correlation lengths (dx, dy, px, py � 1)
Under the assumption of small correlation lengths, normal-

ized sizes and distances assume values much greater than 1,
therefore we can express θ(u) as

θ(u) '





|u| if u 6= 0

1√
π

if u = 0 .
(4)

The term for u = 0 is necessary since, whenever in (3) we
have i = j, i.e. we consider the couple made of a segment of
A and itself, the distance terms pAA

x (i, j) and pAA
y (i, j), which

are arguments of θ, are equal to 0 no matter the correlation
lengths.

Assuming d 6= 0, p ≥ 0 and p > d whenever p 6= 0, then

γ(p, d) '





2d− 2√
π
' 2d if p = 0

0 otherwise.

Hence the autocorrelation of p̄− 〈p〉 becomes

Γp̄−〈p〉(px, py) '





α

dxdyΛxΛy
if px = py = 0

0 otherwise .
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Plugging this expression into (3) and considering that
pAB
x (i, j) and pAB

y (i, j) are always nonzero, we obtain

σ2
∆p̄ '

2

N2
f

Nf∑

i=1

Nf∑

j=1

Γp̄−〈p〉
(
pAA
x (i, j), pAA

y (i, j)
)

=
2

N2
f

Nf∑

i=1


∑

j 6=i

0 + Γp̄−〈p〉(0, 0)




=
2α

ΛyΛx

1

wl
=

2α

WL
.

This result corresponds to the traditional model derived by
Pelgrom in [2], where variance depends on the inverse of
device area. The expression depends neither on the position of
the fingers nor on their number hence, under the assumption of
correlation lengths much shorter than device sizes, geometry
has no effect on the variance whatsoever.

B. Large correlation lengths (dx, dy, px, py � 1)

Large correlation lengths result in normalized device sizes
and distances tending towards 0. The asymptotic approxima-
tion of (1) under this assumption is trivial. Its expression is
not included here for compactness reasons, but will be used
in the following sections to derive our main results.

In any case the linear indexing method employed in (3)
is not convenient when working on a 2D grid since the
expressions of the distance terms (pAA

x (i, j) and the others)
become unmanageable. Indexing the segments through their
row and column indices we can write, equivalently:

σ2
∆p̄ =

2

N2
rN

2
c

Nr∑

ri=1

Nc∑

ci=1

Nr∑

rj=1

Nc∑

cj=1

[ Γp̄−〈p〉(p
AA
x (ri, ci, rj , cj), p

AA
y (ri, ci, rj , cj))

− Γp̄−〈p〉(p
AB
x (ri, ci, rj , cj), p

AB
y (ri, ci, rj , cj))

]
. (5)

In general, (5) can be used to compute the variance for any
2D grid-based geometry, once the distance terms have been
determined. For simplicity, the notation will be simplified
in the following by not writing the explicit dependence of
distances on the row and column indices.

IV. VARIANCE IN INTERDIGITATED STRUCTURES

In an interdigitated layout as the one depicted in Figure 1(b),
segment distances can be expressed as:

pAA
x = pxu |2(ci − cj) + 1odd(ri + rj)|
pAB
x = pxu |2(ci − cj) + 1even(ri + rj)|
pAA
y = pyu |ri − rj |
pAB
y = pyu |ri − rj | ,

(6)

where pxu = l + sx and pyu = w/Nf + sy are the distances
between adjacent segments. The indicator function 1A(n)
checks the membership of its argument to the set S and is
defined as:

1S(x) =

{
1 if x ∈ S
0 otherwise .

Fig. 2. Mismatch variance computed through (7) and normalized to the value
obtained for Nr = Nc = 1. (w = 0.02, l = 0.001)

It is employed in this context to account for the alternation
of segment positions across consecutive rows of the grid.
In the specific case of 1odd(n), the function evaluates to 1
whenever n is odd. Equivalently for 1even(n) = 1− 1odd(n).
An expression for 1odd(n) that is also suitable for symbolic
manipulation is given by

1odd(n) =
1− (−1)n

2
.

Combining expressions (6) and (5), and using Taylor’s expan-
sion of (1) around 0 (because of the large correlation lengths),
mismatch variance can be expressed as:

σ2
∆p̄ '

2α

πΛxΛy
p2
xu

(
1

N2
r

1odd(Nr) +
p2
yu

2
1even(Nr)

)

=





2α

πΛxΛy

p2
xu

N2
r

if Nr odd

2α

πΛxΛy

p2
xup

2
yu

2
if Nr even .

(7)

The dependence on geometry is explicit in the term N−2
r and

is also embedded in the value of pyu. If the device segments
are tightly spaced, i.e. sx = sy ≈ 0, (7) reduces to

σ2
∆p̄ '





2α

πΛxΛy

l2

N2
r

if Nr odd

2α

πΛxΛy

l2w2

2N2
rN

2
c

if Nr even
(8)

which is depicted in Figure 2 with respect to σ2
∆p̄,ref , evaluated

for (Nr, Nc) = (1, 1). The plot highlights the constant-valued
peaks whenever the number of rows is odd, notwithstanding
the fact that as the number of columns grows, the increasingly
smaller device segments are more uniformly spread in the grid
area. The valleys in the plot actually vary with Nc, but it is
not apparent in linear scale.

Intuitively, increasing Nc changes the absolute positions of
the centroids of A and B with respect to the origin of the
grid, as shown in Figure 1(c), although their relative distance
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is unaffected. Since Nr odd implies a non-common-centroid
geometry, the constant centroid distance results in a constant
contribution to the variance. Increasing the number of rows
to a larger odd number, such a distance decreases, but is still
invariant with respect to Nc. Conversely, whenever Nr is even
the centroids of A and B coincide and higher order effects
result in Nc actually having an effect on the variance.

V. VARIANCE IN A MIRRORED INTERDIGITATED LAYOUT

As already pointed out, the simple interdigitated layout in
Figure 1(b) is not common centroid whenever the number of
rows is odd. If, at the same time, the number of columns
is even, it is actually possible to obtain a common centroid
geometry simply by mirroring the right half of the structure,
as shown in Figure 1(d). The expressions of segment dis-
tances describing such a layout require the introduction of
the sets L = {1, . . . , Nc/2} and R = {Nc/2 + 1, . . . , Nc},
which characterize the columns as belonging either to the left
(straight) or the right (mirrored) half of the array. Thus we
can write:

pAA
x = pxu |2(ci − cj)

+1odd(ri + rj) [1L(ci)1L(cj)− 1R(ci)1R(cj)]

+1even(ri)1even(rj)1L(ci)1R(cj)

+1odd(ri)1odd(rj)1R(ci)1L(cj)|
pAB
x = pxu |2(ci − cj)

+1even(ri + rj) [1L(ci)1L(cj)− 1R(ci)1R(cj)]

+1even(ri)1odd(rj)1L(ci)1R(cj)

+1odd(ri)1even(rj)1R(ci)1L(cj)| .
Distances along y are unchanged with respect to (6).

Following the same procedure as in the previous section,
the variance can be expressed as:

σ2
∆p̄ '

2α

πΛxΛy

3

2

(
Nc

Nr

)2

p4
xu

if Nr odd
and Nc even

(9)

Being pxu a constant, the dependence on the geometry is
determined only by the ratio (Nc/Nr)2. Intuitively, as Nr

is increased, the centroids in each half of the array get
closer, increasing the correlation between the devices and
thus reducing the variance. Conversely, as Nc increases, the
distance between the centers of the two halves of the array
grows, resulting in a larger variance.

VI. RESULTS

Figure 3 shows the normalized behaviour of variance for
the layouts analyzed in this work. The results from the
approximate models (7) and (9) are compared to the variance
computed on 10000 Monte Carlo trials of the CAD-friendly
model developed by Lu in [9] and analyzed also in [6]. The
maximum relative error between datapoints in Figure 3 is
less than 2%, validating the approximate expressions. For
the sake of clarity, the geometries corresponding to some
of the data points have been superimposed to the plot. In
particular they represent the structures forced to be common
centroid, highligting the reduction in variance obtained by such
a modification.

Fig. 3. Mismatch variance normalized with respect to the value for Nr =
Nc = 1. Lines are obtained through a Monte Carlo simulation using the
model in [9], markers using the asymptotic expressions derived in this work.
Solid lines refer to the simple interdigitated layout, dotted lines to the mirrored
geometry. (w = 0.02, l = 0.001, sx = sy = 0, Λx = Λy = 103, α = 1)

In Table I we have computed the asymptotic expressions
derived in this work for two-fingers geometries, normalized
with respect to the variance σ2

∆p̄,ref of the reference, single-
finger layout (Nr = Nc = 1). With negligible device spacing,
the cross-coupled layout performs better than the mirrored-
linear one whenever (w/l)2 < 12.

VII. CONCLUSION

We have shown that under the assumption of correlation
lengths much shorter than device sizes geometry does not play
any role in reducing the variance of parameter mismatch. Con-
versely, when correlation lengths are long, we have obtained
closed-form expressions linking variance to the parameters of
the interdigitated geometry. The results have been compared
to an independent model, showing extremely good agreement,
thus validating our derivation.
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