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Performance Variability Analysis of Photonic
Circuits with Many Correlated Parameters

Abi Waqas, Member, IEEE. Paolo Manfredi, Senior Member, IEEE, Daniele Melati, Member, IEEE.

Abstract—We propose a method to analyze the performance
variability caused by fabrication uncertainty in photonic circuits
with a large number of correlated parameters. By combining a
sparse polynomial chaos expansion model with dimensionality re-
duction in the form of Karhunen-Loève transform and principal
component analysis, we demonstrate the stochastic analysis of
the transfer function of cascaded Mach-Zehnder interferometers
with up to 38 correlated uncertain parameters.

Index Terms—Correlated manufacturing variability,
Karhunen-Loève transform, performance prediction, photonic
devices, polynomial chaos, principal component analysis, process
variations, silicon photonics, uncertainty quantification.

I. INTRODUCTION

TECHNOLOGY progress in integrated photonics has re-
sulted in complex photonic circuits combining many

functions on a single chip, the possibility for significant
production volumes and reduced fabrication costs [1], [2].
However, the effect of manufacturing variability remains a
fundamental challenge. Photonic devices tend to be very
sensitive to phase errors due to their inherently analog nature
and their size, typically larger than the wavelength [3]. This
means that small fabrication errors can significantly degrade
their performance. Variability in the physical parameters of
photonic components, e.g., waveguide width, thickness, gap
aperture, or coupling length, results into deviations from the
desired optical properties, such as the effective and group
indices of waveguide modes, or coupling coefficients in direc-
tional couplers. As circuits become larger, deviations in the
component performance propagate and accumulate hampering
circuits fabrication yield, especially in high-index-contrast
platforms [4], [5].

The simplest approach to study variability in photonic
circuits is to exploit Monte Carlo sampling. Once the statistical
information of the uncertain parameters is known, multiple
samples can be generated based on these probability density
functions (PDF) and the corresponding circuit behaviour can
be obtained by means of a deterministic simulator. Although
this approach is flexible and easy to implement, it is known
for its slow convergence which requires a large number of
samples to derive information on the stochastic behaviour of
the circuit, thus imposing a great computational effort [6].
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Alternatively, stochastic spectral methods based on polynomial
chaos expansion (PCE) have emerged as a promising alterna-
tive, showing significant speedup over Monte Carlo in many
engineering problems [7]. PCE has been also proposed for
the variability analysis of photonic circuits [8], [9], [10], [11],
[12], [13]. While classical PCE assumes random parameters
to be mutually independent, photonic devices exhibit spatial
correlation over rather long distances of few millimeters that
must hence be taken into account to properly analyse the
impact of fabrication uncertainty [3], [14]. Some PCE imple-
mentations proposed for photonics problems take into account
parameters correlation [10], [13], but they either consider only
a small set of random parameters or require the complex
calculation of specialized polynomial basis. Indeed, one of
the major drawbacks of PCE is that its computational cost
grows exponentially with the number of stochastic variables,
thus eventually becoming less efficient than Monte Carlo.

In this work, we tackle these issues by proposing an ef-
fective PCE implementation suitable for photonic circuits that
can handle a large number of correlated uncertain parameters.
The proposed method leverages the combination of several
elements. Specifically, Karhunen-Loève transform (KLT) [15]
is applied to decorrelate the physical parameters and reduce
their number, thereby also reducing the complexity of the
model to be trained. Principal component analysis (PCA) is
then used to compress the training data and reduce the output
quantities to be modeled. Therefore, the entire frequency-
dependent transfer function is reduced to a small number
of “principal components”, for which an individual model
is trained. An adaptive sparse PCE model [16] is built for
the principal components, from which the complete transfer
function is recovered via the inverse PCA transformation. The
sparse implementation is particularly suited for training high-
dimensional and/or high-order PCEs with a small amount of
training data. Two test cases, i.e., a fifth-order and a seventh-
order photonic filter realized with cascaded Mach-Zehnder
interferometers, are used to demonstrate the proposed method.
Filters have up to 38 correlated uncertain parameters and the
variability analysis of their entire frequency-domain transfer
function is performed more than 30 times faster than classical
Monte Carlo analysis.

II. PROPOSED METHOD

We consider a generic system that depends on a set of
d uncertain input parameters x = (x1, . . . , xd)

T ∈ Rd. We
represent the system as

y =M(x), (1)
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where M : Rd → R is an implicit function that maps a given
configuration of the input parameters x to the corresponding
output y of the system. For the moment, we assume that the
output of (1) is a scalar. We will later relax this assumption. In
the context of this paper, x could be for example a collection
of critical physical parameters of an optical device, e.g., the
waveguide width or the gap of a directional coupler, and
y an output of interest such as the transfer function at a
given wavelength, the splitting ratio of a power splitter, or
the bandwidth of a filter. The model can be equally applied to
isolated components or entire photonic circuits.

A. Classical PCE

At this stage, we further assume that the parameters x are
statistically independent. The classical PCE framework seeks
an approximation of (1) in the form of

y ≈ M̂(x) =
∑
α∈A

cαϕα(x) (2)

where A is a set of multi-indices defined as [16]

A = Ad,pq =
{
α = (α1, . . . , αd) ∈ Nd : ‖α‖q ≤ p

}
, (3)

ϕα are multivariate orthonormal polynomials, and cα are
the pertinent coefficients. The polynomial basis functions are
constructed as the product

ϕα(x) =

d∏
j=1

φαj (xj), (4)

where φαj
is a univariate polynomial in the variable xj ,

with deg(φαj ) = αj . Therefore, the multi-indices define the
order of the basis function in each variable. For example, the
polynomial ϕ(2,0,1) is quadratic in x1, constant in x2, and
linear in x3.

The univariate polynomials φαj in (4) are orthonormal
based on the inner product〈
φαj , φαm

〉
=

∫
R
φαj (xj)φαm(xj)w(xj)dxj = δαj ,αm , (5)

where w(xj) is the probability density function of xj . This
ensures also the orthogonality of the multivariate polynomi-
als ϕα, as well as an exponential decay of the error norm

‖M− M̂‖22 =

∫
Rd

(
M(x)− M̂(x)

)2
w(x)dx (6)

for functions with finite variance [17], where w(x) is the joint
probability density function of the variables x, as the PCE
order p is increased. It should be noted that the error (6) is
defined in statistical terms: a larger deviation is tolerated for
values of x with lower probability.

A useful property of PCEs is that the first two statistical
moments (i.e., the mean and the variance) are available in
closed form as a function of the coefficients, i.e.,

E{y} ≈ E{M̂} =

∫
Rd

M̂(x)w(x)dx = c0, (7)

with 0 denoting the null element of Nd, and

Var{y} ≈ Var{M̂} =

∫
Rd

(
M̂(x)− c0

)2
w(x)dx

=
∑
α∈A\0

|cα|2 (8)

Several choices are commonly used for choosing the indices
in (3) based on the parameter q. The most popular is certainly
q = 1, leading to the so-called “total-degree” truncation, with
a number of terms in (2) (i.e., the cardinality of A) given by

|A| = |Ad,p1 | =
(p+ d)!

p!d!
. (9)

Another common choice is q = ∞, which however leads
to excessively large expansions. Instead, setting q < 1
provides increasingly sparser expansions that neglect higher-
order interactions between input parameters, which is often
acceptable [16].

B. Calculation of PCE Coefficients

There exist several strategies for the calculation of the PCE
coefficients [18]. The most popular are the stochastic Galerkin
method, which is intrusive and requires to modify the system
of governing equations, numerical integration techniques that
approximate projection integrals, and least-square regression
or interpolation approaches. Here, we focus on the third ones,
which are the most straightforward, versatile, and scalable.

Consider a set {x`}L`=1 of “training samples” of the in-
put parameters, and a vector of corresponding observations
y = (y1, . . . , yL)T ∈ RL, with y` = M(x`), ∀` = 1, . . . , L.
The least-square regression minimizes the norm of the residual
between the model prediction at the training samples and the
observations. The solution is cast as

c∗ = arg min
c
‖Ψc− y‖ = Ψ+y, (10)

where c∗ ∈ RK is a vector collecting all PCE coefficients,
Ψ ∈ RL×K is a matrix with entries Ψ`,α = ϕα(x`), and
Ψ+ = (ΨTΨ)−1ΨT is its Moore-Penrose pseudo-inverse,
which generalizes the matrix inverse for non-square matrices.

For an acceptable solution, the regression problem needs
to be overdetermined, i.e., L > K (typically, at least two to
three times larger). Plain random sampling, Latin hypercube
sampling (LHS), or quasi-MC low-discrepancy sequences [19]
can be used to generate the training samples, with an impact
on the convergence performance.

C. Sparse PCE

The standard approach rapidly becomes computationally
intractable when the number of input parameters increases.
For example, with an expansion order as low as p = 2,
d = 30 variables, and q = 1, the number of basis functions is
K = 496. Therefore, a number of training samples in the order
of 103 is needed, with a computational effort that becomes
comparable to a MC analysis. If order p = 4 is required, the
number of training samples becomes of the order of 105, while
remaining of the order of a few thousands even if a sparser
expansion with q = 0.7 is adopted.
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Regardless of the initial sparsity of set Ad,pq , typically most
of the PCE coefficients further turns out to be negligible as a
consequence of the “sparsity-of-effects principle” [16]. There-
fore, sparse approaches were developed to identify only non-
negligible coefficients, with a reduced requirement in terms of
training samples. This allows extending the PCE framework to
problems characterized by a large number of uncertain input
parameters and/or requiring high-order expansions.

In this paper, we make use of the UQLab toolbox [20] to
calculate sparse PCEs. The toolbox implements the adaptive
method in [16], which is based on least-angle regression.
Given the dimensionality d, the truncation parameter q, and a
vector of possible p-values, the algorithm identifies the optimal
expansion order p as well as the coefficients of a sparser subset
of basis functions Ã ⊂ Ad,pq , with |Ã| � |Ad,pq |. We refer the
Reader to the toolbox documentation for further information.

D. Correlated Variables: Karhunen-Loève Transform

The method so far assumes that the uncertain input pa-
rameters are mutually independent. In the most general case
of parameters with arbitrary correlation, customized basis
functions can be numerically computed [21]. However, for
the special case of Gaussian correlated variables, KLT can
be effectively used to decorrelate the variables [15].

Assume that x are correlated Gaussian variables with mean
vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d. The
variables x can be expressed in terms of a set of independent
and standard (i.e., with zero mean and unit variance) Gaussian
variables ξ = (ξ1, . . . , ξd)

T ∈ Rd as

x = µ+

d∑
k=1

√
λkξkpk (11)

where λk and pk are the eigenvalues and corresponding eigen-
vectors of the covariance matrix Σ. It should be noted that
a trivial application of (11) is normally used to renormalize
independent uncertain parameters to a common support, so
that a standard set of univariate basis functions can be used for
each variable. With the transformation 11, the PCE framework
introduced so far can be seamlessly applied in terms of the
variables ξ.

Furthermore, for highly-correlated variables, the eigenvalues
decay very fast. Hence, the KLT (11) can be truncated in such
a way that the d variables x are expressed in terms of a reduced
set of d̃ independent random variables [22], i.e.,

x ≈ µ+

d̃∑
k=1

√
λkξkpk (12)

where the eigenvalues are now assumed to be sorted in
decreasing order and d̃ is such that

λk
λ1
≤ εKLT, (13)

for k > d̃ and a prescribed threshold εKLT. This dimensional-
ity reduction allows alleviating the computational complexity
of the PCE model.

E. Multiple Outputs: Principal Component Analysis

Another difficulty arises when the output of system (1) is
not a scalar. This is the case, for instance, when a trans-
fer functions is computed at different wavelengths within a
given frequency band. The solution of the standard regression
approach (10) is readily applied in a vectorized manner to
the output vector thanks to the fact that the basis functions,
and hence the regression matrix Ψ, are the same for each
component. On the contrary, sparse methods, such as that
considered in this work, identify the basis functions based
on the output data, and therefore the subset Ã potentially
differs for each component of the vector of the outputs. One
trivial solution is to apply the method individually to each
output, which however is computationally inefficient when
their number is large.

An effective strategy is to compress, using PCA, the output
variables into a reduced set of components, for which the
training of individual PCE models becomes feasible [23].
Let us assume that a set of L training observations are
available for M outputs of interest, and stored into a ma-
trix Y ∈ RM×L. Using an “economy-size” singular value
decomposition (SVD), the matrix dataset is expressed as [24]

Y = ȳ +USV T = ȳ +UZ (14)

where ȳ ∈ RM is the columnwise mean of Y over the training
observations, U ∈ RM×L, V ∈ RL×L, and S ∈ RL×L is
a diagonal matrix collecting the singular values {σi}Li=1 in
decreasing order.

Since the singular values typically decay very fast due to the
interdependency between the outputs, the SVD is truncated to
retain only ñ “principal components”, leading to

Y ≈ ȳ +

ñ∑
i=1

uizi (15)

where {ui}Mi=1 ∈ RM are the first ñ left-singular vectors of
Y − ȳ, whereas {zi}ñi=1 ∈ RL are in fact observations of the
principal components. Similarly to the truncated KLT (12), ñ
is selected such that

σi
σ1
≤ εPCA (16)

for i > ñ. The KLT and the PCA are in fact equivalent,
since the latter can be cast as the eigenvalue decomposition
of the experimental covariance matrix of the dataset Y [24].
However, the purpose of KLT is to decorrelate and reduce the
number of input parameters, whereas PCA is used to compress
output data. In all simulations, we set εKLT = εPCA = 10−3.

The observations {zi}ñi=1 are used to train individual PCE
models for the principal components, which is feasible because
typically ñ�M . Once a model is available for the principal
components, it is used to generate predictions thereof, while
predictions of the original outputs are recovered via (15).

III. APPLICATION AND NUMERICAL RESULTS

The method proposed in Sec. II can be applied to any pho-
tonic circuit design, including for example resonant structures,
since no assumption is done in its formulation on the type
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Fig. 1. Schematic of the fifth-order unbalanced Mach-Zehnder filter.

of system response (1). Here, a fifth-order and a seventh-
order photonic filter realized with cascaded Mach-Zehnder
interferometers are chosen as examples to demonstrate the
performance of the proposed approach for sets of random
variables of different sizes. In the following, we consider as
a reference the typical parameter values for the silicon-on-
insulator technology. The complex frequency response (trans-
fer function) of the photonic filters is the stochastic process
under investigation. The fabrication uncertainty is represented
as correlated and Gaussian-distributed random variables.

A. Fifth-Order Unbalanced Mach-Zehnder Filter

The fifth-order Mach-Zehnder filter is assembled using two
standard elementary building blocks, i.e., waveguides and
directional couplers, as schematically shown in Fig. 1. The
nominal design of the filter is obtained with the synthesis
technique described in [25]. The nominal 3-dB bandwidth is
BW0 = 39 GHz and the coupling coefficients for the six
directional couplers are K1 = K6 = 0.993, K2 = K5 = 0.03,
and K3 = K4 = 0.421, with an in-band isolation larger
than 30 dB. The dependence of the coupling constant of the
directional couplers on waveguide gap, width, and thickness
is first determined using coupled mode theory and prelim-
inary electromagnetic simulations. For the nominal case, a
waveguide width of 500 nm, thickness of 220 nm, and gap
of 300 nm allow obtaining the required coupling coefficients
K1-K6 with the coupling lengths Lc1 = Lc6 = 26.38 µm,
Lc2 = Lc5 = 3.09 µm, and Lc3 = Lc4 = 12.53 µm. The
effect of the transition regions in the couplers is neglected. For
the waveguide building block, nominal width and thickness are
again 500 nm and 220 nm, respectively, corresponding to an
effective index and group index of 2.44 and 4.18. All the five
stages of the filter have the same unbalance length of 681 µm,
corresponding to a free spectral range of 100 GHz. Figure 2
shows, with bold lines, the ideal transfer function of the Mach-
Zehnder filter at the bar and the cross ports, respectively.

Next, different sources of fabrication uncertainties are con-
sidered. For the waveguides in the two branches of each filter
stage we assume an uncertainty only in the waveguide width,
resulting in variability of the effective and group indices of the
waveguide mode. The main effect of this variability will be a
wavelength shift of the response of each stage. For the direc-
tional couplers, we consider a larger number of uncertainties,
i.e., on the width and thickness of the waveguides and on the
separating gap. Their collective effect is expected to mainly
influence the resulting power coupling coefficients. [4]. The
vector x of the uncertain input parameters is then split into
two components, x1 and x2. The former collects parameters
Wgi (waveguide width of the i-th coupler), gi (coupling gap
of the i-th coupler), WUj

(width of the upper arm of the j-th

Fig. 2. Transfer function of the fifth-order (bold balck lines) and seventh-
order (bold blue lines) Mach-Zehnder filter at the bar and the cross ports for
the nominal design

stage), and WLj
(width of the lower arm of the j-th stage),

with i = 1, . . . , 5 and j = 1, . . . , 6. The vector x2 collects the
thicknesses Tgj of the coupler waveguides. The total number
of uncertain parameter is thus d = 28. The aforementioned
parameters are assumed to be Gaussian distributed, and specif-
ically Wgi ∼ N (500 nm, 1 nm), gi ∼ N (300 nm, 3 nm),
WUj ,WLj ∼ N (500 nm, 10 pm), Tgj ∼ N (220 nm, 1 nm).
Organizing the parameters in two different groups allows
defining a rather complex and realistic correlation scenario.
The parameters in either of the two vectors x1 and x2 are
assumed to be mutually correlated among themselves, while
no correlation is introduced between parameters belonging
to different sets. This reflects the fact that the source of
uncertainty is different for the two sets of parameters, mainly
originating from lithography and etching for the first group,
and from wafer fabrication for the second.

The pertinent correlation coefficients are calculated by con-
sidering the correlation function [6] g(z) = e−z

2/2l2 , where
l is the correlation length and z is the distance between
the circuit components along the horizontal direction. As an
example, the vertical dashed lines in Fig. 1 highlight the
distance between the first and the second directional coupler,
which is used for the definition of z in the calculation of the
correlation between the parameters of these two components.
A realistic correlation length of l = 4.5 mm is considered
for both parameter groups [14]. Since the distance between
the upper and lower waveguide arms is relatively small in an
unbalanced Mach-Zehnder filter, a correlation coefficient of
one is considered between their parameters. This means that,
in the simulation, the same variation is assigned to the upper
and lower waveguides.

B. Seventh-Order Unbalanced Mach-Zehnder Filter

The seventh-order Mach-Zehnder filter is assembled in the
same way as described above, with seven delay sections
and eight directional couplers. The nominal design exhibits
a nominal 3-dB bandwidth of BW0 = 29 GHz. The cou-
pling coefficients of the eight directional couplers are K1 =
K8 = 0.9914, K2 = K7 = 0.04, K3 = K6 = 0.0690,
and K4 = K5 = 0.3489, with an in-band isolation larger
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than 20 dB. Width and thickness of the waveguides are the
same as for the fifth-order filter. The nominal gap of the
directional couplers is again 300 nm, leading to coupling
lengths Lc1 = Lc8 = 26.22 µm, Lc2 = Lc7 = 0.35 µm,
Lc3 = Lc6 = 4.71 µm, and Lc4 = Lc5 = 11.21 µm. All the
seven stages have again the same unbalance length of 681 µm,
corresponding to a free spectral range of 100 GHz. For each
building block, the same geometrical parameters as for the
previous test case are considered to be uncertain, with the same
probability distribution and correlation. Owing to the increased
number of stages, the total number of uncertain parameters is
now d = 38.

C. Simulation Results
Circuit analysis is performed using circuit-level simulations.

In each filter stage, waveguide sections (including both upper
and lower waveguide arms) and directional couplers are build-
ing blocks with 2 input and 2 output ports that are represented
by means of 2× 2 transfer matrices with complex coefficients
[25]. The covariance matrix of the input parameters is first
computed as described in Section III-A, taking into account
the relative distance of each building block within the circuit.
For each simulation run, the value of the parameters is
then determined according to their mean and the computed
covariance matrix, and used to calculate the coefficients of the
transfer matrix of each building block. Lastly, transfer matrices
are multiplied according to the building block connections
to obtain the complex transfer function of the circuit in the
spectral domain. In each simulation, 1000 wavelength samples
are used.

For both test circuits, a Monte Carlo analysis is performed
running 10000 simulations and it is used as a reference. As
an example, Fig. 3 (a) and (c) report, with thin gray lines,
the absolute value of some of the computed transfer functions
(transmission) of the fifth-order filter at the bar and cross ports,
respectively. The black dashed line marks λ = 1521.8 nm,
which is the designed central wavelength of the filter. As can
be seen, the transmission is severely affected, especially with
large fluctuations of the 3-dB pass-band as well as a reduced
isolation both in band (cross port) and out of band (bar port).
Remarkably, these large fluctuations results from relatively
small variations of the geometrical parameters. Indeeed, a
variation of 10 pm in the waveguide width corresponds to an
effective index variation of 8 · 10−5, whereas a coupling gap
variation of 1 nm corresponds to a power coupling coefficient
variation of 5 · 10−3. In the two figures, the mean (blue solid
line, computed at each wavelength as the absolute value of the
mean of the complex transfer function) and standard deviation
(blue dashed line, again computed using the complex transfer
function) of the Monte Carlo samples are reported as well. To
further investigate the effect of variability, Fig. 3(b) and (d)
show the probability density function of the transmission at the
bar and cross port, respectively, obtained from the Monte Carlo
samples at λ = 1521.8 nm (blue bars). While the transmission
at the bar port is confirmed to be almost unaffected by the
variability, the isolation at the cross port varies across a range
of more than 30 dB, with -20 dB as the most probable value
compared to the -32 dB of the ideal design without variability.

Fig. 3. Stochastic analysis of the transfer function for the fifth-order Mach-
Zehnder filter (28 random variables). Magnitude of the transfer function at
the bar (a) and cross (c) port is considered. Solid gray lines represents a
subset of the Monte Carlo samples. Other solid lines show the mean computed
with Monte Carlo (blue), classical PCE (red), and sparse PCE with PCA
(yellow). Dashed lines are the standard deviations computed with the same
three methods. The probability density functions computed at λ = 1521.8 nm,
dashed black line in (a) and (c), are reported as well for the bar port (b) and
the cross port (d). The reference histogram (blue bars) is obtained from the
Monte Carlo samples while solid red and dashed yellow lines report the results
of classical PCE and sparse PCE with PCA, respectively.

In order to test the PCE-based methods, we first apply KLT
to the 28 input correlated variables and we train a classical
PCE model to compare its performance with our proposed
method. By considering a threshold of εKLT = 10−3 for the
truncation, the original correlated variables are reduced to a set
of d̃ = 5 independent variables. A different PCE model needs
to be trained for each of the 1000 wavelength samples of the
complex transfer function of the filter at the bar and cross port.
For each model, we select an order p = 6 and q = 1, resulting
in K = 462 coefficients, and we use L = 3K = 1386 samples
for the training, drawn according to a LHS design. It should
be noted that, without KLT truncation, the number of PCE
coefficients would have been ∼ 1.3 · 106, thus making the
model training unfeasible.

Mean and standard deviation of the transfer functions are
computed using (7) and (8) and the absolute values are
reported in Fig. 3(a) and (b) for the two ports using red solid
and dashed lines, respectively. PDFs of the transmission at
the two ports at the central wavelength, efficiently computed
by sampling the model with the same samples used for the
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Fig. 4. Stochastic analysis of the seventh-order Mach-Zehnder filter (38
random variables). Probability density functions of the transmission at λ =
1521.8 nm for the bar port (a) and cross port (b) are computed with Monte
Carlo (blue bars), classical PCE (red solid lines) and the proposed sparse PCE
with PCA (yellow dashed lines).

reference Monte Carlo analysis, are shown with red solid lines
in Fig. 3(c) and (d). Results are in excellent agreement.

Lastly, we train the sparse PCE model described in Sec-
tion II-C for the same set of 5 independent variables resulting
from the truncation of the KLT. For the adaptive training, we
set the expansion order to be in the range [2, 6], and we use
only L = 100 samples, again drawn from a LHS design. The
use of PCA with a truncation threshold of εPCA = 10−3

allows to vastly compress the 2000 wavelength samples (1000
for each of the two ports, bar and cross) to a mere ñ = 9
principal components. Individual sparse PCE models needs
hence to be trained only for these principal components. It is
worth noting that the UQLab toolbox only handles real data,
therefore a separate model is trained for the real and imaginary
part of the principal components, leading to a total of 18
models to be computed. The number of non-zero coefficients
identified for these models by the adaptive algorithm ranges
from 13 to 38. Results for the mean and standard deviation of
the transmission are reported in Fig. 3(a) and (b) for the two
ports using yellow solid and dashed lines, respectively, while
probability density functions at the central wavelength are
shown in Fig. 3(c) and (d) with yellow dashed lines. Results
are once again in excellent agreement with the Monte Carlo
analysis. However, compared to the classical PCE, a much
smaller number of training samples is needed.

A similar analysis is performed for the seventh-order Mach-
Zehnder filter, comprising 38 random variables. The proba-
bility density functions of the bar and cross transmissions at
λ = 1521.8 nm are reported in Fig. 4(a) and (b), respectively.
Blue bars refer to the results of the Monte Carlo analysis, red
solid lines to the classical PCE computed after the application
of the truncated KLT, and yellow dashed lines to the proposed
sparse method in conjunction with PCA. By using the same
truncation thresholds for the KLT and PCA as in the previous
test case, the initial set of correlated parameters is reduced to
d̃ = 7 independent variables, whereas the output wavelength
samples is compressed once again to only ñ = 9 principal
components. An order of p = 6 is again used for the classical

Fig. 5. Probability density function of the 3-dB bandwidth of the cross port
at λ = 1521.8 nm. (a) Fifth-order filter and (b) seventh-order filter. The
reference histogram is computed with Monte Carlo. Results for classical and
sparse PCE are reported with solid red and dashed yellow lines, respectively.

PCE, leading to K = 1716 coefficients. Also in this case,
the training of the classical PCE model would have been
unfeasible without the preliminary KLT truncation. Such a
reduced model is instead trained with L = 3K = 5184
samples. For the adaptive sparse scheme, the same (maximum)
order is used, and the models of the principal components is
trained with only L = 200 samples. In both cases, training
samples are generated from a LHS design. The number of
non-zero coefficients identified ranges from 15 to 120. As
can be seen in Fig. 4, similarly to the fifth-order filter, the
transmission at the bar port is only minimally impacted by the
variability, while the rejection at the cross port varies across a
wide range. Here the most probable rejection value is -17 dB,
compared to a value of -22 dB for the ideal case without
parameter uncertainty.

To further demonstrate the accuracy of the proposed
method, Fig. 5 (a) and (b) report the probability density
functions of the 3-dB bandwidth for the fifth- and seventh-
order filters, respectively. The bandwidth is derived as a post-
processing step starting from the full transfer functions de-
scribed above, computed with a classical (solid red lines) and
sparse PCE (yellow dashed lines) models after the application
of the truncated KLT, and using PCA in the latter case. The
bandwidth calculated from the Monte Carlo samples is used
as reference (blue bars). Despite the fact that the analysis is
conducted on a derived synthetic quantity (the bandwidth), the
proposed method still retains its high accuracy, with an almost
perfect agreement between the three techniques. It should also
be noted that the two probability density functions are centered
at different values because the designs of the two filters targets
two different nominal bandwidths (39 GHz for the fifth-order
filter and 29 GHz for the seventh-order one). Both density
functions are symmetric, indicating an equal probability for
the bandwidth to become either larger or narrower under the
considered parameter uncertainty.
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TABLE I
COMPARISON OF THE DIFFERENT METHODS USED FOR THE ANALYSIS OF

THE MACH-ZEHNDER FILTERS WITH 28 AND 38 VARIABLES.

Number of samples Computational time
d = 28 d = 38 d = 28 d = 38

Monte Carlo 10000 10000 847 s 899 s

Classical PCE 4 mln 21 mln n/a n/a

Classical PCE + KLT 1386 5148 118 s 507 s

Sparse PCE + KLT + PCA 100 200 13.2 s 27 s

TABLE II
ACCURACY OF THE PROPOSED METHOD AS A FUNCTION OF THE NUMBER

OF TRAINING SAMPLES.

RMSE
Fifth-order filter (d = 28) Seventh-order filter (d = 38)

average maximum average maximum

L = 25 2.0999×10−2 3.0723×10−2 2.6623×10−2 4.7079×10−2

L = 50 6.0095×10−3 1.0539×10−2 2.7191×10−2 5.1511×10−2

L = 100 3.7550×10−3 5.8772×10−3 9.1346×10−3 1.5714×10−2

L = 200 3.8724×10−3 5.7735×10−3 5.6308×10−3 9.6840×10−3

L = 400 2.7967×10−3 4.1644×10−3 3.7206×10−3 5.8509×10−3

D. Efficiency and Accuracy

Table I summarizes the efficiency of the discussed methods
in terms of number of required samples and computational
time for the analysis of the full transfer functions of the
two test cases. All simulations were performed on a Lenovo
ThinkPad X1 Yoga laptop with an Intel(R) Core(TM) i7-
7500U processor, CPU running at 2.7 GHz, and 16 GB of
RAM. It is important to mention that most of the computa-
tional time required by the PCE methods (about 98% for the
classical method, and 65% for the proposed sparse method) is
due to the simulation of the training samples.

As already noted, for both the reported examples, the appli-
cation of the classical PCE would have been unfeasible without
the preliminary KLT reduction, since it would have required a
number of training samples in the order of several millions. It
is also important to mention that this is not necessarily the case
for the sparse method, thanks to its capability of identifying
only the non-negligible terms. However, its computational
efficiency also benefits from this dimensionality reduction,
since the algorithms needs to search through a largely reduced
sets of terms. Because of this, the performance of the method
is expected to reduce if a large number of independent or
weakly correlated parameters is included, or if the amount of
variability is increased up to the point of requiring a model
of prohibitive complexity. The advocated method achieves a
further speed-up of about one order of magnitude w.r.t. the
classical PCE method (8.9× and 18.8× for the first and the
second test case, respectively), and an overall speed-up of
64.2× and 33.3× against Monte Carlo.

Table II investigates instead the impact of the number of
training samples on the achieved accuracy. The table reports
the average and maximum, over frequency and port, of the
root-mean-square error (RMSE) computed w.r.t. the 10000 MC
samples. It is observed that the RMSE steadily decreases by
increasing the training set size L. In particular, the maximum

RMSE drops below 10−2 for L ≥ 100 in the first test case
(fifth-order filter), and for L ≥ 200 in the second test case
(seventh-order filter). The improvement becomes marginal
beyond those values. A generally good practice is to select
a number of training samples proportional to the number of
uncertain parameters, e.g., L > 3 · d or L > 10 · d̃, where d
is the original number of uncertain parameters, and d̃ is the
number of reduced variables after KLT.

IV. CONCLUSIONS

In this paper, we have demonstrated an efficient and accurate
method to analyze the performance variability induced by
fabrication uncertainty in photonic circuits with a large number
of Gaussian correlated design parameters and multiple outputs
of interest. The proposed scheme combines a sparse PCE ap-
proach with KLT to both remove correlation in the parameter
set and reduce its dimensionality, alleviating the computational
cost of the PCE model. Similarly, the use of PCA compression
allows reducing the number of output quantities to be modeled,
thereby further improving efficiency.

As an example of the method potentialities, we have shown
the stochastic analysis of a cascaded Mach-Zehnder filter
with up to 38 design parameters with a complex correlation
scenario. The filter transfer function at different wavelengths
represented the multiple output of interest for the analysis.
Results were in excellent agreement with the reference Monte
Carlo simulation, while the computational time was reduced
by more than 30 times.

With the widespread of photonic devices controlled by large
sets of parameters and with multiple objective requirements,
this method represents a promising and valuable approach for
the stochastic analysis, yield estimation, and optimization of
their performance.
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