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An introduction to the Gabor wave front set

Luigi Rodino and S. Ivan Trapasso

Abstract In this expository note we present an introduction to the Gabor wave front
set. As is often the case, this tool in microlocal analysis has been introduced and
reinvented in different forms which turn out to be equivalent or intimately related.
We provide a short review of the history of this notion and then focus on some recent
variations inspired by function spaces in time-frequency analysis. Old and new
results are presented, together with a number of concrete examples and applications
to the problem of propagation of singularities.

1 Introduction

A central notion in microlocal analysis of partial differential equations is the wave
front set [27]. In somewhat rough terms, the wave front set of a distribution D is the
collection of all the points of the phase space (G0, b0), b0 ≠ 0, where the lack of
regularity of D at G0 is detected on the spectral side by a characteristic behaviour in
the direction b0. Giving a rigorous meaning to this heuristic model provides a fine
scale of technical tools for the microlocal study of singularities of pseudodifferential
operators and their propagation. It should be stressed that wave front sets play amajor
role in the mathematical theory of quantum fields [21, 49]. We cannot frame here
the long tradition of studies on the wave front set and its applications; a complete
historical and technical account may be found in the monograph [27] by Hörmander,
who first introduced wave front sets in [30].
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In recent times the notion of wave front set have benefited from the perspective
of time-frequency analysis [33, 42, 43, 50]. The spirit of Gabor analysis may be
condensed in the idea of simultaneous analysis of distributions with respect to both
time and frequency variables; several techniques and function spaceswere introduced
in the last decades to carry out this program [25]. The affinities with the notion of
wave front set, where the regularity is measured by a simultaneous analysis of points
and directions, are evident.

The purpose of this introductory paper is to present some of the contributions in
this respect, in particular we focus on the Gabor wave front set [50]. To be precise,
the idea of a global wave front set showed up many times under several different
guises; an historical account on the issue with many pointers to the literature is
given in Section 3, while in Section 2 we collected some preliminary material from
microlocal and time-frequency analysis.

In Section 4 we provide a more technical description of the Gabor wave front set.
In particular, we highlight the most important results of the papers [10], [28] and
[50], together with a number of detailed examples. New results for the wave front set
in context of modulation space regularity are derived in Section 4.3. We conclude
with a brief review of applications to propagation of singularities.

Most of the technical proofs are omitted to keep the presentation at an introductory
level. We hope that this overview may be useful as a point of departure for the
interested reader, as well as a practical summation of the most relevant results on the
topic.

2 Preliminaries

2.1 Notation

We set G2 = G · G, for G ∈ R=, where G · H = GH is the scalar product on R=. The
Schwartz class is denoted by S(R=), the space of temperate distributions by S′(R=).
The brackets 〈 5 , 6〉 denote the extension to S′(R=) × S(R=) of the inner product
〈 5 , 6〉 =

∫
R=
5 (G)6(G)3G on !2 (R=).

The conjugate exponent ?′ of ? ∈ [1,∞] is defined by 1/? + 1/?′ = 1. The
symbol . means that the underlying inequality holds up to a positive constant factor
� > 0. For any G ∈ R= and B ∈ R we set 〈G〉B B (1 + |G |2)B/2. We choose the
following normalization for the Fourier transform:

5̂ (b) = F 5 (b) =
∫
R=
4−2c8G b 5 (G)3G, b ∈ R=.

Wedefine the translation andmodulation operators: for any G, b ∈ R= and 5 ∈ S(R=),

()G 5 ) (H) B 5 (H − G),
(
"b 5

)
(H) B 42c8 b H 5 (H).



An introduction to the Gabor wave front set 3

These operators can be extended by duality on temperate distributions. The compo-
sition c(G, b) = "b)G constitutes a time-frequency shift.

Recall that Γ ⊂ R= is a conic subset of R= if it is invariant under multiplication
by positive real numbers, namely G ∈ Γ⇒ _G ∈ Γ for any _ > 0.

The symplectic group Sp(=,R) consists of all 2= × 2= invertible matrices ( ∈
GL (2=,R) such that

(>�( = (�(> = �, � =

(
$ �

−� $

)
,

where � is the canonical symplectic matrix and$ and � are the =×= zero and identity
matrices respectively.

In the rest of the paper we identify the cotangent set )∗R= of R= with R2= to
lighten the notation.

2.2 Modulation spaces

The short-time Fourier transform (STFT) of a temperate distribution D ∈ S′(R=)
with respect to the window function i ∈ S(R=) \ {0} is defined by

+iD(G, b) B F (D · )Gi) (b) =
∫
R=
4−2c8H bD(H) i(H − G) 3H. (1)

The readermaywant to consult themonograph [25] for a comprehensive treatment
of the mathematical properties of this time-frequency representation, in particular
those mentioned below. We highlight that the STFT is intimately connected with
other well-known phase-space transforms, in particular the Wigner distribution

, (D, i) (G, b) =
∫
R3
4−2c8H bD

(
G + H

2

)
i

(
G − H

2

)
3H. (2)

As far as the regularity is concerned, the STFT of a possibly wild distribution
D ∈ S′(R=) is a well-behaved function; in particular, we have that +iD ∈ � (R2=)
and there exists constant � > 0 and # ≥ 0 such that |+iD(I) | ≤ �〈I〉# for all
I ∈ R2=. Furthermore, +iD ∈ S(R2=) ⇔ D ∈ S(R=). It turns out that the STFT is
one-to-one in S′(R=), as a result of the following inversion formula: for D ∈ S′(R=)
and i, k ∈ S(R=) \ {0} such that 〈i, k〉 ≠ 0 we have

D =
1
〈i, k〉

∫
R2=

+iD(I)c(I)k3I, (3)

to be interpreted in the distribution sense - namely, the right-hand side is a temperate
distribution whose action on q ∈ S(R=) coincides with 〈D, q〉. Notice in particular
that if we choose i ∈ S(R=) \ {0} with ‖i‖!2 = 1 and set k = i we have
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|+iD(F) | =
����∫
R2=

+iD(I)+ii(F − I)3I
���� , F ∈ R2=. (4)

This argument generalizes to the following pointwise inequality (“change-of-window
lemma”) which will be used below.

Lemma 1 ([25, Lem. 11.3.3])
Let i1, i2, q ∈ S(R=) be such that 〈q, i1〉 ≠ 0 and D ∈ S′(R=). Therefore

|+i2D(G, b) | ≤
1

|〈q, i1〉|
( |+i1D | ∗ |+i2q|) (G, b), ∀(G, b) ∈ R2=.

When speaking of weight functions below we refer to some positive function
< ∈ !∞loc (R

2=) such that <(I + Z) . <(I)〈Z〉A for some A ≥ 0 and any I, Z ∈ R2= -
that is, < is 〈·〉A -moderate.

Given a non-zero window i ∈ S(R=), a weight function < on R2= and 1 ≤
?, @ ≤ ∞, the modulation space " ?,@

< (R=) consists of all temperate distributions
D ∈ S′(R=) such that +iD ∈ ! ?,@< (R2=) (mixed weighted Lebesgue space), that is:

‖D‖" ?,@
<

= ‖+iD‖!?,@
B

=

(∫
R=

(∫
R=
|+iD(G, b) |?<(G, b) ? 3G

)@/?
3b

)1/@

< ∞,

with trivial modification if ? or @ is ∞. If ? = @, we write " ? instead of " ?,? ,
while for the unweighted case (< = 0) we set " ?,@

0 ≡ " ?,@ .
It can be proved that " ?,@

< (R=) is a Banach space whose definition does not
depend on the choice of the window i (in the sense that different windows yield
equivalent norms). The standard weight used in the rest of the paper is <(I) =
EB (I) = 〈I〉B for some B ∈ R. We mention that many common function spaces
are intimately related with modulation spaces: for instance, "2 (R=) coincides with
the Hilbert space !2 (R=), while if <(G, b) = 〈b〉B for B ≥ 0 we have that "2

< (R=)
coincideswith the usual !2-basedSobolev space�B (R=). Furthermore, the following
characterizations hold for any 1 ≤ ?, @ ≤ ∞:

S(R=) =
⋂
B≥0

"
?,@
EB (R

=), S′(R=) =
⋃
B≥0

"
?,@
E−B (R

=). (5)

Another perspective onmodulation spaces is provided by inspecting the definition
of the STFT +iD: it may be thought of as a continuous expansion of the function
D with respect to the uncountable system {c(I)i : I = (G, b) ∈ R2=}. Notice that
c(I)i is a wave packet highly concentrated near I in phase space. For short, we
have +iD(G, b) = 〈D, c(G, b)i〉 in the sense of the (extension to the duality S′ − S
of the) inner product on !2. This perspective is further reinforced by the role of
frame theory and discrete time-frequency representations. Given a non-zero window
function i ∈ !2 (R=) and a subset Λ ⊂ R2=, we say that the collection of the
time-frequency shifts of i along Λ is a Gabor system, namely

G(i,Λ) = {c(I)i : I ∈ Λ}.
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For instance one may consider separable lattices such as

Λ = UZ × VZ = {(U:, V=) : :, = ∈ N},

for lattice parameters U, V > 0; we write G(6, U, V) for the corresponding Gabor
system. Recall that a frame for a Hilbert space H is a sequence {G 9 } 9∈� ⊂ H such
that for all G ∈ H

� ‖G‖2H ≤
∑
9∈�
|〈G, G 9〉|2 ≤ � ‖G‖2H ,

for some universal constants �, � > 0 (frame bounds). Roughly speaking, the
paradigm of frame theory consists in decomposing a vector G along the frame, then
studying the action of operators on such elementary pieces and finally reconstructing
the image vector. The entire process is encoded by the frame operator

( : H 3 G ↦→
∑
9∈�
〈G, G 9〉G 9 ∈ H .

If a Gabor system G(i,Λ) is a frame for !2 (R=) it is called Gabor frame. Notice
that the Gabor frame operator reads

( 5 =
∑
I∈Λ

+6 5 (I)c(I)6,

and is a positive, bounded invertible operator on !2 (R=). A remarkable result of
frame theory is that a function can be reconstructed from its Gabor coefficients by
means of the following discrete analogue of (3):

D =
∑
I∈Λ

+iD(I)c(I)ĩ, (6)

where ĩ = (−1i is the canonical dual window and the sum is unconditionally
convergent in !2. Notice that i ∈ S(R=) ⇒ ĩ ∈ S(R=) if G(i,Λ) is a Gabor frame
[32].

Moreover, the reconstruction formula (6) extends to D ∈ " ?,@
< (R=) for all 1 ≤

?, @ ≤ ∞ and weight function < on R2=, with unconditional convergence in the
modulation space norm if 1 ≤ ?, @ < ∞ (weak unconditional otherwise). In addition,
an equivalent discrete norm for " ?,@

< (R=) is given by

‖D‖" ?,@
B

=
©­«
∑
=∈Z=

( ∑
:∈Z=
|+iD(U:, V=)<(U:, V=) |?

)@/?ª®¬
1/@

.
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2.3 Pseudodifferential operators

In the spirit of time-frequency analysis we define Weyl operators starting from the
relation

〈fw 5 , 6〉 = 〈f,, (6, 5 )〉, ∀ 5 , 6 ∈ S(R3), (7)

where, (6, 5 ) is theWigner transform defined in (2) and f ∈ S′(R23) is the symbol
of the Weyl operator fw : S(R3) → S′(R3), which can be formally represented as

fw 5 (G) =
∫
R23

42c8 (G−H) bf
( G + H

2
, b

)
5 (H)3H3b.

Other quantization rules may be covered in a similar fashion. In particular, for
g ∈ [0, 1] we define

〈Opg (f) 5 , 6〉 = 〈f,,g (6, 5 )〉, ∀ 5 , 6 ∈ S(R3), (8)

where the Wigner distribution is generalized as

,g ( 5 , 6) (G, b) =
∫
R3
4−2c8H b 5 (G + gH)6(G − (1 − g)H) 3H.

We refer to the papers [2, 8, 13, 15] for results in this general framework. Notice
that we recapture the Weyl quantization for g = 1/2, while the case g = 0 corre-
sponds to the Kohn-Nirenberg quantization. In the rest of the paper we will focus
on Weyl operators, but most of the stated results can be transferred to other kind of
pseudodifferential operators in view of the identity

Opg1
(0) = Opg2

()g1 ,g20), )g1 ,g20 = 4
2c8 (g1−g2)�G�b 0, 0 ∈ S′(R2=). (9)

Nevertheless, there is a distinctive property characterizing the Weyl calculus
among other quantization rules, which is known as symplectic covariance. Recall
indeed that ( ∈ Sp(=,R) can be associated with a unitary operator `(() on !2 (R=),
called metaplectic operator, which satisfies the intertwining property

`(()−1fw`(() = (f ◦ ()w, f ∈ S′(R2=).

In fact, the map ` : ( ↦→ `(() defines a metaplectic operator only up to a constant
complex factor of modulus one.Wewill not focus on technical details concerning the
metaplectic representation; the reader may consult [20, 25, 54] for a precise account
on the issue.

A major advantage of the time-frequency analysis approach to pseudodifferential
operators is that general symbol classes may be considered, in particular modulation
spaces. Recall the definition of the classical Hördmander classes [26].

Definition 1 Let < ∈ R. The symbol class (<0,0 is the subspace of smooth functions
0 ∈ �∞ (R2=) such that
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sup
(G, b ) ∈R2=

〈b〉−< |mUG m
V

b
0(G, b) | < ∞, ∀U, V ∈ N=0 .

It is a Fréchet space with the obvious seminorms.

For 0 ∈ (<0,0 we have that 0w is continuous on S(R=) and S′(R=); moreover the
map )0,1/2 is an automorphism of (<0,0. Composition ofWeyl operators with symbols
in (<0,0 classes is well behaved: if 0 ∈ (<0,0 and 1 ∈ (=0,0, then 0

w ◦ 1w is again a
Weyl operator with symbol 0#1 ∈ (<+=0,0 - the latter is known as theWeyl (or twisted)
product of 0 and 1. While explicit formulas are known for 0#1 in general, we stress
that the calculus associated with symbols in (<0,0 is highly non-trivial due to the lack
of asymptotic expansions for Weyl product of symbols.

A somewhat better behaviour is showed by Shubin symbol classes [52], defined
as follows.

Definition 2 Let < ∈ R. The symbol class �< is the subspace of smooth functions
0 ∈ �∞ (R2=) such that

sup
I∈R2=

〈I〉−<+|U | |mUI 0(I) | < ∞, ∀U ∈ N2=
0 .

It is a Fréchet space with the obvious seminorms.

We confine ourselves to recall that
⋂
<∈R�

< = S(R2=) and the Weyl product is a
bilinear continuous map # : �< × �= → �<+=. We also set �∞ =

⋃
<∈R�

<.

3 A short history of the Gabor wave front set

By analogy with the classical Huygens’ construction of a propagating wave, Hör-
mander ([29], 1971) called wave front set of a distribution D the subset ,� (D) of
R=G × (R=b \ {0}) defined by examining the behaviour at infinity of the Fourier trans-
form D̂. Namely, the point (G0, b0), b0 ≠ 0, does not belong to,� (D) if there exist a
function i ∈ �∞2 (R=), i(G0) ≠ 0, and a conic neighbourhood Γb0 ⊂ R= of b0 such
that

|îD(b) | ≤ �# 〈b〉−# ∀b ∈ Γb0 , # ∈ N, (10)

for a suitable constant �# > 0. Here and below we assume D ∈ S′(R=), though the
preceding estimate applies obviously to D ∈ D ′(R=) or D ∈ D ′(Ω) with Ω open
subset of R= such that G0 ∈ Ω and supp(i) ⊂ Ω.

An alternative definition can be given in terms of classical pseudodifferential
operators with polyhomogeneous symbol with respect to the b variables:

?(G, b) = ?< (G, b) + . . . , (11)

where ?< satisfies ?< (G, _b) = _<?(G, b) for _ > 0 and b ≠ 0. Precisely, (G0, b0) ∉
,� (D) if and only if there exists ?(G, b) with ?< (G0, b0) ≠ 0 such that ?(G, �)D ∈
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�∞ (*G0 ) for some neighbourhood *G0 of G0. The statement does not depend on the
quantization rule we adopt to define ?(G, �).

Afterwards, several variables of the definition of,� (D) appeared. Our attention
is focused on the global wave front set of Hörmander ([28], 1989), which we denote
here by,�� (D). To define,�� (D) for D ∈ S′(R=) we may imitate the preceding
argument in terms of pseudodifferential operators, by taking now polyhomogeneous
symbols in the I = (G, b) variable, as in Shubin [52]:

?(I) = ?< (I) + . . . , (12)

with ?< (_I) = _<?< (I) for _ > 0, and similarly for lower order terms. Then,
I0 = (G0, b0) ∉ ,�� (D), I0 ∉ 0, if there exists ?(I) with ?< (I0) ≠ 0 such that
?(G, �)D ∈ S(R=). Willing to give a direct definition, we may replace the Fourier
transform with the integral transformation

)D(G, b) =
∫
R=
4−2c8C b 4−|C−G |

2/2D(C)3C. (13)

We have that I0 = (G0, b0) ∉ ,�� (D) if and only if there exists a conic neighbour-
hood ΓI0 of I0 in R2= such that

|)D(I) | ≤ �# 〈I〉−# , ∀I ∈ ΓI0 , # ∈ N. (14)

In the next sections we shall review the main properties of,�� (D) and present some
variants of the definition. We continue here by listing some papers of the last thirty
years, where,�� (D) was reinvented, without reference to the original contribution
by Hörmander [28].

Let us first mention Nakamura ([39], 2005), who introduced the so-called homo-
geneous wave front set to study propagation of singularities for Schrödinger through
methods typically used in semiclassical analysis. Schulz and Wahlberg ([51], 2017)
proved recently that the homogeneous wave front set coincides with ,�� (D). In
turn, Ito ([31], 2006) clarified the connection of the homogeneous wave front set
with the quadratic scattering wave front set of Wunsch ([55], 1999), see also [36].

To complete this survey, we may mention the related definition of the scattering
wave front set of Melrose [38], Melrose and Zworski [37], coinciding with the SG
wave front set of Cordes [16] and Coriasco and Maniccia [18].

Roughly speaking, the scattering/SG wave front set consists of three components:
,� (D),,� (D̂) and a third component similar to,�� (D) where analysis is limited
to rays through I0 = (G0, b0), with G0 ∈ S=−1

G and b0 ∈ S=−1
b

. The enormous de-
velopments of the corresponding SG-microlocal analysis are somewhat outside our
present perspective, see for instance [17] for references.

A new approach to,�� (D) was proposed by Rodino and Wahlberg ([50], 2014)
where the original contribution by Hörmander [28] was finally recognized and a
further equivalent definition was given in terms of time-frequency analysis. Namely,
the integral transform in (13) coincideswith theBargmann-Gabor transformof D, that
is a short-time Fourier transform with Gaussian window, see [24] and the textbook
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[25]. It is then natural to replace )D with the discrete Gabor frame representation of
D, possibly with more general windows, and impose in the cone ΓI0 a rapid decay of
the Gabor coefficients, see the next section for the details. In [50] the authors gave
the name Gabor wave front set to the associated wave front set and introduced the
notation,�� (D), where the subscript � stands both for global and Gabor.

In these last five years, this new approach and the new name were adopted by
a number of authors working in the area of time-frequency analysis. Let us try to
give a short account. As already evident from the original work of Hörmander [28],
the main application concerns the propagation of microlocal singularities for the
Schrödinger equation {

8mCD(C, G) = � (G, �)D(C, G)
D(0, G) = D0 (G)

. (15)

A basic example is the quantum harmonic oscillator, corresponding to the Hamil-
tonian � (G, b) = |G |2 + |b |2. In fact, starting from the Gabor-Fourier integral repre-
sentation of the Schrödinger propagator in [7, 12] one can deduce in a natural way
propagation in terms of,�� (D), see [9, 10, 11, 14]. The analysis is extended to the
case of non-self-adjoint Hamiltonians in [6, 41, 47, 48, 53] and semilinear equations
in [40]. In all these papers the definition of ,�� (D) is modified by replacing the
S-decay in (14) with other regularity conditions in order to best fit with the features
of the Hamiltonian. In particular, in [9, 10, 14] the authors reconsider ,�� (D) in
the framework of weighted modulation spaces " ? introduced by Feichtinger, see
[22] and [25]. In this connection we address to the next sections, where we present
an alternative definition in terms of Gabor frames.

In [40], to study the non-linear properties of ,�� (D), attention is addressed to
"2 = !2 regularity with weight 〈I〉B , I = (G, b) ∈ R2=, corresponding to the spaces
&B of Shubin [52]. In [51] the authors consider the same variant of,�� (D), under
the action of localization operators. In [53] the polynomial Gabor wave front set is
defined assuming (14) satisfied for a fixed value of # .

In [5, 6, 11] the S-decay is replaced by analytic and Gelfand-Shilov decay. To be
precise, I0 = (G0, b0) does not belong to such wave front sets if there exists a conic
neighbourhood ΓI0 of I0 in R2= such that

|)D(I) | ≤ �4−n 〈I 〉A , I ∈ ΓI0 , (16)

for some fixed A > 0 and positive constants� and n . The case A = 1 corresponds to the
analytic Gabor wave front set. In [3] the definition is generalized to ultradifferentiable
classes by assuming

|)D(I) | ≤ �4−l (I) , I ∈ ΓI0 , (17)

for a given weight function l(I).
Observe that in [9] and [11] the notion of,�� (D) is generalized to that of Gabor

Ψ-filter, respectively in the analytic and modulation space setting. This allows one
to get rid of the homogeneity assumption on the Hamiltonian.
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The research related to the Gabor wave front set, or other wave front sets from
the point of view of time-frequency analysis, is very intensive at present and it is
impossible to give complete references. Let us limit to further mention [4, 19, 35,
44, 45, 46].

4 Gabor wave front set: theory and practice

In this section we focus on the Gabor wave front set,�� introduced in the preceding
historical account.

4.1 The global wave front set of Hörmander

We briefly review the main properties of the global wave front set,� (D) introduced
by Hörmander in [28]. We need to introduce some preparatory notions.

Definition 3 The conic support of 0 ∈ S′(R2=) is the set conesupp(0) of all I ∈
R2= \ {0} such that any open conic neighbourhood ΓI of I in R2= \ {0} satisfies:

supp(0) ∩ ΓI is not compact in R2=.

Definition 4 Let 0 ∈ �< for some < ∈ R. We say that a point I0 ∈ R2= \ {0} is
non-characteristic for 0 if there exist positive constants �, n > 0 and an open conic
set Γ ⊂ R2= \ {0} such that

|0(I) | ≥ n 〈I〉<, I ∈ Γ, |I | ≥ �.

We define char(0) as the subset of R2= \ {0} containing all the non-characteristic
points for 0.

Notice that

conesupp(0) ∪ char(0) = R2= \ {0}, 0 ∈ �<.

We are now ready to define the global wave front set.

Definition 5 Let D ∈ S′(R=). We say that a point I0 ∈ R2= \ {0} does not belong to
,� (D) if there exist < ∈ R and 0 ∈ �< such that 0wD ∈ S(R=) and I0 ∉ char(0).

We collect below some properties satisfied by,� (D), following [50].

Proposition 1 Let D ∈ S′(R=).

1. ,� (D) is a closed conic subset of R2= \ {0}.
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2. ,� (D) is symplectically invariant:

I0 ∈ ,� (D) ⇒ (I0 ∈ ,� (`(()D), ( ∈ Sp(=,R).

3. For 0 ∈ �< the following inclusions hold:

,� (0wD) ⊆ ,� (D) ∩ conesupp(0) ⊆ ,� (D) ⊆ ,� (0wD) ∪ char(0).

In particular, if char(0) = ∅ then,� (0wD) = ,� (D).
4. If 0 ∈ �< and conesupp(0) ∩,� (D) = ∅ then 0wD ∈ S(R=).
5. ,� (D) = ∅ if and only if D ∈ S(R=).

4.2 The Gabor wave front set at Schwartz regularity

Let us give a concise review of the Gabor wave front set in the context of Schwartz
regularity, following [50]. First we introduce a continuous version of the Gabor
wave front set characterized by rapid decay of the phase space representation of a
distribution.

Definition 6 Let D ∈ S′(R=) and i ∈ S(R=) \ {0}. We say that I0 ∈ R2= \ {0} does
not belong to the set,� ′(D) if there exists an open conic neighbourhood ΓI0 of I0
in R2= \ {0} such that

sup
I∈ΓI0

〈I〉# |+iD(I) | < ∞ ∀# ∈ N0. (18)

It is a direct consequence of the definition that ,� ′(D) is a closed conic subset
of R2= \ {0}. The definition of,� ′(D) is well-posed in the sense that the Schwartz
decay of +iD in a conic neighbourhood does not depend on the window function i,
as detailed below.

Proposition 2 ([50, Cor. 3.3])
Let D ∈ S′(R=), i ∈ S(R=) \ {0} and I0 ∈ R2= \ {0}. Assume that there exists an

open conic neighbourhood ΓI0 of I0 in R2= \ {0} such that condition (18) holds. For
any open conic neighbourhood Γ′I0 of I0 in R2= \ {0} such that Γ′I0 ∩ S2=−1 ⊆ ΓI0

and any k ∈ S(R=) \ {0} we have

sup
I∈Γ′I0

〈I〉# |+kD(I) | < ∞ ∀# ∈ N0.

In the spirit of time-frequency analysis it is interesting to study the discrete
variant of,� ′(D) obtained by replacing the full phase-space cone ΓI0 in (18) with
its restriction to suitable lattice points. This remark leads to the definition of the
Gabor wave front set,�� (D).
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Definition 7 Let D ∈ S′(R=), i ∈ S(R=)\{0} and a separable latticeΛ = UZ=×VZ=
where U, V > 0 are such that G(i,Λ) is a Gabor frame. We say that I0 ∈ R2= \ {0}
does not belong to the Gabor wave front set ,�� (D) if there exists an open conic
neighbourhood ΓI0 of I0 in R2= \ {0} such that

sup
_∈Λ∩ΓI0

〈_〉# |+iD(I) | < ∞ ∀# ∈ N0. (19)

While it is clear that,�� (D) ⊆ ,� ′(D), it is a remarkable result that the other
inclusion holds too, cf. [50, Thm. 3.5], that is

,�� (D) = ,� ′(D), D ∈ S′(R=). (20)

This characterization also shows that the definition of,�� (D) is independent of the
choice of the Gabor frame G(i,Λ) used in (19). Moreover, it can be proved that all
these results still hold for more general lattices Λ = AZ2=, where A ∈ GL (2=,R).
In the rest of the paper wewill discard the notation,� ′(D) andwe compute,�� (D)
according to (18) whenever convenient.

Another important achievement in [50] is the proof of the fact that the Gabor
wave front set coincides with Hörmander’s global wave front set. We prefer not to
include a discussion of this issue in order to keep the presentation at an introductory
level. We just mention that a key ingredient in the proof is a precise characterization
of the Gabor wave front set of Weyl operators with symbols in (<0,0 classes.

Proposition 3 Let < ∈ R. For 0 ∈ (<0,0 we have

,�� (0wD) ⊆ conesupp(0), D ∈ S′(R=).

In particular, for < = 0 we have

,�� (0wD) ⊆ ,�� (D) ∩ conesupp(0), D ∈ S′(R=).

We determine below the Gabor wave front set of some special distributions in
order to get a taste of this notion and also to prepare material for applications to
Schrödinger equations.

Example 1 Fix I0 = (G0, b0) ∈ R2=. The Gabor wave front set is invariant under
time-frequency shifts, namely

,�� (c(I0)D) = ,�� (D), D ∈ S′(R=).

This is indeed a consequence of the invertibility of time-frequency shifts and Propo-
sition 3, since

c(I0) = fw, f(G, b) = 4c8G0 b042c8 (G b0−b G0) ∈ (0
0,0.

Example 2 (Dirac delta)
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Consider the Dirac distribution centered at G0 ∈ R=, namely XG0 ∈ S′(R=). In
view of the previous example we can assume G0 = 0 without loss of generality,
namely,�� (XG0 ) = ,�� (X0) for all G0 ∈ R=. Let us compute the STFT of X0: for
a fixed window i ∈ S(R=) \ {0},

+iX0 (G, b) = 〈X0, "b)Gi〉 = i(−G).

This implies that |+iX0 (0, _b) | = |i(0) | for all _ > 0 and b ∈ R=. If we further
assume i(0) ≠ 0 we see that {0} × (R= \ {0}) ⊆ ,�� (X0). To conclude, let
� > 0 and consider the conic subset Γ = {(G, b) ∈ R2= \ {0} : |b | < � |G |}. Let
I0 = (G0, b0) ∈ Γ; then

sup
I∈Γ
〈I〉# |+iX0 (I) | . sup

G∈R=
〈G〉# |i(−G) | < ∞,

hence I0 ∉ ,�� (X0). This argument allows us to conclude that

,�� (XG0 ) = ,�� (X0) = {0} × (R= \ {0}).

We remark that in the case of XG0 the Gabor wave front set is less informative than the
classical Hörmander wave front set [27] , which reads,�� (XG0 ) = {G0}× (R= \{0})
and coincides with the SG wave front set,�S by Coriasco and Maniccia [18].

Example 3 (Pure frequency)
Fix b0 ∈ R= and consider the distribution D(C) = 42c8C b0 . In order to determine

its Gabor wave front set we apply again the invariance property under phase-space
shifts, namely

,�� (D) = ,�� ("b0 1) = ,�� (1).

For a fixed window i ∈ S(R=) \ {0} we have

+i1(G, b) = 〈1, "b)Gi〉 = 〈X0, )b"−G î〉 = 4−2c8G b î(−b),

hence |+i1(_G, 0) | = |î(0) | for any _ > 0 and G ∈ R=. It is not restrictive to assume
ˆE?(0) ≠ 0, thus we conclude (R= \ {0}) × {0} ⊆ ,�� (1). The same arguments
used in Example 2 yield

,��

(
42c8 b0 ·

)
= ,�� (1) = (R= \ {0}) × {0}.

To compare with other wave front sets, notice that the classical wave front set is not
able to detect any singularity since D ∈ �∞ (R=), hence,�� (D) = ∅. However, the
SG wave front set is again more precise, yielding,�S (D) = (R= \ {0}) × {b0}.

Example 4 (Fresnel chirp)
Fix 2 ∈ R \ {0} and consider the linear chirp (also known as Fresnel function)

D(C) = 4c82C2 . Straightforward computation for the STFT of D with Gaussian window
i(C) = 4−cC2 (cf. for instance [1]) provide
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|+iD(G, b) | = (1 + 22)−=/44−c |b−2G |2/(1+22) . (21)

We deduce that the STFT rapidly decays in any open cone in R2= \ {0} which does
not include the hyperplane b = 2G. Arguing as in the previous example we conclude
that

,��

(
4c82 | · |

2
)
= {(G, 2G) : G ∈ R= \ {0}}.

We stress that the Gabor wave front set is superior in detecting singularities than
other notions in this case, which is characterized by varying frequency. Notice indeed
that,�� (D) = ∅, while,�S (D) = (R= \ {0}) × (R= \ {0}).

4.3 Modulation space setting

In Section 2.2 we introduced modulation spaces by conditioning the (weighted
and mixed) Lebesgue regularity of the phase-space representation (STFT) of their
members. This notion suggests a natural generalization of the Gabor wave front set
,�� by relaxing the Schwartz decay in (18) as follows, cf. [10].

Definition 8 Let 1 ≤ ? ≤ ∞, B ≥ 0, i ∈ S(R=) \ {0} and D ∈ S′(R=). We say
that I0 ∈ R2= \ {0} does not belong to ,� ?,B

�
(D) if there exists an open conic

neighbourhood ΓI0 of I0 in R2= \ {0} such that +iD ∈ ! ?EB (ΓI0 ), that is∫
ΓI0

|+iD(I) |? 〈I〉B?3I < ∞, (22)

with obvious modification in the case where ? = ∞.

It is clear from the definition that,� ?,B
�
(D) is a closed conic subset of R2= \ {0}.

We remark that other kinds of microlocal analysis at modulation space regularity
may be taken into account. In this respect we mention the wave front set,�" ?,@

<
(D)

introduced in [42, 43] and defined as follows. First define for 5 ∈ S′(R=) the set
Σ( 5 ) as the complement in R= \ {0} of the subset which contains all b̄ ∈ R= \ {0}
such that (∫

Γ b̄

(∫
R=

��+i 5 (G, b)��? <(G, b) ?3G)@/? 3b)1/@

< ∞,

for some conic neighbourhood Γ b̄ of b̄ in R= \ {0}. Hence, for 1 ≤ ?, @ ≤ ∞, a
weight function < on R2= and D ∈ D ′(Ω), Ω ⊆ R= open, ,�" ?,@

<
(D) consists

of elements (G0, b0) ∈ Ω × R= \ {0} such that b0 ∈ Σ(qD) for any q ∈ �∞2 (Ω)
with q(G0) ≠ 0. It is a remarkable result that modulation spaces are microlocally
equivalent to Fourier-Lebesgue spaces, in the sense of [42, Thm. 6.1]. We also refer
to [33] for a discrete version of this analysis.

We prove below the independence of the window i in the definition of ,� ?,B
�

,
cf. [10] for more general results.
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Proposition 4 Let 1 ≤ ? ≤ ∞, B ≥ 0, D ∈ S′(R=), i ∈ S(R=) \ {0} and I0 ∈
R2= \ {0}. Assume that there exists an open conic neighbourhood ΓI0 of I0 in
R2= \ {0} such that condition (22) holds. For any open conic neighbourhood Γ′I0 of
I0 in R2= \ {0} such that Γ′I0 ∩ S2=−1 ⊆ ΓI0 and any k ∈ S(R=) \ {0} we have∫

Γ′I0

|+kD(I) |? 〈I〉B?3I < ∞. (23)

Proof Let us first recall the change-of-window estimate in Lemma 1, namely

|+kD(I) | . ( |+iD | ∗ |+ki |) (I), I ∈ R2=.

Since +ki ∈ S(R2=) for k, i ∈ S(R=), for any # ≥ 0 we have

|+kD(I) | .
∫
R2=
〈I − F〉−# |+iD(F) |3F.

Therefore, to prove the desired estimate (23) it is enough to show that, for a suitable
choice of = ≥ 0 we have 



∫

R2=
� (·, F)3F






!? (Γ′I0 )

< ∞,

where we set � (I, F) = �= (I, F) = 〈I〉B 〈I − F〉−# |+iD(F) |.
We conveniently split the domain of integration in

∫
R2= � (·, F)3F in two parts,

namely ΓI0 and R2= \ ΓI0 . Let us first consider R2= \ ΓI0 and notice that

〈I − F〉 & max{〈I〉, 〈F〉}, I ∈ Γ′I0 , F ∈ R
2= \ ΓI0 . (24)

Furthermore, in view of the characterization of S′(R=) in (5) we deduce that D ∈
"
?
E−A (R=) for some A ≥ 0. Therefore, for I ∈ Γ′I0 we may write∫

R2=\ΓI0

� (I, F)3F ≤
∫
R2=\ΓI0

〈I〉B 〈F〉A 〈I − F〉−#
|+iD(F) |
〈F〉A 3F

.

(
〈·〉A+B−# ∗

|+iD(·) |
〈·〉A

)
(I).

It is then enough to assume # > A + B + 2= to conclude




∫R2=\ΓI0

� (·, F)3F






!? (Γ′I0 )

.


〈·〉A+B−# 



!1 (R2=) ‖D‖" ?

E−A (R= )
< ∞.

For the remaining part we have
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ΓI0

� (I, F)3F ≤
∫
ΓI0

〈I〉B 〈F〉−B 〈I − F〉−B 〈I − F〉B−# |+iD(F) |〈F〉B3F

.

∫
ΓI0

〈I − F〉B−# |+iD(F) |〈F〉B3F

.
(
〈·〉B−# ∗

(
1ΓI0
(·) |+iD(·) |〈·〉B

))
(I),

where 1ΓI0
is the characteristic function of the set ΓI0 . Assumption (22) finally yields




∫ΓI0

� (·, F)3F






!? (Γ′I0 )

.


〈·〉B−# 



!1 (R2=)


+iD

!?

EB (ΓI0 )
< ∞.

In complete analogy with the Gabor wave front set,�� introduced in Definition
19 we consider a discrete version of,� ?,B

�
.

Definition 9 Let 1 ≤ ? ≤ ∞, B ≥ 0, i ∈ S(R=) \ {0} and D ∈ S′(R=). Consider a
separable lattice Λ = UZ= × VZ= where U, V > 0 are such that G(i,Λ) is a Gabor
frame. We say that I0 ∈ R2= \ {0} does not belong to �,� ?,B

�
(D) if there exists an

open conic neighbourhood ΓI0 of I0 in R2= \ {0} such that +iD ∈ ! ?EB (ΓI0 ), that is∑
_∈Λ∩ΓI0

|+iD(_) |? 〈_〉B? < ∞, (25)

with obvious modification in the case where ? = ∞.
We show that the discrete and continuous modulation Gabor wave front set

coincide. Therefore,modulation space regularity in a conic neighbourhood of a phase
space direction is a condition as strong as modulation space regularity restricted to
the points of the same cone which belong to a suitable lattice.

Theorem 1 Let 1 ≤ ? ≤ ∞, B ≥ 0 and D ∈ S′(R=). Then,� ?,B
�
(D) = �,� ?,B

�
(D).

Proof We give the proof only in the case where ? < ∞, since the case ? = ∞
requires trivial modification. We first prove that I0 ∉

�,� ?,B
�
(D),� ?,B

�
(D), namely

that (9) implies (8). In view of the reconstruction formula (6) we write D = D1 + D2,
where

D1 =
∑

_∈Λ∩ΓI0

+iD(_)c(_)ĩ, D2 =
∑

_∈Λ\ΓI0

+iD(_)c(_)ĩ,

where ĩ = (−1i ∈ S(R=) \ {0} is the canonical dual window. It is therefore enough
to show that +iD1, +iD2 ∈ ! ?EB (ΓI0 ). Let us start with +iD1.

+iD1



?
!
?
EB (ΓI0 )

=

∫
ΓI0

��+iD1
��? 〈I〉?B3I

≤
∫
ΓI0

∑
_∈Λ∩ΓI0

(��+iD(_)�� ��+ĩi(I − _)�� 〈I〉B ) ? 3I.



An introduction to the Gabor wave front set 17

We use the subadditivity of the weight, namely the identity 〈I〉B ≤ 〈I − _〉−B 〈_〉B to
get 

+iD1



?
!
?
EB (ΓI0 )

≤
∫
ΓI0

∑
_∈Λ∩ΓI0

(��+iD(_)�� 〈_〉B ��+ĩi(I − _)�� 〈I − _〉−B ) ? 3I.
Let us set 5 (_) =

��+iD(_)�� 〈_〉B and 6(I − _) = ��+ĩi(I − _)�� 〈I − _〉−B for the sake
of clarity. Notice that 6(I −_) . 〈I −_〉−#−B for arbitrary # ≥ 0. Hence, by Hölder
inequality we have

+iD1



?
!
?
EB (ΓI0 )

≤
∫
ΓI0

∑
_∈Λ∩ΓI0

( 5 (_)6(I − _)) ? 3I

=

∫
ΓI0

∑
_∈Λ∩ΓI0

(
5 (_)6(I − _)1/?6(I − _)1−1/?

) ?
3I

≤
∫
ΓI0

©­«
∑

_∈Λ∩ΓI0

5 (_) ?6(I − _)ª®¬ ©­«
∑

_∈Λ∩ΓI0

6(I − _)ª®¬
?/?′

3I

≤ �
∫
ΓI0

∑
_∈Λ∩ΓI0

5 (_) ?6(I − _)3I,

where
� = sup

I∈R2=
‖6(I − ·)‖ ?/?

′

ℓ1 < ∞.

We conclude by Minkowski inequality:

+iD1


?
!
?
EB (ΓI0 )

≤ �
∫
ΓI0

∑
_∈Λ∩ΓI0

5 (_) ?6(I − _)3I

≤ �
∑

_∈Λ∩ΓI0

5 (_) ?
∫
ΓI0

6(I − _)3I

≤ � ′
∑

_∈Λ∩ΓI0

5 (_) ? < ∞,

where we set
� ′ = �

∫
ΓI0

6(I − _)3I < ∞,

and used the assumption (9) in the last step.
It remains to prove that +iD2 ∈ ! ?EB (ΓI0 ), namely
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+iD2


?
!
?
EB (ΓI0 )

=

∫
ΓI0

��+iD2
��? 〈I〉?B3I

≤
∫
ΓI0

∑
_∈Λ\ΓI0

(��+iD(_)�� ��+ĩi(I − _)�� 〈I〉B ) ? 3I.
Recall from Section 2.2 that the STFT has at most polynomial growth, that is
|+iD(_) | . 〈_〉A for some A ≥ 0. Moreover, since +ĩi ∈ S(R2=) we have |+ĩi(I −
_) | . 〈I − _〉−# for any # ≥ 0. As a consequence of (24) we have

+iD2



?
!
?
EB (ΓI0 )

≤
∫
ΓI0

∑
_∈Λ\ΓI0

(��+iD(_)�� ��+ĩi(I − _)�� 〈I〉B ) ? 3I
.

∫
ΓI0

∑
_∈Λ\ΓI0

(
〈_〉A 〈I − _〉−# 〈I〉B

) ?
3I

.

∫
ΓI0

∑
_∈Λ\ΓI0

(
〈_〉A−# /2〈I〉B−# /2

) ?
3I

(∫
ΓI0

〈I〉? (B−# /2)
) ©­«

∑
_∈Λ\ΓI0

〈_〉? (A−# /2)ª®¬ < ∞,
where the conclusion follows after choosing # large enough.

We need to prove now that I0 ∉ ,�
?,B

�
(D) ⇒ I0 ∉

�,� ?,B
�
(D), that is (8) implies

(9). We essentially argue as before after inverting the role of discrete and continuous
norms and reconstruction formulae. To be concrete we prove that+iD ∈ ℓ?EB (Λ∩ΓI0 ).
In view of the inversion formula for the STFT in (3) we set D = D′1 + D

′
2, where

D′1 =

∫
ΓI0

+iD(I)c(I)i3I, D′2 =

∫
R2=\ΓI0

+iD(I)c(I)i3I.

It is enough to prove that +iD′1, +iD
′
2 ∈ ℓ

?
EB (Λ∩ ΓI0 ). Let us first prove the claim for

+iD
′
1, having in mind (4). We have

+iD′1

ℓ?EB (Λ∩ΓI0 )

=
∑

_∈Λ∩ΓI0

��+iD1 (_)
��? 〈_〉B?

.
∑

_∈Λ∩ΓI0

(∫
ΓI0

��+iD(I)�� ��+ii(_ − I)�� 3I) ?
.

∑
_∈Λ∩ΓI0

(∫
ΓI0

��+iD(I)�� 〈I〉B ��+ii(_ − I)�� 〈_ − I〉−B3I) ? .
We set 5 (I) =

��+iD(I)�� 〈I〉B and ℎ(_− I) = ��+ii(_ − I)�� 〈_− I〉−B in order to lighten
the notation. Therefore, by applying again Hölder’s inequality we get
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+iD′1

ℓ?EB (Λ∩ΓI0 )
.

∑
_∈Λ∩ΓI0

(∫
ΓI0

5 (I)ℎ(_ − I)3I
) ?

≤
∑

_∈Λ∩ΓI0

(∫
ΓI0

5 (I) ?ℎ(_ − I)3I
) (∫

ΓI0

ℎ(I − _)3I
) ?/?′

≤ ‖ℎ‖ ?/?
′

!1

∑
_∈Λ∩ΓI0

∫
ΓI0

5 (I) ?ℎ(_ − I)3I

≤ �
∫
ΓI0

5 (I) ?3I < ∞,

where we used the assumption (8) in the last step and we set

� = ‖ℎ‖ ?/?
′

!1 sup
I∈R=

∑
_∈Λ∩ΓI0

ℎ(I − _) < ∞.

The proof of +iD′2 ∈ ℓ
?
EB (Λ ∩ ΓI0 ) follows the same pattern of the proof of +iD2 ∈

!
?
EB (ΓI0 ) above, hence is left to the interested reader. �

Remark 1 As a consequence of the previous identification and Proposition 4 we have
that �,� ?,B

�
(D) does not depend on the Gabor frame G(i,Λ) used in (9). Moreover,

it is clear from the definition that D ∈ " ?
EB (R=) if and only if,�

?,B

�
(D) = ∅, in view

of the compactness of the sphere S2=−1.

The modulation space Gabor wave front set is very well suited to the study of
Weyl operators with low regular symbols, as detailed in the following result.

Proposition 5 ([10, Prop. 5.3]) Let 1 ≤ ? ≤ ∞, 0 ∈ "∞1⊗EW (R
2=) with W > 2= and

0 < 2B < W − 2=. For any D ∈ " ?
−B (R=) we have

,�
?,B

�
(0wD) ⊂ ,� ?,B

�
(D).

This should be comparedwith Proposition 2, having inmind that
⋂
W≥0 "

∞
1⊗EW (R

2=) =
(0

0,0.

4.4 Propagation of singularities

We conclude this survey with some easy examples of application of the Gabor wave
front set to propagation of microlocal singularities for Schrödinger equations. We
refer to [10, 40] for a broader treatment of the topic, see also the other references
cited in the historical account above.

Let us fix the setting of our investigation. We consider the Cauchy problem for
the Schrödinger equation, namely
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8mCD(C, G) = �D(C, G)
D(0, G) = D0 (G)

, (26)

where � = 0w is the Weyl quantization of a real-valued quadratic polynomial in
R2=, namely

0(G, b) = 1
2
G�G + b�G + 1

2
b�b, (27)

for some symmetric matrices �,� ∈ R=×= and � ∈ R=×=. The phase-space analysis
of the Schrödinger propagator * (C) : D0 (G) ↦→ D(C, G) is intimately related to the
corresponding Hamiltonian system, that is1

2c ¤I = �∇I0(I) = A, A =

(
� �

−� −�>
)
.

The classical phase-space flow AC = 4 (C/2c)A : R2= → R2= is a symplectic diffeo-
morphism and the following result on the propagation of singularities holds in our
setting.

Theorem 2 Consider the Cauchy problem (26) with the assumption specified above.
We have that * (C) ∈ B(" ?

EA (R=)) for all C ∈ R, 1 ≤ ? ≤ ∞ and A ∈ R. If
D0 ∈ S′(R=) then

,�� (* (C)D0) = AC (,�� (D0)), C ∈ R.

If in particular D0 ∈ " ?
E−B (R=) for some 1 ≤ ? ≤ ∞ and B ≥ 0 then

,�
?,B

�
(* (C)D0) = AC (,� ?,B�

(D0)), C ∈ R.

More refined results for general Hamiltonians and potential perturbations can
be found in [10]. We stress that this is one of the rare case where propagation
of singularities for Schrödinger operators with non-smooth potentials is taken into
account.

Example 5 (The free particle) Let us first consider the free case, namely � = −4/2
- which corresponds to 0(G, b) = b2/2. It is well known that the solution of (26) can
then be expressed as

D(C, G) = ( C ∗ D0) (G),  C (G) =
1

(2c8C)=/2
48G

2/(2C) .

An easy computation reveals that the corresponding Hamiltonian flow is given by

AC (G, b) = (G − 2cCb, b), (G, b) ∈ R2=.

1 The factor 2c is a consequence of the normalization of the Fourier transform adopted in this
paper.
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Let us consider the initial datum D0 = X0, so that * (C)D0 (G) =  C (G). Therefore,
using the results in Example 2 we get

,�� (* (C)D0) = AC (,�� (X0)) = {(G, b) ∈ R2= : G = 2cCb, b ≠ 0}.

Notice that a pure frequency initial state, namely D0 (G) = 42c8G b0 for b0 ∈ R=,
evolves as D(C, G) = 4−2c8 b 2

0 42c8G b0 , hence the wave front set is stationary:

,�� (* (C)D0) = ,�� (D0) = {(G, 0) ∈ R2=, G ≠ 0}.

Example 6 (The harmonic oscillator) Consider now the Hamiltonian

� = − 1
4c
4 + cG2,

that is the Weyl quantization of the symbol 0(G, b) as in (27) with � = (2c)�, � = 0
and � = −(2c)�, where � is the = × = identity matrix - see [23, Sec. 4.3] and [14,
Sec. 4] for a detailed derivation. The classical flow can be explicitly computed:

AC = 4 (C/2c)A =
(
(cos C)� (sin C)�
−(sin C)� (cos C)�

)
, C ∈ R.

Therefore, by taking into account the initial datum D0 = 1 and Example 3 above we
have for any C ∈ R

,�� (* (C)D0) = AC (,�� (1)) = {(G, b) = ((cos C)H, (sin C)H) ∈ R2=, H ≠ 0}.

Let us examine the behaviour of the wave front set in the interval C ∈ [0, c/2] for
the sake of concreteness. For C = 0 we have,�� (D0) = (R= \ {0}) × {0}, while for
C = c/2 we have ,� (* (c/2)D0) = {0} × (R= \ {0}). We see that for C ∈ (0, c/2)
the singularities are propagated by counter-clockwise rotation in phase space. Let us
stress the connection with the structure of the propagator, whose distribution kernel
is given by the Mehler formula [20, 34]: for : ∈ Z,

 C (G, H) =
{
2(:) | sin C |−=/2 exp

(
c8
G2+H2

tan C − 2c8 GHsin C

)
(c: < C < c(: + 1))

2′(:)X((−1):G − H) (C = :c)
, (28)

for suitable phase factors 2(:), 2′(:) ∈ C. The solution is thus given in the form of
Fourier integral operator for C ≠ c/2 + :c, : ∈ Z, as

* (C)D0 (G) = (cos C)−=/2
∫
R=
42c8[ 1

cos C G b−
tan C

2 (G
2+b 2)] D̂0 (b)3b.

In particular, the choice D0 = 1 yields D(C, G) = * (C)D0 (G) = (cos C)−=/24−c8 (tan C)G2 ,
which is consistent with the previous computation, since by (21) we have��+iD(C, ·) (G, b)�� = 4−c (cos C)2 |b−(tan C)G |2 .
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