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Self-Supervised Learning Across Domains

Silvia Bucci, Antonio D’Innocente, Yujun Liao, Fabio M. Carlucci, Barbara Caputo and Tatiana Tommasi

Abstract—Human adaptability relies crucially on learning and merging knowledge from both supervised and unsupervised tasks: the
parents point out few important concepts, but then the children fill in the gaps on their own. This is particularly effective, because
supervised learning can never be exhaustive and thus learning autonomously allows to discover invariances and regularities that help
to generalize. In this paper we propose to apply a similar approach to the problem of object recognition across domains: our model
learns the semantic labels in a supervised fashion, and broadens its understanding of the data by learning from self-supervised signals
on the same images. This secondary task helps the network to focus on object shapes, learning concepts like spatial orientation and
part correlation, while acting as a regularizer for the classification task over multiple visual domains. Extensive experiments confirm our
intuition and show that our multi-task method combining supervised and self-supervised knowledge shows competitive results with
respect to more complex domain generalization and adaptation solutions. It also proves its potential in the novel and challenging

predictive and partial domain adaptation scenarios.

Index Terms—Self-Supervision, Domain Generalization, Domain Adaptation, Multi-Task Learning.

1 INTRODUCTION

Any definitions of intelligence have been formulated by
Mpsychologists and learning researches along the years.
Despite the differences, they all indicate the ability to adapt and
achieve goals under a wide range of conditions as a key compo-
nent [1]]. Artificial intelligence inherits these definitions, with the
most recent research demonstrating the importance of knowledge
transfer and domain generalization [[18]]. Indeed, in many practical
applications the underlying distributions of training (i.e. source)
and test (i.e. target) data are inevitably different, asking for robust
and adaptable solutions. When dealing with visual domains, most
of the current strategies are based on supervised learning. These
processes search for semantic spaces able to capture basic data
knowledge regardless of the specific appearance of input images:
some decouple image style from the shared object content [7],
others generate new samples [75]], or impose adversarial condi-
tions to reduce feature discrepancy [46], [48]. With the analogous
aim of getting general purpose feature embeddings, an alternative
research direction is pursued by self-supervised learning that
captures visual invariances and regularities solving tasks that do
not need data annotation, like image orientation recognition [30]
or image coloring [84]. Unlabeled data are largely available
and by their very nature are less prone to bias (no labeling bias
issue [[72])), thus they seem the perfect candidate to provide visual
information independent from specific domain styles. However
their potential has not been fully exploited: the existing self-
supervised approaches often come with tailored architectures that
need dedicated fine-tuning strategies to re-engineer the acquired
knowledge [60]. Moreover, they are mainly applied on real-world
photos without considering cross-domains scenarios with images
of paintings or sketches.
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Fig. 1. Recognizing objects across visual domains is a challenging
task that requires high generalization abilities. Self-supervisory image
signals allow to capture natural invariances and regularities that can help
to bridge across large style gaps. With our multi-task approach we learn
jointly to classify objects and solve jigsaw puzzles or recognize image
orientation, showing that this supports generalization to new domains.

This clear separation between learning intrinsic regularities
from images (self-supervised knowledge) and robust classification
across domains (supervised knowledge) is in contrast with the
visual learning strategies of biological systems, and in particular
of the human visual system. Indeed, numerous studies highlight
that infants and toddlers learn both to categorize objects and about
regularities at the same time [6]]. For instance, popular toys for
infants teach to recognize different categories by fitting them into
shape sorters; jigsaw puzzles of animals or vehicles to encourage
learning of object parts’ spatial relations are equally widespread
among 12-18 months old. This joint learning is certainly a key
ingredient in the ability of humans to reach sophisticated visual
generalization abilities at an early age [20].

Inspired by this, our original paper [12] was the first to
introduce a multi-task approach that learns simultaneously how
to recognize objects by exploiting supervised data, and how to
generalize to new domains by leveraging intrinsic self-supervised
information about spatial co-location of image parts (Fig. |I| and
@. Specifically, we proposed to recover an original image from
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Fig. 2. lllustration of the proposed multi-task approach when using jigsaw puzzle as self-supervised task. We start from images of multiple domains
and use a 3 x 3 grid to decompose them in 9 patches which are then randomly shuffled and recomposed into images of the same dimension of
the original ones. Through the maximal Hamming distance algorithm in [58] we define a set of P patch permutations and assign an index to each
of them. Both the original ordered and the shuffled images are fed to a convolutional network that is optimized to satisfy two objectives: object
classification on the ordered images and jigsaw classification (i.e. permutation index recognition) on the shuffled images. An analogous scheme
holds when using rotation recognition as self-supervision. The names assigned to each network part refer to the notation adopted in Sec.

its shuffled parts, re-purposing the popular game of solving jigsaw
puzzles. Differently from previous approaches that deal with fea-
ture extraction from separate image patches [5§]], [60], we moved
the patch re-assembly at the image level and we formalized the
jigsaw task as a classification problem over recomposed images
with the same dimension of the original one. In this way object
recognition and patch reordering can share the same network
backbone and we can seamlessly leverage over any convolutional
learning structure as well as several pretrained models without the
need of specific architectural changes.

Here we extend our previous work providing a wider overview
on self-supervised learning across domains. (1) We consider
rotation recognition and jigsaw puzzle as self-supervised tasks
showing their effect both as pretext and in the multi-task model
together with supervised learning for domain generalization; (2)
we delve into the details of the multi-task method with an
extensive ablation analysis and visualizing successful as well as
failure cases; (3) we consider both single source and multi-source
domain adaptation experiments with a thorough analysis against
the most recent state-of-the art methods; (4) we discuss the effect
of our multi-task model in the challenging predictive and partial
domain adaptation scenarios also extending [8]].

2 RELATED WORK

Self-Supervised Learning. Self-Supervised Learning is a
paradigm developed to learn visual features from large-scale unla-
beled data [40]. Its first step is a pretext task that exploits inherent
data attributes to automatically generate surrogate labels: part of
the existing knowledge about the images is manually removed (e.g.
the color, the orientation, the patch order) and the task consists in
recovering it. It has been shown that the first layers of a network
trained in this way capture useful semantic knowledge [3]]. The
second step of the learning process consists in transferring the self-
supervised learned model of those initial layers to a supervised
downstream task (e.g. classification, detection), while the ending
part of the network is newly trained.

The possible pretext tasks can be organized in three main
groups. One group relies only on original visual cues and in-
volves either the whole image with geometric transformations (e.g.
translation, scaling, rotation [24], [30]), clustering [15]], inpainting
[[62]] and colorization [84], or considers image patches focusing

on their equivariance (learning to count [59]]) and relative position
(solving jigsaw puzzles [58], [60]). A second group uses external
sensory information either real or synthetic: this solution is often
applied for multi-cue (visual-to-audio [61], RGB-to-depth [63]))
and robotic data [37]], [42]. Finally, the third group relies on video
and on the regularities introduced by the temporal dimension [[70],
[[77]. The most recent self-supervised learning research focuses
on proposing novel pretext tasks or combining several of them
together, to then compare their initialization performance for a
downstream task with respect to using supervised models as in
standard transfer learning [23]], [29], [38]], [63]].

Our work investigates a new research direction: we combine
supervised and self-supervised knowledge in a multi-task frame-
work, studying its effect on domain generalization and adaptation.

Domain Generalization and Adaptation. Several algorithms
have been developed to cope with domain shift, mainly in two
different settings: Domain Generalization (DG) and Domain
Adaptation (DA). In DG the target is unknown at training time:
the learning process can usually leverage multiple labeled sources
to define a model robust to any new, previously unseen domain
[56]. In DA the learning process has access to the labeled source
data and to the unlabeled target data, so the aim is to generalize
to the given specific target set [[18]. In multi-source DA the source
domain label may be unknown [13]], [34], [52], while for most of
the DG methods it remains a crucial information to leverage on.

There are three main families of solutions for both DG and DA.
Feature-level strategies focus on learning domain invariant data
representations mainly by minimizing different domain shift mea-
sures [S], [49], [50], [71]]. The domain shift can also be reduced
by training a domain classifier and inverting the optimization to
guide the features towards maximal domain confusion [27], [[73]].
This adversarial approach has several variants, some of which
also exploit class-specific domain recognition modules [48]], [[67].
Metric learning [55]] and deep autoencoders [7]], [28]], [46] have
also been used to search for domain-shared embedding spaces.
In DG, these approaches leverage on the availability of multiple
sources and on the access to the domain label for each sample.
Model-level strategies either change how the data are loaded with
ad-hoc episodes [45]], or modify conventional learning algorithms
to search for more robust minima of the objective function
[43]]. Besides these main approaches, other solutions consists in
introducing domain alignment layers [|13]], aggregation layers [22],
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[45[], or using low-rank network parameter decomposition [20]],
[44]] with the goal of identifying and neglecting domain-specific
signatures. Finally, data-level techniques exploit variants of the
Generative Adversarial Networks (GANS, [31]]) to synthesize new
images. Indeed, producing source-like target images or/and target-
like source images [35]], [[65] help to reduce the domain gap.

Some recent works have started investigating intermediate
settings between DA and DG. In Predictive Domain Adaptation
(PrDA) a labeled source and several auxiliary unlabeled domains
are available at training time together with meta-data that describe
their relation [51]], [82]. The target data are not available, but their
meta-data are provided and used to compose an adapted model
directly from the sources.

In both DA and DG, the main assumption is that source and
target share the same label set, with few works studying exceptions
to this basic condition [10]], [68]], [79]. In particular, in Partial
Domain Adaptation (PDA) the target to covers only a subset of the
source class set. In this case it is important to adjust the adaptation
process so that the samples with not-shared labels would not
influence the learned model. The more commonly used techniques
consist in adding a re-weight source sample strategy to a standard
DA approach [9]], [10], [83]]. Alternative solutions leverage on two
separate deep classifiers and their prediction inconsistency on the
target [54] or on feature norm matching [80].

As indicated by this brief overview, previous literature did not
investigate self-supervision for DA or DG. In this work we present
a thorough study of self-supervised learning across domains.

3 METHOD

We introduce here the technical notation for our multi-task ap-
proach across domains and specify the objectives in each of the
considered settings. Let us assume to observe data { (3, y5)}7,
from one or more source distributions. Here x; represent the
i-th image while y; is the corresponding one-hot vector label
of dimension |)?|. Starting from these images we can always
apply different procedures to generate self-supervised variants.
One simple choice is that of applying rotation to produce 4 copies
of each sample with {0°, 90°, 180°, 270°} orientation. The
related self-supervised task consists in choosing the correct image
rotation. A more structured alternative is that of decomposing
the original images according to a 3 x 3 grid: this produces
9 squared patches from every sample, which are then moved
from their original locations and re-positioned to form a set of
9! shuffled images. This task is reminiscent of the jigsaw puzzle
game, where the tiles have to be rearranged to get back the original
image. For both the described cases, {(z5, pi)}le refer to the
newly obtained images. The dimension of the one-hot vector
label p is 4 when applying rotation, while for patch shuffling
we choose a subset P of the 9! possible permutations selected by
following the Hamming distance based algorithm in [S8]]. The total
number of images changes depending on the self-supervised task:
K?% = 4 x n® for rotation and K® = P x n?® for patch shuffling.
Regardless of the specific chosen self-supervised objective we
can combine it with supervised learning through a standard hard-
parameter sharing multi-task model realized with a multi-branch
ending network [16]]. One output branch will be dedicated to the
supervised task exploiting the labels of the source data, while the
other will solve the self-supervised problem: rotation or jigsaw
puzzle permutation recognition (see Figure 2). The auxiliary self-
supervised objective contributes in extracting relevant semantic

3

features from the data, with a final beneficial effect on the object
recognition performance. Since the self-supervised objective is
label agnostic it can run both over supervised and unsupervised
domains, supporting generalization and adaptation.

3.1 Domain Generalization

For our network we indicate the convolutional feature extraction
backbone with Gy, parametrized by 6. The parameters of the
object classifier G and of the self-supervised task GG, are respec-
tively 0. and 6,,. Overall we train the network to obtain the optimal

model through
oD Z Le(

KSZE

where L. and L,, are cross entropy losses for both the object and
self-supervised classifiers. We underline that the self-supervised
loss is also calculated on the original images. Indeed, the 0°
orientation as well as the correct patch sorting correspond also to
one of the possible self-supervised image transformation variants.
Differently, the supervised classification loss is not influenced
by the shuffled or rotated images, as this would make object
recognition tougher. At test time we use the object classifier G to
predict on the new target images.

arg rnln
05,0c,0p

7)), yi)+

»(Gr(z1)), Pr) (D

3.2 Domain Adaptation

By its nature self-supervised learning does not need manual anno-
tation and it can exploit the unlabeled target data {wt jya j=1 When
available in the DA setting. The target samples are transforrned
(rotated, shuffled) so that each newly produced instance {z k}k 1
gets its own self-supervised label pf..

An alternative and widely used way to involve the target
data in the learning process consists in applying the source
supervised knowledge on them to evaluate the pseudo-labels
9" = G.(Gs(x')), and minimize the prediction uncertainty
measured by the entropy H = — Z}yl‘ @f log @f [521, [80]. This
is a semi-supervised technique which guides the class decision
boundary to pass through low-density target areas, but its success
across domains depends on moderate levels of domain shift to
avoid wrong pseudo-labels. Given their orthogonal and possibly
complementary nature, in our DA analysis we combine the entropy
term with the supervised and self-supervised loss. The overall
learning objective is formalized as

Zz
o o Zﬂ
o' Zﬁ

arg mm

) ), v+
f; u P

Gf zk))?pk)+

»(Gr(2h)), PL)-
2

1 &
nﬁ;HG

3.3 Partial Domain Adaptation

In PDA the label space of the target domain is contained in
that of the source domain }* C *. This further shift in the
label space makes the problem even more challenging: if the
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Fig. 3. Our PDA approach with jigsaw puzzle self-supervision. The main
blocks of the network are in gray. The solid line arrows indicate the
contribution of each group of training samples to the corresponding
final tasks. The related optimization goals appear at the end of the
black/green/ocher arrows. The red blocks illustrate the domain adver-
sarial classifier and source sample weighting procedure (weight ). An
analogous scheme holds with self-supervised rotation recognition.
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matching between the whole source and target data is forced, any
adaptive method may incur in a degenerate case producing worse
performance than its plain non-adaptive version due to negative
transfer [64]].

The two £, terms in help domain shift reduction, however
their co-presence may be redundant: the features are already
chosen to minimize the source classification loss and the self-
supervised task on the target back-propagates inducing a cross-
domain adjustment on the learned features. Thus, for PDA we can
drop the source self-supervised term, which corresponds to setting
a® = 0. This choice has a double positive effect: on one side it
reduces the number of hyper-parameters in the learning process,
leaving space for the introduction of other complementary learning
conditions, on the other we let the self-supervised module focus
only on the target without involving the extra classes of the source.

To further enforce the focus on the shared classes, we extend
our approach by integrating a weighting mechanism analogous to
that presented in [[10]]. The source classiﬁcagion output on the tar-
get data are accumulated with v = # Z?Zl @; and normalized
as v + v/ max(v), obtaining a |}*|-dimensional vector that
quantifies the contribution of each source class. Moreover, we can
easily integrate a source vs target domain discriminator Gy as in
[27]] and adversarially maximize the related binary cross-entropy
to increase the domain confusion, taking also into consideration
the defined class weighting procedure for the source samples. In
more formal terms, the final objective of our multi-task problem
in the PDA setting is

4 1 & o s
min max oy ; Yyi (ﬁc(Gc(Gf (331 ), Yi)+

| | Mog(Gal G ) +
L3 (n HGU(@ ) + Mos(1 — GulG () +
Jj=1

1 &
ol b 3 £,(Gy(G5(21).ph)
k=1
3)

where vy, is the class weight for the ground truth label of
the source point ] and A is a hyper-parameter that adjusts the
importance of the introduced domain discriminator. When A = 0
and v, = 1/|Y®| we fall back to the standard DA case. A
schematic illustration of the method is presented in Fig. 3]

arg

3.4 Implementation details

We designed our multi-task network to leverage over different
convolutional deep architectures: the backbone Gy may inherit

4

the structure of standard networks as AlexNet or ResNet. The
specific object and self-supervised classifiers heads G, G\, are
respectively implemented by an ending fully connected layer.
When including multiple self-supervised tasks in the model (i.e.
Jigsaw+Rotation), a G, head is assigned to each self-supervised
objective. Specifically, shuffled images are directed to the Jigsaw
final head G; , while the rotated images to the Rotation recog-
nition head Gf. In the PDA setting we introduced the domain
classifier G4 by adding three fully connected layers after the
last pooling layer of the main backbone, and using a sigmoid
function for the last activation as in [27]]. For all our experiments
we trained the network end-to-end by fine-tuning all the feature
layers from Imagenet pre-trained models [[19]], while G, G}, and
(4 are learned from scratch.

Overall the network for DG has two main hyper-parameters: o
that weights the self-supervised loss, and the data bias parameter
[ which regulates the data input process. The self-supervised
variants of the images enter the network together with the original
ones, hence each image batch contains both of them with 3
specifying their relative ratio. For instance S = 0.6 means
that for each batch, 60% of the images are standard, while the
remaining 40% are rotated or composed of shuffled patches. In
our experiments we chose « and (3 by keeping a source validation
set (10% of the training data) and performing model selection on
it by following [33]]. When combining Jigsaw+Rotation we have
respectively vy and o, while the fraction of transformed images
regulated by [ are rotated or shuffled with equal probability. In the
DA setting « decouples in o® and o respectively for source and
target data. While discussing the experimental results we will see
the outcome of cross-validating o on the source and then setting
a = a® = of or fixing @® = 0 as well as the effect on model
robustness when manually tuning o. Further parameters in DA
and PDA are 1 and A. The first is the weight assigned to the
entropy loss which we safely fixed to small values: 0.1 for DA and
0.2 for PDA. Finally, A balances the importance of the gradient
reversal layer when included in PDA and we adopted the same
scheduling of [27] to update its value, so that the importance of
the domain discriminator increases with the training epochs.

In designing the jigsaw puzzle task we need to choose the
image patch grid size n X n, and the cardinality of the patch
permutation subset P. As we will detail in the following section,
our multi-task approach is robust to these values and for all our
experiments we kept them fixed (3 x 3 grid, P = 30).

We used a simple data augmentation protocol by randomly
cropping the images to retain between 80 — 100% and randomly
applied horizontal flipping. By following [60]], we also randomly
(10% probability) convert an image tile to grayscale. Our DG/DA
model is trained with an SGD solver, 30 epochs, batch size 128,
learning rate set to 0.001 and stepped down to 0.0001 after 80%
of the training epochs. Our PDA model is trained with SGD
with momentum set at 0.9, weight decay 0.0005 and 24 epochs.
We used batch size of 64 and initial learning rate 0.0005. Some
specific training details are used in the PrDA setting and will be
described in Sec. f.1.8] We implemented our deep methods in
PyTorch and the code is available at https://github.com/silvial 993/
Self-Supervised_Learning_Across_Domains.

4 EXPERIMENTS

In this section we present an extensive evaluation of using self-
supervised knowledge across visual domains. First of all we focus
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on DG (Sec. d.I). We test both the rotation and jigsaw puzzle
self-supervised pretexts before using them extensively as auxiliary
tasks together with supervised learning in our multi-task model.
The second part of our analysis is dedicated to the DA scenario
(Sec.[d.2) and its more challenging PDA setting.

4.1 Self-Supervision for Domain Generalization

4.1.1 Data and Setup

For our DG analysis we used as main testbed the PACS dataset
[44] that covers 7 object categories and 4 domains (Photo, Art
Paintings, Cartoon and Sketches). We followed the experimental
protocol in [44] and finetuned the Imagenet-pretrained models
with three domains as source datasets and the remaining one as
target test. We also considered other two data collections. The
VLCS [72] aggregates images of 5 object categories shared by
the PASCAL VOC 2007, LabelMe, Caltech and Sun datasets. We
followed the standard protocol of [28|] dividing each domain into
a training set (70%) and a test set (30%) by random selection
from the overall dataset. The Office-Home dataset [[74]] contains 65
categories of daily objects from 4 domains: Art, Clipart, Product
and Real-World. For this dataset we used the same experimental
protocol of [22]. Note that Office-Home and PACS are related in
terms of domain types and it is useful to consider both as testbeds
to check if our multi-task self-supervised approach scales when
the number of categories changes from 7 to 65. Instead VLCS
offers different challenges by combining object categories from
Caltech with scene images of the other domains. The evaluation
is based on three repetitions of each run: we report the average 4
standard deviation of the obtained class recognition accuracy.
Only for the single-source DG analysis we focused on digits
datasets to compare the sensitivity of our approach against a
competitor method. For PrDA we considered a fine-grained car
dataset. All the details for these last two settings are described

respectively in Sec. f.1.5]and .1.]
4.1.2 Self-Supervised Pretraining

We test here the robustness of image orientation and patch co-
location knowledge across domains by using both rotation and
jigsaw puzzle as pretext tasks for domain generalization.
Baselines. As first step we considered three jigsaw puzzles and
one rotation model trained on Imagenet ILSVRCI12, [19]) data
without original labels. For the jigsaw puzzle, we used the two
Context-Free-Network (CFN) models provided by the authors
of [58]], [60]. The CFEN has 9 AlexNet-based siamese branches
that extract features separately from each image patch and then
recompose them before entering the final classification layer. We
indicate these models respectively as J-CFN [58|] and J-CFN+
[[60]. The third puzzle-based model is obtained by training an
AlexNet on whole images recomposed from disordered patches,
which we call J-AlexNet. Inspired by [30], we also trained an
AlexNet model for rotation recognition that we dub R-AlexNet.
Results. The obtained results are collected in the top part of Table
[[] and show that using a patch-based (p) jigsaw method provides
on average a more reliable pretext model than dealing with the
whole (w) recomposed image. The rotation pretext model shows
the best results with a small advantage over the patch based jigsaw
approaches. In summary, we find that moving the jigsaw puzzle
task from the feature to the image level when training a pretext
model does not appear as a good choice and that the rotation task
is the simplest and most effective solution.

TABLE 1
Test on different tasks and architectures: DG classification accuracy.
The target is indicated as column title. Best results are in bold. Top:
self-supervised pretraining on Imagenet, followed by fine-tuning on the
source. (p) indicates the methods that use patch-based networks, while
(w) the ones that use whole-images networks. Bottom: supervised
pretraining on Imagenet followed by the multi-task combination of
self-supervised objective and supervised fine-tuning.

PACS art_paint. cartoon sketches photo [ Avg.
Self-Supervised Pretraining
J-CFN (p) 47.23 62.18  58.03 70.18 | 59.41
J-CFN+ (p) 51.14 58.83 5485 73.44 | 59.57
J-AlexNet (w) 38.93 5375  49.00 6423 | 5148
R-AlexNet (w) 52.08 59.24 5654 7291 | 60.19
Supervised Pretraining and Multitask
C-CFN-DeepAll (p)  59.69 59.88  45.66 8542 | 62.66
C-CFN-Jigsaw (p)  60.68 60.55  55.66 82.68 | 64.89
AlexNet-DeepAll (w)  66.50 69.65 6142 89.68 | 71.81
AlexNet-Jigsaw (w)  67.79 70.79 64.01 89.64 | 73.05
AlexNet-Rotation (w) 69.43 6940 6520 89.17 | 73.30

4.1.3 Supervised Pretraining and Multi-task Learning

In designing our multi-task approach which combines supervised
and self-supervised learning we have several options, both in terms
of the architecture to use and of the best self-supervised task.
Baselines. We compare the CFN multi-branch architecture with
a plain AlexNet backbone. To differentiate the classification-
aware CFN model with respect to the self-supervised pretraining
discussed in the previous section we name it C-CFN. Regardless
of the specific architecture used, we indicate with DeepAll the
single-task supervised model trained on all the original source
images (i.e. « = 0), while we use Jigsaw (Puzzle) or Rotation
to specify the multi-task case where each of those self-supervised
tasks was trained jointly with the object classification.

Results. From the results in the bottom part of Table [T] we
can draw two conclusions. First, combining supervised and self-
supervised learning provides better results than a single-task
supervised model across domains. This is true regardless of the
chosen architecture, as indicated by the comparison between the
DeepAll and Jigsaw/Rotation variants. Second, a single branch
architecture is better suited for the multi-task problem at hand. In
this case, moving the jigsaw puzzle task from feature to image
level simplifies the self-supervised task and its combination with
the supervised objective. The whole-image Rotation auxiliary task
supports generalization even slightly better than Jigsaw.

4.1.4 Multi-Source Domain Generalization

Here we provide an extensive evaluation of our multi-task ap-
proach against state-of-the-art multi-source DG methods.

Baselines: We consider different families of DG approachesﬂ
The first is based on low-rank constraints applied on network
parameters: TF [44]], SLRC [20]. The second exploits domain-
specific component aggregation: Epi-FCR [45], D-SAM [22]]. The
third builds on meta-learning strategies: MLDG [43]], MetaReg
[4], MASF [25]. Finally, the fourth family leverages adversarial
classifiers in different ways: DDAIG [_87]], PAR [76], MMLD [53]].

1. We are aware of recent DG solutions based on data augmentation. In
[[85], MSCOCO (http://cocodataset.or) and WikiArt (https://www.kaggle.com/
c/painter-by-number) are used for style transfer. None of the other considered
references exploit those extra data collections so we do not include this method.


http://cocodataset.or
https://www.kaggle.com/c/painter-by-number
https://www.kaggle.com/c/painter-by-number

JOURNAL OF IATEX CLASS FILES, VOL. ..., NO. ..., MONTH ...

TABLE 2
Comparison with DG-sota methods on PACS. The target is indicated as
column title. We report the used hyper-parameters, obtained through
source cross-validation. The top result is highlighted in bold. Only to get
fair comparison with MASF we computed the max target accuracy over
the training period: the results are indicated with ¢. The top result in this
case is underlined.

PACS art_paint. cartoon sketches photo | Avg.
Alexnet
4] DeepAll 63.30 63.13 5407 87.70 67.05
TF 62.86 66.97 57.51  89.50 69.21
221 DeepAll 64.44 72.07 58.07 87.50 70.52
D-SAM 63.87 70.70 64.66  85.55 71.20
5 De_epAll 63.40 66.10 56.60  88.50 68.70
Epi-FCR 64.70 72.30 65.00 86.10 72.00
@3] DeepAll 64.91 64.28 53.08 86.67 67.24
- MLDG 66.23 66.88 5896  88.00 70.01
] DeepAll 67.21 66.12 5532 8847 69.28
] MetaReg 69.82 70.35 59.26  91.07 72.62
76| DeepAll 63.30 63.10 5400 87.70 67.03
PAR 68.70 70.50 64.60  90.40 73.54
53] DeepAll 68.09 70.23 61.80 88.86 72.25
MMLD 66.99 70.64 67.78 8935 73.69
DeepAll 66.50 69.65 6142 89.68 | 71.81£0.26
Jigsawa=0.9,5=0.6 67.76 70.79 64.01  89.64 | 73.05+0.20
Rotationa=o.4,6=0.4 69.43 69.40 6520  89.17 | 73.30+£0.47
Jigsaw+Rotationa ;=0.9,ap=0.9,5=0.4  69.70 71.00 66.00 89.60 | 74.08+0.32
25 DeepAll 67.60 68.87 61.13  89.20 71.70
MASF® 70.35 72.49 67.33  90.58 75.21
Jigsaw® 69.76 72.27 66.41  90.97 | 74.86+0.64
Rotation® 69.80 71.10 66.57  90.13 | 74.40£0.67
Jigsaw+Rotation® 70.23 73.33 6723 9040 | 75.30+0.50
Resnet-18
2] DeepAll 77.87 75.89 69.27  95.19 79.55
D-SAM 717.33 7243 77.83 9530 80.72
S| DeepAll 77.60 73.90 7030  94.40 79.10
Epi-FCR 82.10 77.00 73.00  93.90 81.50
l DeepAll 79.90 75.10 69.50  95.20 79.90
] MetaReg 83.70 77.20 7030  95.50 81.70
871 DeepAll 77.00 75.90 69.20  96.00 79.50
DDAIG 84.20 78.10 7470  95.30 83.10
53] DeepAll 78.34 75.02 6524  96.21 78.70
MMLD 81.28 77.16 72.29  96.09 81.83
DeepAll 77.83 74.26 65.81 9571 | 78.40+0.28
Jigsawa—0.7,5=0.9 79.28 75.74 6831 9571 | 79.80£0.55
Rotationa—0.8,5=0.4 81.07 74.13 76.17  96.10 | 81.87+0.49
Jigsaw+Rotationa ;=0.7,a p=0.7,5=0.8  81.07 73.97 74.67 9593 | 81.41+0.50
5] DeepAll 77.38 75.68 69.64 9435 79.26
MASF® 80.29 7717 71.69 9499 81.04
Jigsaw® 80.00 76.52 70.70  96.03 | 80.81+0.31
Rotation® 82.40 75.27 7720 96.53 | 82.85+0.55
Jigsaw+Rotation® 81.40 75.03 7647 9640 | 82.33+0.47
TABLE 3

Comparison with DG-sota methods on VLCS. Refer to Table [2]for
notation details.

VLCS Caltech Labelme Pascal Sun | Avg.
Alexnet
[ DeepAll 93.40 62.11 68.41 64.16 72.02
1 TF 93.63 6349  69.99 6132 72.11
{201 DeepAll 86.67 5820  59.10 57.86 65.46
SLRC 92.76 6234 6525 63.54 70.97
% DeepAll 94.95 57.45 66.06 65.87 71.08
E D-SAM 91.75 56.95 58.59 60.84 67.03
[@5] DeepAll 93.10 60.60 6540 65.80 71.20
: Epi-FCR 94.10 6430  67.10 6590 72.90
531 DeepAll 95.89 57.88  72.01 67.76 73.39
] MMLD 96.66 58.77 7196 68.13 73.88
DeepAll 96.15 59.05 70.84 63.92 | 72.49+0.21
Jigsawo—0.5,8=0.8 96.46 59.51 7295 64.40 | 73.3340.16
Rotation,—o 97.30 60.30  71.93 65.97 | 73.88+0.62
Jigsaw+Rotation, ;—0.9,a z=0.5,8=0.7 96.30 59.20 70.73 66.37 | 73.15+0.36
5] DeepAll 92.86 63.10 68.67 64.11 72.19
] MASF® 94.78 6490  69.14 67.64 74.11
Jigsaw® 98.27 61.44  73.61 66.53 | 74.96+0.21
Rotation® 98.40 62.80  73.03 67.40 | 75.41+0.63
Jigsaw+Rotation® 98.10 60.20  72.60 68.87 | 74.94+0.20

We carefully report the DeepAll reference for each method to have
an overview on their relative advantageﬂ
Results: Table 2] shows the results of our multi-task approach on

2. The differences between the DeepAll results, are likely due to small
undocumented inconsistencies and/or different library implementations of
these baseline methods. Reporting them all is the only fair way of showing
the relative improvement brought by each approach and highlighting possible
inconsistencies.

TABLE 4
Comparison with DG-sota methods on Office-Home. Refer to Table[2]
for notation details.

Office-Home Art Clipart Product Real-World \ Avg.
Resnet-18

2 DeepAll 5559 4242 70.34 70.86 59.81

D-SAM 58.03 44.37 69.22 71.45 60.77

&7 DeepAll 58.90 49.40 74.30 76.20 64.70

1 DDAIG 59.20 52.30 74.60 76.00 65.50
DeepAll 52.15 45.86 70.86 73.15 60.51+0.12
JigsaWa—0.9,8=0.8 53.04 47.51 71.47 72.79 61.20+0.11
Rotationa—o.8,8=0.4 57.80 48.73 72.70 74.87 63.53+0.25
Jigsaw+Rotation, ;—0.4,0 p=0.5,5=0.0 58.33 49.67 72.97 75.27 64.06+0.31

the dataset PACS. We tested Jigsaw, Rotation and their combi-
nation. On average our approach produces results equal or better
than all the competitors with the only exception of DDAIG which
got the top results on Resnet-18. We highlight that DDAIG needs
domain annotation for each source sample. In many practical
conditions this information might not be available [52], and our
multi-task method does not rely on it. Moreover, DDAIG benefits
from a tailored per-domain model parameter selection, different
from our approach for which the parameters are fixed and shared
by all the domain pairs of each dataset. Analogous observations
hold for the VLCS results (Table [3). For Office-Home (Table [)),
Rotation appears more suitable than Jigsaw as auxiliary task with a
gain larger than three percentage points over the DeepAll baseline
and with even higher advantage in the Jigsaw+Rotation case.
DDAIG, although producing apparently the top average result,
improves slightly more than one percentage point over its DeepAll
reference.

4.1.5 Single-Source Domain Generalization

The generalization ability of a model depends both on the learning
process and on the used training data. To better evaluate the
regularization effect provided by the self-supervised tasks, we
investigate the case of training data from a single source domain.
Baseline and Datasets: For these experiments we compare against
the generalization method based on adversarial data augmentation
(Adv.DA) presented in [[75]. We based our model on their same
backbone (conv-pool-conv-pool-fc-fc-softmax), we reproduced
their experimental setting and adopted a similar result display
style with bar plots. We trained a model on 10k digit samples of
the MNIST dataset [41] and evaluated on the respective test sets
of MNIST-M [27] and SVHN [57]]. The digits are handwritten
on black background for MNIST and on colorful background for
MNIST-M. In SVHN the images are house numbers from Google
Street View. To work with comparable datasets, all the images
were resized to 32 X 32 and treated as RGB.

Results: In Figure [d] we show the performance of Jigsaw and
Rotation when varying the data bias 3 and the self-supervised task
weight ov. With the red background shadow we indicate the overall
range covered by Adv.DA results when changing its parameters,
while the horizontal line is the reference Adv.DA results around
which the authors of [75] ran their ablation analysis. The bar plots
indicates that, although Adv.DA can reach high peak values, it is
also very sensitive to the chosen hyper-parameters. On the other
hand, our multi-task approach is much more stable and usually
performs better than Adv.DA. One exception arises on SVHN,
with Jigsaw when the data bias is 0.5, and with Rotation when
the self-supervised task weight is 0.9: both correspond to limit
cases for the proper combination of object classification and self-
supervised learning as will be discussed in the next section. More-



JOURNAL OF IATEX CLASS FILES, VOL. ..., NO. ..., MONTH ... 7
MNIST-M MNIST-M SVHN SVHN
jigsaw weight  @=0.9 data bias  $=0.9 5 jigsaw weight =09 - data bias  $=0.9
60 Adv.DA 60 Adv.DA 2 Adv.DA 3 Adv.DA
59 I Jisaw 59 I Jisaw I Jigsaw I Jigsaw
I I I —F—Adv.DA =1, K=2 I I I —F—Adv.DA =1, K=2 33 | —F-Adv.DA ~=1,K=2 33 ||[—F—Adv.DA =1, K=2
58 258 ¥ ¥ ¥ > >
g T 1 g | | ge g
557 557 5 3
S 56 S 56 g3 g
8 ® 30 “a0
55 55
29 29
54 54
8 28

DeepAll 0.5 06 07 08 09
data bias g
MNIST-M

rotation weight

DeepAll 0.1 03 05 07 09
jigsaw weight «
MNIST-M

a=0.1 data bias 3=0.8

DeepAll 0.5 06 07 08 09
data bias g

SVHN

rotation weight

DeepAll 0.1 03 05 07 09
jigsaw weight o
SVHN

a=0.1 data bias 3=0.8

Adv.DA Adv.DA
I Rotation

—F—Adv.DA 1=1, K=2

Adv.DA
Il Rotation

—F—Adv.DA 1=1, K=2 —F—Adv.DA 1=1, K=2

DeepAll 05 06 07 08 09
databias g

DeepAll 0.1 03 05 07 0.9
rotation weight o

accuracy

accuracy

DeepAll 05 06 07 08 0.9
databias g

DeepAll 0.1 03 05 07 0.9
rotation weight o

Fig. 4. Single Source DG experiments. We analyze the performance of our multi-task Jigsaw (top row) and Rotation (bottom row) approaches
in comparison with Adv.DA [75]. The shaded background area covers the overall range of results of Adv.DA obtained when changing the hyper-
parameters of the method. The reference result of Adv.DA (y = 1, K = 2) together with its standard deviation is indicated here by the horizontal
red line. The blue histogram bars show the performance of Jigsaw and Rotation when changing the self-supervised task weight « and data bias 3 .
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Fig. 5. Ablation results and hyper-parameter analysis on the Alexnet-PACS DG setting when using Jigsaw. The reported accuracy is the global
average over all the target domains with three repetitions for each run. The red line represents our DeepAll average from Table|Z|
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Fig. 6. Ablation results on the Alexnet-PACS DG setting when using
Rotation. We report the average accuracy over all target domains with
three repetitions for each run. The red line is our DeepAll from Table [2]
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Fig. 7. Analysis of the Jigsaw classifier on Alexnet-PACS DG setting. In
the left plot each axes refers to the color matching curve in the graph.

over, Jigsaw and Rotation have similar performance to Adv.DA on
MNIST-M and significantly outperform it on SVHN.

4.1.6 Ablation and hyper-parameter tuning

As mentioned in Sec. the parameters « and 3 of our multi-
task approach regulates respectively the importance of the self-
supervised auxiliary loss, and the amount of samples out of
each input data batch that reaches the self-supervised branch.

By considering extreme cases for those parameters we obtain an
ablation study on the respective roles of the self-supervised and of
the supervised task of the learning model. Furthermore, we test the
robustness of our method to the number of Jigsaw classes (patch
permutations) P, and to the dimension of the patch grid n X n.

Baseline: for these experiments we focus on the Alexnet-PACS
DG setting. We keep the Jigsaw hyper-parameters fixed with a
3% 3 patch grid and P = 30 when studying ablation. Setting {« =
0,8 = 1} means that the self-supervised task is off, and the data
batches contain only original ordered images, which corresponds
to our DeepAll baseline.

Results - Jigsaw ablation: The value assigned to the data bias 3
drives the training: it moves the focus from the self-supervised
task when using low values (5 < 0.5), to object classification
when using high values (6 > 0.5). We set the data bias to
B8 = 0.6 which means that we fed the network with more
ordered than shuffled images, thus keeping the classification as
the primary goal of the network. In this case, when changing the
loss weight « in {0.1,1}, we observe results which are always
either statistically equal or better than the DeepAll baseline as
shown in the first plot on the left of Figure [5} The second plot
indicates that, for high values of ¢, tuning [ has a significant
effect on the overall performance. Indeed {o ~ 1, 8 = 1} means
that Jigsaw is on and highly relevant in the learning process,
but we are feeding the network only with ordered images: in
this case the puzzle task is trivial and forces the network to
recognize always the same permutation class which, instead of
regularizing the learning process, may increase the risk of data
memorization and overfitting. Further experiments confirm that,
for 8 = 1 but lower « values, our multi-task method based on
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Fig. 8. CAM activation maps: yellow corresponds to high values, while dark blue corresponds to low values. The jigsaw puzzle task is able to localize
the most informative part of the image, useful for object class prediction regardless of the visual domain. Rotation recognition has a similar effect
but tend to be less precise in localization especially for sketches, cartoon and paintings.

Jigsaw and DeepAll perform equally well. Setting 5 = 0 means
feeding the network only with shuffled images. For each image
we have P variants, only one of which has the patches in the
correct order and is allowed to enter the object classifier, resulting
in a drastic reduction of the real batch size. In this condition the
object classifier is unable to converge, regardless of Jigsaw being
active (a > 0) or not (&« = 0). In those cases the accuracy is
very low (< 20%), so we do not show it in the plots to ease the
visualization.

Results - Jigsaw hyper-parameter tuning: By using the same
experimental setting of the previous paragraph, the third plot in
Figure [5] shows the change in performance when the number of
Jigsaw classes P varies between 5 and 1000. We started from a
low number, with the same order of magnitude of the number of
object classes in PACS, and we grew till 1000 which is the value
used for the experiments in [58]. We observe an overall variation
of 1.5 percentage points in the accuracy which still remains almost
always higher than the DeepAll baseline. Finally, we ran a test to
check the accuracy when changing the grid size and consequently
the patch number. Even in this case, the range of variation is
limited when passing from a 2 X 2 to a 4 X 4 grid, confirming
the conclusions of robustness already obtained for this parameter
in and [[17]]. Moreover all the results are better than DeepAlL

Results - Rotation ablation: Changing the orientation has a milder
effect on the global appearance of the image with respect to patch
decomposition and puzzle reordering. One significant further dif-
ference between the Rotation and Jigsaw tasks is in the number of
self-supervised classes which is P ~ 10 — 50 for Jigsaw and just
4 for Rotation, which actually reduces to 3 if we consider that one
of the classes matches with the original image orientation. In this
conditions, even using a low 3 = 0.4 does not distract the network
focus from the main object classification task and, combined with
a = 0.4 produces the results reported in Table For the ablation
analysis we keep each of the two parameters fixed while varying
the other: the results are always above the DeepAll baseline and on
average the performance variation is limited (around 1 percentage
point) indicating low sensitivity to the specific parameter settings.

Results - self-supervised performance: We have seen how the self-
supervised tasks support the main supervised classifier for domain
generalization, but it is also interesting to check their own internal
functioning and whether those tasks get meaningful results. We
show their performance when testing on the same target images
used to evaluate the object classifier but with shuffled patches for
Jigsaw and randomly changed orientation for the Rotation task. In
Figurem the first plot shows the accuracy over the learning epochs
for the Object, Rotation and Jigsaw classifiers indicating that it
grows for all of them simultaneously (on different scales). The

second plot shows the Jigsaw recognition accuracy when changing
the number of permutation classes P: of course the performance
decreases when the task becomes more difficult, but overall the
obtained results indicate that the Jigsaw model is always effective
in reordering the shuffled patches.

4.1.7 Visual Explanation and Failure Cases

As highlighted in [38]], supervised deep models tend to focus too
much on local image statistics, which limits the generalization
and robustness properties of the learned representation. The jigsaw
puzzle and the rotation recognition task, by forcing the network
to use the whole image, allow to capture global information and
to identify domain agnostic object shapes. By combining the
supervised and self-supervised objectives we aim at learning a
representation better able to capture discriminative cues, helpful in
recognizing the image object content across domains. To analyse
this behaviour we used the Class Activation Mapping (CAM,
) method on ResNet-18 DG experiments, with which we
produced the activation maps in Fig. [§] for the PACS dataset. The
first two rows show that our multi-task approach with Jigsaw or
Rotation self-supervision is better at localizing the object class
with respect to DeepAll. Rotation seems slightly less precise than
Jigsaw in capturing the object shapes especially when dealing
with sketches (see the dog on the second and sixth row), cartoon
and paintings (fourth and fifth row), while works reasonably well
with photos. The last two rows indicate that for both Jigsaw and
Rotation the recognition mistakes are related to some flaw in data
interpretation, while the localization remains meaningful.

4.1.8 Predictive Domain Adaptation
Recent works have investigated intermediate settings between DG
and DA. In PrDA [31]], [82] one labeled and several unlabeled
source domains are available at training time, together with their
descriptive meta-data which are a very specific kind of domain
labels (see Fig. [0). The meta-data of the target is also available:
they can be used to relate the target domain to the known sources
and compose a target model. Since this model is obtained without
having access to the target images we are still in the DG scenario.
However, the task is clearly simplified because the level of domain
similarity between the sources and the target is known a priori.
We believe it is worthwhile to evaluate our multi-task method
in this scenario for two main reasons. (1) Most of the existing
DG methods urge both domain and class labels of training data
to work. PrDA techniques can be considered as DG methods
with reduced needs in terms of class supervision, but strongly
dependent on the availability of domain labels. By leveraging on
self-supervision, our multi-task approach can work with a limited
set of annotated source samples, as in AdaGraph , but it is
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TABLE 5
Predictive DA results. The top result is highlighted in bold.

Resnet-18

Baseline LP MCC AdaGraph Jigsaw Rotation
Souce-Only [36]  [39] (51 g
CompCars 56.80 5791 59.00 65.10 63.00 61.77
source labeled source unlabeled target
meta-data: (side, 2010) (rear, 2012) (front, 2009) (rear-side, 2014)
-EE- s . Eg -

e CH
5 = -
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Fig. 9. Scheme of the Predictive DA setting. The goal is to recognize the
four types of car, while the view point and the year are the meta-data.

also completely free from the need of source (and target) domain
labels. Thus, it is much cheaper in terms of manual annotations
and would still be reliable in case of missing or noisy domain
labels. (2) The existing PrDA testbeds focus on fine-grained
classification tasks, thus allowing us to evaluate our method on
a recognition problem significantly different with respect to that
offered by the standard DG datasets.

Baseline and Dataset: We use as baseline the source-only case
which learns from the single labeled source and cannot exploit
unlabeled data. We also consider a state of the art semi-supervised
method based on Label Propagation (LP, [36]) and the Minimum
Class Confusion multi-target approach (MCC, [39]]). LP uses the
unlabeled images in the learning process via pseudo-labeling,
while they are considered as a temporary target data for MCC
that adapts on them and finally uses the obtained model on the
real target. Finally, AdaGraph [51] is our main PrDA reference.
It is a very recent approach that exploits domain-specific batch-
normalization layers to learn models for each source domain
in a graph, where the graph is provided on the basis of the
source auxiliary meta-data. We follow the experimental protocol
described in [51]] on the Comprehensive Cars (CompCars) dataset
[[81]. We used a subset of 24,151 images with 4 categories (MPV,
SUV, sedan and hatchback) which are type of cars produced
between 2009 and 2014 and taken under 5 different view points
(front, front-side, side, rear, rear-side). Each view point and each
manufacturing year defines a separate domain and specifies its
meta-data, leading to a total of 30 domains. We selected a pair of
domains as source and target and use the remaining 28 as auxiliary
unlabeled sources. Considering all possible domain pairs, we got
870 experiments and observe the average accuracy results over all
of them. More in details, we started from an Imagenet pretrained
model and trained for 6 epochs on source domain using Adam as
optimizer with weight decay of 10°. The batch size used is 16
and the learning rate is 10~3 for the classifier and 10~ for the
rest of the network; the learning rate is decayed by a factor of 10
after 4 epochs. We tried both Jigsaw and Rotation with loss weight
parameter set to o = 0.5.

Results: Table [3] collects the obtained results and shows that our
multi-task approach significantly improves over the source-only
baseline, as well as over LP and MCC. AdaGraph, which leverages
on both the meta-information and the unlabeled data, shows the
top result. Considering the limited gap between AdaGraph and our
Jigsaw based result, we claim that when the meta-data information
is noisy or missing, our approach can be used as reliable and
inexpensive fallback.

4.2 Self-Supervised Domain Adaptation
4.2.1 Single- and Multi-Source Domain Adaptation

When unlabeled target samples are available at training time we
can use any self-supervised task on them. Indeed we can run patch
reordering and orientation recognition on both source and target
data to support adaptation of the source classification model.
Baselines and Datasets: We consider as reference four families
of DA approaches. The first is based on measuring the Maximum
Mean Discrepancy (MMD, [69]) across domains and minimizing
it to reduce the domain shift: DAN [49], JAN [50]. The second
adopts adversarial approaches as DANN [27] which is based
on reverse gradient backpropagation from the auxiliary domain
classification network branch. A third family is that based on
batch normalization: Dial [14] introduced adaptive layers to match
source and target distribution to a standard gaussian. In DDiscov-
ery [52] the same idea is revisited to first discover the existence
of multiple latent domains in the source and then differently adapt
their knowledge to the target. Finally the fourth family focuses on
increasing the feature norms of the two domains with the Hard
Adaptive Feature Norm (HAFN, [80]) method and its step-wise
variant SAFN. Several DA approaches minimize the entropy loss
as an extra domain alignment condition (e.g. SAFN+ENT). For a
fair comparison we also turned on the entropy loss for our method.
Moreover we solve the self-supervised task either involving both
source and target or considering only the latter. We weight the
source and target self-supervised loss equally on the basis of the
source cross-validation.

As datasets we considered Office-Home for the single-source

experiments and PACS for the multi-source setting. As in the DG
case, all the reported results are average over three runs.
Results: Tables [f] shows the single source results on Office-Home.
Our multi-task approach improves over its baseline and over DAN,
JAN, DANN but has worse performance than HAFN, SAFN
and SAFN+ENT. Although not usually presented, we show the
specific baseline (ResNet-50) results of the HAFN/SAFN methods
to better evaluate their relative gain. Indeed their basic architecture
has an extra fully connected layer with respect to a standard
ResNet which appears particularly helpful in this cross-domain
setting. We performed also a stability analysis by turning off the
self-supervised task on the source oy = 0: the minimal results
variation indicates that most of the adaptive effect originates from
running the self-supervised task on the target.

The multi-source experiments in Table [7] shed further light
on the adaptive abilities of the auxiliary self-supervised objective
included in our multi-task approach. When the source domain
is rich and covers large style variability, our method is able to
outperform not only the batch-normalization based techniques
Dial and DDiscovery, but also the state-of-the-art DA approaches
HAFN and SAFN which have more difficulties in aligning the
norms between the multiple sources and a single target domain.
Among Jigsaw and Rotation, the second appears more suitable for
domain adaptation, with higher performance and better stability to
hyper-parameter tuning. When the two self-supervised tasks are
combined we get on average a small accuracy improvement. The
bottom part of the table also shows the effect of changing the «
value which appears more relevant for Jigsaw than for Rotation.
On the Jigsaw+Rotation model we also report the DG result which
corresponds to setting o’ = 0 and n = 0, while keeping all the
other chosen parameters. We further show the separate effect of
turning off only the self-supervised tasks on the target (o = 0) or
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TABLE 6
Accuracy on Office-Home under single-source DA setting. The top result is highlighted in bold.
Office-Home-DA Ar—Cl Ar—Pr Ar—Rw Cl —-Ar Cl—-Pr Cl-Rw Pr—Ar Pr—Cl Pr—-Rw Rw—Ar Rw—Cl Rw—Pr [ Avg.
Resnet-50
ResNet-50 3490 50.00 58.00 3740 4190 4620 3850 31.20 6040 53.90 41.20 59.90 46.10
DAN [49] 43.60  57.00 67.90 4580 5650 6040 44.00 43.60 67.70 63.10 51.50 74.30 56.30
DANN [27] 45.60  59.30 70.10 47.00 58.50  60.90 46.10  43.70 68.50 63.20 51.80 76.80 57.60
JAN [50] 4590 61.20 68.90 50.40 59.70  61.00 45.80 4340 70.30 63.90 52.40 76.80 58.30
ResNet-50 49.36  68.86 76.25 58.71 66.18 6933 5659 4480 75.80 67.66 51.21 79.52 63.69
HAFN [80] 50.20  70.10 76.60 61.10 68.00 70.70 59.50 4840 77.30 69.40 53.00 80.20 65.40
SAFN [80] 52.00 71.70 76.30 6420 6990  71.90 63.70  51.40 77.10 70.90 57.10 81.50 67.30
SAFN+ENT [80] 5226  73.04 77.06 66.12 7230 72.27 6496  52.67 78.81 72.96 58.05 82.12 68.55
ResNet-50 4830  59.80 68.40 5470 6240 65.10 53.70 46.70  73.70 66.80 54.10 77.30 60.91+0.15
Jigsaw s —qt—0.7,3=0.8 47.70  58.80 67.90 5720 6430 66.10 5620 50.80 75.10 67.90 55.60 78.40 62.17+0.10
Jigsaw s 0 ot=0.7,8=0.8 4733  58.07 67.70 5777 63.47 6570 56.43 50.13  74.70 68.40 55.77 79.23 62.06+£0.23
Rotation s _ ¢ _ _ 49.00  59.20 67.40 5690 64.10  65.60 56.60  52.90 74.70 68.70 57.90 78.60 62.64+0.13
as=a?=0.8,8=0.6
Rotation s _q ot— _ 48.83  56.67 67.50 5747 6390 6547 56.33 52.23 74.33 68.97 57.53 78.20 62.29+0.14
a’=0,at=0.8,3=0.6
TABLE 7 TABLE 8
Multi-source Domain Adaptation results on PACS. Classification accuracy in the PDA setting on Office-31 (source: 31
. classes, target: 10 classes). The * indicates ten-crop testing.
PACS-DA art_paint. cartoon sketches photo \ Avg.
Resnet-18 Office-31-PDA_ AW D—W W—D A 5D D—A W—A | Avg.
] DeepAll 7470 7240 60.10 92.90 75.03 Resnet50
B2 DDi?c'i'very S e T | b Resnet-50 7537 9413 9884 79.19 8128 8549 85.73
801 HAFN 84.95 79.64 6424 9770 | 81.63+£0.50  DANN [27] 75.56 96.27 98.73 81.53 82.78 86.12 86.50
SAFN 86.78 8272 6026 98.26 | 82.01+£0.32 TWAN [83] 89.15 99.32 99.36 90.45 95.62 94.26 94.69
SAFN+ENT 89.22 87.39  60.02 98.14 | 83.69+0.17 SAN* [9] 93.90 9932 9936 9427 94.15 88.73 94.96
p DeepAll ;ﬁg ggég gggé gggé gg‘l*giggg PADA* {10 86.54 9932 100 82.17 92.69 95.41 92.69
1858Was=at=0.7,6=0.8 ’ : : : O DRCN* [47] 86.00 88.05 95.60 100.0 95.80 100.0 94.30
Rotation,s —at—0.8,8=0.4 8997 8260 8200 9807 | 88.16£051 Lo [11,[ E 0452 1000 1000 9503 9621 9464 96.73
Jigsaw+Rotation s _ .t _q 89.67 82.87 83.93 98.17 | 88.66+0.36 ] . . - - . - .
u.;i:ih:{lw:” Resnet-50 76.05 97.52 99.36 83.23 83.89 86.18 87.71
Jigsaw o s —0.7,at—0.1,5—0.8 85.40 81.49 7693 9835 | 85.54+1.63 HAFN [80] 79.89 97.63 99.57 84.93 89.59 90.08 90.28
Jigsaw s —0.7,at=0.3,=0.5 85.92 81.61  79.74 98.04 | 86.33£0.58  SAFN [80] 84.52 97.40 98.94 8450 92.07 92.90 91.72
Jigsaw s —0.7,at=0.5,6=0.8 87.01 81.25  78.87 98.00 | 86.2840.67  SAFN+ENT [80] 87.57 98.08 99.36 88.11 93.95 93.77 93.47
Jigsawas—0.7,at=09,6=05 8421 8038 76.64  97.86 | 8477076 Rechet50 7435 9390 9681 78.13 7846 8681 | 84.74L0.71
Rotation s —o g wt=0.1,5=0.4 89.27 8130 8223 8973 | 87.7140.13 1 O 9175 9412 9893 90.87 8995 9342 | 93184046
Rotation,s —g 8,0t 0.3, 8=0.4 88.73 8220 81.47 9827 | 87.67+0.07 gsav : : : : : : : :
Rotationys—o.5.at—0.5.8-0.4 89.83 80.10 81.13  98.00 | 87.27+0.94 Rptatlon 8791 95.14 99.57 86.84 88.73 93.98 92.03+1.29
Rotation,s—o.8,at=0.9,6=0.4 89.17 81.47 8273 97.87 | 87.81+0.21  Jigsaw*-~y 99.32  94.69 9936 96.39 86.36 94.22 | 95.061+1.86
Jigsaw+Rotation ,¢_¢ ,—o 81.07 7397 7467 9593 | 81.41+0.50  Jigsaw*-y, A 99.66 94.46 99.57 97.67 87.33 94.26 | 95.49+1.19
Jigsaw+Rotation ,¢— 8280 7723 7770 97.17 | 83.73+0.39
Jigsaw+Rotation ,—o 84.67  78.63  80.37 97.27 | 85.23+0.51 ' [ o [ s

the entropy loss (7 = 0). This ablation highlights how the major
adaptive effect originates from the self-supervised tasks running
on the target rather than from the entropy.

4.2.2 Partial Domain Adaptation

The setting with source and target domains sharing exactly the
same classes may be too restrictive. Here we discuss experimental
results on the more realistic PDA setting where the target domain
contains only a subset of the source classes.
Baselines: We consider as reference five PDA methods all based
on down-weighting the importance of source classes which are
absent in the target. The methods SAN [9], PADA [[10]], and DRCN
[47], exploit the source model prediction to evaluate the target
class distribution. A different solution is proposed by IWAN [_83]],
where each domain has its own feature extractor and the source
sample weight is obtained from the domain recognition model
rather than from the source classifier. The most recent ETN [[11]]
uses only the relevant source examples to train both the label
classifier and the domain discriminator. The relevance (weight)
of each source example is computed through an auxiliary domain
discriminator, not directly involved in the adaptation phase, which
quantifies the source example transferability.

The methods HAFN and SAFN leverage only the sample
norms rather than the whole domain distributions and are quite
robust to negative transfer also in the PDA setting, without the

1 6 1 EEEE 1 6 11 21 2% @ 1 6 11

21 2 st

16 16 16
Class Id Class Id Class Id

PADA Jigsaw-y
Fig. 10. Histogram showing the elements of the ~ vector, corresponding

to the class weight learned by PADA, SSPDA-v and SSPDA-PADA for
the A—W experiment.

Jigsaw-vy, A

need of any weighting mechanism. Thus, we also considered them
as reference. Finally, we report the results of DAN and DANN
as basic adaptive baselines, to show the effect of methods not
originally designed to deal with PDA.

Datasets: We follow previous literature in choosing two datasets
and their related setting for the PDA experiments. We use Office-
31 [66] which contains 4652 images of 31 object categories
common in office environments. Samples are drawn from three
annotated distributions: Amazon (A), Webcam (W) and DSLR (D)
which correspond respectively to online vendor website, digital
SLR camera and web camera images. Similarly to [9], [10],
10 classes are used as target for this dataset (the same classes
shared by this dataset with Caltech-256 [32]). The second test-
bed is VisDA2017, originally used in the 2017 Visual Domain
Adaptation challenge (classification track): with respect to the
other datasets, it allows us to investigate the proposed multi-task
approach on a very large-scale sample size scenario. It has two
domains, synthetic 2D object renderings and real images with a
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total of 208k images organized in 12 categories. We focus on the
synthetic-to-real shift, the same considered in the challenge, but
keeping only the first 6 categories of the target in alphabetic order.
For all the experiments we use ResNet-50 as backbone.

Results: Tables [§] and 0] show the obtained results respectively
on Office-31 and VisDA2017 datasets. Each table is organized in
four horizontal blocks: the first one shows the results obtained
without adaptation or with standard DA methods, the second
block illustrates the performance with algorithms designed to
deal with PDA, the third one includes the performance of the
norm-based adaptation approaches HAFN/SAFN together with
their corresponding ResNet-50 baseline. Finally, the fourth part
contains the results of our method. We remind that, as described
in Sec. [3.3] our approach in the PDA setting does not involve
the source data in the auxiliary self-supervised task: indeed the
results obtained in the single source DA setting confirmed that it
is possible to set a® = (0 without any performance drop (see Table
@). Moreover, we set o' = 1.0 for all the experiments.

All the tables show that both Jigsaw and Rotation outperform
the first group of adaptive references. With respect of the PDA
techniques in the second group, our method shows better results
on VisDA2017 even if many of these competitors take advantage
by a ten-crop image evaluation procedure (indicated by the star™).
The top result on Office-31 is obtained by ETN which however,
has a dedicated parameter selection procedure for each domain
pair, different from our approach for which the parameters are
fixed and shared by all the domain pairs of a dataset. Finally the
HAFN/SAFN variants in the third group confirm the effectiveness
of the norm-based methods also for PDA. Their results are
comparable or worse than ours.

Despite not being tailored for the PDA setting, the obtained
performance show that the auxiliary self-supervised task sup-
ports adaptation also in this scenario. Given that our solution
is orthogonal to the sample selection strategies, we further tried
to combine them together to evaluate if they complement each
other. Specifically, we focused on Office-31 and the Jigsaw: we
estimated the target class statistics through the weight ~ and
included also a domain discriminator weighted by the parameter A,
following [10] as discussed in Sec. To allow a fair comparison
we also adopted the ten-crop evaluation. The results in the last
two rows of Table [§] indicate that estimating the target statistics
helps the network to focus only on the shared categories, with an
average accuracy improvement of two percentage points over the
plain Jigsaw method, getting up to a result comparable with that
of ETN considering the standard deviation. We can state that the
advantage comes from a better alignment of the domain features:
by comparing the -y values on the A—W domain shift we observe
that Jigsaw-y is more precise in identifying the missing classes of
the target (see Figure . We indicate with Jigsaw-7, A the case
that includes the domain classifier: since the produced features are
already well aligned across domains, we fixed A\-max to 0.1 and
observed a further small average improvement. From the last bar
plot on the right of Figure[T0]we also observe a better identification
of the target classes.

5 CONCLUSION

This work provides an extensive study on the use of self-
supervised learning across domains. In particular we focused
on solving jigsaw puzzles and recognizing image orientation,
showing that they can be easily integrated in a multi-task approach
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TABLE 9
Classification accuracy in the PDA setting on VisDA2017 (source: 12
classes, target: 6 classes).

VisDA2017-PDA  Synthetic— Real

Resnet-50
Resnet-50 45.26
DAN [49] 47.60
DANN [27] 51.01
PADA* [10] 53.53
DRCN* [47] 58.20
Resnet-50 49.89
HAFN [_80] 65.06
SAFN [80] 67.65
SAFN+ENT* [80] 70.40
Resnet-50 58.6540.66
Jigsaw 68.18+1.36
Rotation 71.954+0.39

with supervised learning. The results show an improvement in
cross-domain robustness and an advantage on generalization per-
formance: the obtained results are competitive with that of more
elaborate domain adaptation and domain generalization methods.
Our work paves the way for many other adaptive methods exploit-
ing the invariances captured by the most recent self-supervised
solutions [29], [38]], also beyond object classification towards other
challenging tasks like semantic segmentation 78], detection [21]
or 3D visual learning [2]] where the domain shift effect strongly
impacts the deployment of methods in the wild.
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