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The complex world of oscillator noise
Fabio L. Traversa, Michele Bonnin, Fabrizio Bonani, Senior Member, IEEE

Abstract—We review the modern oscillator noise analysis tech-
niques based on phase-amplitude noise decompositions. While
avoiding the extensive use of mathematical derivations, we
aim at defining the common ground that forms the basis for
modern oscillator noise analysis in order to provide an essential
presentation of the Floquet-based approaches, clarifying their
connections and differences.

Index Terms—Oscillators, phase noise, amplitude noise, circuit
simulation, Floquet theory

I. INTRODUCTION

The study of fluctuations in oscillators has been a classical
research topic in mathematics, physics and engineering since
the first half of the XX century [1]–[4]. Besides the intellectual
fascination for mathematically difficult problems, the impor-
tance of the topic is deeply rooted in practical applications,
mainly in the fields of RF and microwave electronics, and
of telecommunications. In fact, defining a precise frequency
reference is fundamental for many applications, both electrical
(e.g., transmitters and receivers) and optical (e.g., LASERs):
the broadening of the generated spectral line is mainly due
to the phase noise component of oscillator fluctuations, that
as a consequence is the most commonly studied feature of
oscillator noise (see [5] for a recent and exhaustive review). In
a dual perspective, the definition of a precise time reference is
also extremely important for digital applications, thus implying
the necessity to keep under control the time jitter in clocked
and in sampled systems. From the theoretical standpoint, phase
noise and time jitter are simply the two sides of the same
coin, a manifestation of the oscillator noisy behavior. As the
microwave engineer is more often interested in the phase noise
characterization, we will discuss the latter only. The time jitter
estimation is discussed, for instance, in [6].

Despite this long history, oscillator noise has recently re-
ceived a significant rejuvenation when a mathematically sound
approach has been proposed in [6], [7] that takes care of some
inconsistencies showed by classical approaches at vanishing
offset frequency. Mathematical consistency is however attained
at the cost of a significant complexity of the corresponding
noise theory, that makes it impossible to provide a direct link to
simplified circuit analysis and, thus, to simple yet sufficiently
accurate closed form expressions that would make a direct
connection to low-noise oscillator design rules such as the
celebrated Leeson’s formula [8], [9]. In other words, the use of
advanced and mathematically sound theories is often confined
to electronic design automation (EDA) tools for the computer-
aided design (CAD) of oscillators.

F.L. Traversa is with LoGate Computing Inc., San Diego (CA), while M.
Bonnin and F. Bonani are with the Dipartimento di Elettronica e Telecomu-
nicazioni, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino,
Italy.

The aim of this review is to introduce such modern ap-
proaches to oscillator (phase and amplitude) noise analysis,
and to discuss the relationship among them (avoiding as much
as possible the corresponding mathematical subtleties) with the
ultimate goal of clarifying their differences and connections.

II. BASICS

The starting point of any oscillator noise theory is the set of
equations that governs the state space evolution of the circuit
in the absence of any fluctuations, which in the simplest case
is a set of ordinary differential equations (ODEs) such as

dx
dt

= f(x(t)) (1)

where x(t) is the set of n variables describing the oscillator
working point (WP), and f is an n size nonlinear function.
Actually, circuit equations as implemented in circuit simulators
take in general the form of a differential-algebraic equation
(DAE) system [10]: the treatment is mathematically more
involved [11], however since the basic results are the same,
we discuss here the simpler ODE case only. We consider here
purely analog systems, in which f is a smooth function. The
case of mixed analog-digital circuits requires a more complex
analysis due to the presence of jumps in the solution that
prevent the direct exploitation of Floquet theory [12]–[14].

The oscillator is identified by a nonzero solution xS(t) of
(1) characterized by the property of being periodic, i.e. there
is a period T > 0 such that xS(t+T ) = xS(t). Clearly, a well
designed oscillator should have a strongly stable WP, meaning
that a limited perturbation of the circuit should be rapidly
absorbed by the oscillator, whose state should therefore plunge
back on the limit cycle (orbit) xS(t). Mathematically, this is
guaranteed in the following way: the linear periodically time-
varying (LPTV) system obtained by linearizing (1) around
xS(t) should be characterized, besides by the unique structural
Floquet exponent (FE) µ1 = 0 (see Appendix A for a brief
introduction to Floquet theory), by the other n − 1 FEs all
satisfying Re{µi} � 0.

The presence of noise is translated into a dependency of
the nonlinear function f on a proper set of mw + mc noise
sources, represented by a stochastic vector ξw(t) of size mw
usually characterized as a set of uncorrelated, white Gaussian
noise processes [15], and by the low-frequency (typically,
flicker) fluctuations characterized by mc scalar, independent
and colored Gaussian noise sources ξcm(t): in this way the
ODE system (1) is transformed into a stochastic ODE (S-
ODE). As the noise sources are usually of limited magnitude,
the customary procedure amounts to linearize the perturbed
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S-ODE with respect to the noise sources thus leading to a
Langevin equation

dx
dt

= f(x(t))+Bw(x(t))ξw(t)+

mc∑
m=1

Bwm(x(t))ξcm(t) (2)

where x(t) is the set of perturbed circuit variables, now
stochastic processes. Matrix Bw, of size n×mw, represents the
possible noise source modulation of the white sources, while
the mc vectors Bwm (of size n) are introduced to take into
account the possible modulation of the colored sources.

At this point the approaches available in the literature are
different ways of tackling the solution of (2): the most obvious
one amounts to solve directly the nonlinear S-ODE (most
probably numerically) and find the corresponding second-
order statistical characterization of the noisy circuit variables
x(t), namely the two-time correlation matrix Rx,x(t1, t2) =〈
x(t1)xT(t2)

〉
, where 〈·〉 represents the expectation operator

and T denotes the transpose. In many practical cases, noise is
stationary and thus Rx,x(t1, t2) = Rx,x(t) where t = t2− t1.
Thus, according to the Wiener-Kinchin theorem [16], the
same information can be more effectively represented by a
frequency domain function (the noise spectrum Sx,x(ω), or the
power spectral density – PSD) that is the Fourier transform of
Rx,x(t). However, the direct numerical solution of a S-ODE
is a tough task, in particular if the size n of the circuit is large
and if an accurate determination of the statistical properties
is sought for. Therefore, this approach is used mainly as a
reference solution for validating manipulations of (2), and it
is mostly applied to low dimensional test cases (n = 2÷ 3 or
slightly more).

In most of the cases the problem is tackled by decompos-
ing the fluctuating solution into phase and amplitude noise
components, and by deriving (and solving) the corresponding
S-ODEs: see Section V.

Finally, the noise sources are typically characterized as
Gaussian, stationary processes. The Gaussian assumption al-
lows to fully describe the statistical properties exploiting
the average and the variance, i.e. the first two moments
of the random process. In particular, the white compo-
nents ξw are here assumed uncorrelated and of unit ampli-
tude, as the source strength (and the possible correlation, if
present) can be included in the modulating matrix Bw(t):
Rξw,ξw

(t1, t2) = Iδ(t1 − t2), so that the corresponding PSD
becomes Sξw,ξw

(ω) = I, where I is the identity matrix
of size mw. The uncorrelated, colored noise sources repre-
sent important physical processes, such as flicker noise, and
are characterized by the corresponding (here, scalar) PSD
Sξcm,ξcm(ω).

III. PHASE DEFINITION AND PHASE NOISE

The nature of autonomous systems makes their operation
rather involved. Practical oscillators are characterized by a
time-periodic working point that is a stable periodic orbit
xS(t) (the limit cycle), i.e. a closed path in the state space
continuously covered by the oscillator variables. Each point of
the orbit is reached every T seconds, i.e. once per period of os-
cillation, and the actual operation of the circuit is characterized

by the lack of a fixed time reference, meaning that even if the
oscillator correctly operates on the designed periodic solution,
the starting point of the orbit (i.e., the value xS(0)) is randomly
chosen by the peculiar initial conditions that are present at
the time t = 0 of oscillator switch on. More mathematically,
given the WP xS(t) the translated variables xS(t + t0) are
also a solution of (1) for any t0. This suggests to consider
a decomposition of the perturbed oscillator solution x(t) by
separating the variation along the orbit by that taking place
in the (n− 1)-dimensional space that is linearly independent
from the first one.

The behavior along the limit cycle is characterized by the
concept of orbit phase. The exact mathematical definition of
phase in the case of a noisy oscillator is a rather complex task,
especially if n > 2: it involves the concept of orbit isochron
[17]–[19], and it is beyond the scope of this review. We simply
state here that the oscillator phase is defined as the function
such that in the noiseless limit

Φ(t) = Φ(xS(t)) = ω0t (3)

where ω0 = 2πf0 = 1/T is the WP (angular) frequency,
and it is generalized for the noisy oscillator to a stochastic
process whose average is equal to Φ(t). The corresponding
second order statistical properties, i.e. the correlation function
RΦ,Φ(t1, t2) = 〈Φ(t1)Φ(t2)〉, defines the concept of phase
noise. The remaining n − 1 degrees of freedom required
to fully characterize x(t) constitute the oscillator orbital –
or amplitude – noise. As discussed in [20], for electronic
oscillators the WP is normally a strongly stable orbit. This
implies that the orbital perturbations will eventually decay, and
the instantaneous WP is attracted back towards the noiseless
orbit. Amplitude noise is therefore negligible with respect
to phase noise, thus explaining the focus of the literature
(and the designer’s efforts) on phase fluctuations. Nevertheless,
there are examples of autonomous systems, such as e.g. some
models of biological systems [21], [22], for which orbital
fluctuations are not negligible [23]. Furthermore, even in
the electronic circuit case orbital contributions might become
important far away from the oscillation harmonics, which in
turn may impact the dynamic range of receivers operated in
presence of strong adjacent channels [24], [25].

IV. SOLUTION APPROACHES: LINEARIZATION

The solution of (2) is almost always found by leveraging
on the assumed small amplitude of the fluctuations induced by
the noise sources, thus exploiting some degree of linearization.
The simplest approach amounts to assume that the effect of
noise is a perturbation of the oscillator orbit:

x(t) = xS(t) + xn(t) (4)

where xn(t) is a zero average vector stochastic process of size
n.

The standard approach proceeds deriving a stochastic equa-
tion for xn(t) based on the linearization of (2) either around
a DC value x0 that approximates xS(t), or directly around
the oscillator limit cycle xS(t). In the first case the resulting
system is linear time-invariant (LTI), while in the second it
becomes linear periodically time varying (LPTV) [24], [26].
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Fig. 1. Graphical representation of the decomposition of the noisy oscillator
variables into phase and amplitude fluctuations for a generic 2D system.

The LTI analysis is extremely simple, but with a very
limited accuracy and has been recognized as too crude for
many applications, although in some specific cases, namely
oscillators where little noise modulation takes place, the results
might be in a reasonably good agreement with experiments [5].

On the other hand, the LPTV approach is much more popu-
lar, thanks to a combination of simplicity of the mathematical
machinery and of an often quite good accuracy in the results,
at least not asymptotically close to the harmonics of the os-
cillation frequency ω0 where all linearized approaches yield a
divergent spectrum [6]. The LPTV description was adopted in
the classical work by Kurokawa [27], and has been generalized
more recently within the framework of harmonic balance EDA
tools as described in [28], where the Kurokawa results are
derived as a special case. The methodology derived in [28]
decomposes the noise description exploiting two formulations,
one used to estimate noise far away from the harmonics of
ω0, the other very close to the harmonics where the carrier
modulation noise is defined. This sophisticated decomposition
allows for accurate results even quite close to the nominal
oscillation frequency, thus improving the applicability of the
LPTV description and making it a common tool among
designers.

V. SOLUTION APPROACHES: PHASE-AMPLITUDE
DECOMPOSITION

The path to the development of a well founded, and ul-
timately more accurate, theory of noise in oscillators was
initiated by the seminal work of F. Kaertner who proposed in
[29], [30] to decompose the noisy variables into a fluctuating
term along the limit cycle (phase noise) and into amplitude
noise, exploiting the decomposition shown in Fig. 1:

x(t) = xS(t+ α(t)) + δx(t). (5)

The time reference fluctuation α(t) is a zero average (in the
limit of negligible higher order terms of the α equation [15])
stochastic process that corresponds to phase noise

Φ(t) = ω0(t+ α(t)), (6)

while the amplitude fluctuations are represented by δx(t).

Of course the decomposition in (5) is not uniquely defined,
however on the basis of the stability of the noiseless oscillator
WP the basic idea is to choose the definition so that δx(t)
remains small irrespective of time t. Notice that, on the
contrary, the time fluctuation α(t) may be large without forcing
the oscillator instantaneous WP to wander far away from the
orbit xS(t), in fact as shown in [6] the time perturbation α(t)
has a variance that grows unbounded linearly with time.

Taking for granted the decomposition (5), the available
theories amount to define a stochastic equation that enables
the evaluation of the statistical properties of α(t) and of δx(t).
Focusing on phase noise, we follow the most direct path:
amplitude noise is simply neglected, by setting δx(t) = 0.
However, this choice has to be made wisely, in the sense
that the S-ODE that defines the time evolution of α(t)
should be determined by guaranteeing that the corresponding
orbital perturbation remains arbitrarily small. As discussed
in [6], [15] this implies that (2) has to be projected along
the noiseless WP tangent, i.e. dxS/dt whose versor is the
Floquet eigenvector u1(t) associated to the Floquet exponent
µ1 = 0 (see Appendix A). As discussed in [30], this projection
uniquely defines the phase and amplitude perturbations, as the
corresponding equations are invariant with respect to linear
changes of the state variables.

Although the projection along u1(t) is mandatory to define
the fluctuations along the orbit, the choice of the other Floquet
eigenvectors as the remaining n − 1 base elements used to
define the amplitude noise is not strictly necessary. However,
as shown in [31], this choice guarantees that even including
the small amplitude noise, the defining equation for α(t) is left
unchanged, thus preserving the results derived in [6], [7]. Since
the Floquet basis is not in general orthogonal, the projection
operation requires the use of the adjoint Floquet eigenvector
v1(t), also called the perturbation projection vector (PPV).
The resulting nonlinear S-ODE for the time fluctuation α(t)
is [6]

dα
dt

= vT
1(t+ α(t))Bw(t+ α(t))ξw(t)

+

mc∑
m=1

vT
1(t+ α(t))Bwm(t+ α(t))ξcm(t). (7)

Despite its nonlinear nature, this equation can be analyzed
in detail (see [6] for white noise sources, [7] for flicker
noise sources) and a general formulation for the resulting
oscillator phase noise can be found whose characterization
ultimately depends on the determination of the PPV, that
becomes therefore the main quantity to be determined for
phase noise assessment. The detailed analysis in [6], [7]
shows that α(t) becomes asymptotically a Gaussian stationary
stochastic process with variance fully defined by the harmonic
components of the PPV and of the modulating functions

σ2(t) = cwt+
1

π

mc∑
m=1

|V0m|2
∫ +∞

−∞
Sξcm,ξcm(ω)

1− ejωt

ω2 dω

(8)
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where

cw =
1

T

∫ T

0

vT
1(t)Bw(t)BT

w(t)v1(t) dt (9)

represents the contribution of white noise sources, while col-
ored noise is weighted by the magnitude of the DC component
of vT

1(t)Bcm(t)

V0m =
1

T

∫ T

0

vT
1(t)Bcm(t) dt (10)

The PSD of phase noise can also be expressed as a function
of the same parameters, in fact [7] shows that the spectrum of
the asymptotic value of the autocorrelation function for xS(t+
α(t)) reads

Sx,x(ω) =
∑
k

XS,kX
†
S,kSk(ω + kω0) (11)

where XS,k is the amplitude of the k-th harmonic of xS(t)
(assuming an exponential Fourier series), and

Sk(ω) = k2ω
2
0

ω2

[
cw +

mc∑
m=1

|V0m|2Sξcm,ξcm(ω)

]
(12)

for ω � 0, i.e. far away from the harmonics of ω0, while
close to the harmonics (i.e., for ω ≈ 0) a Lorentzian shape
contribution is recovered, so as to avoid the nonphysical
divergence for ω = 0

Sk(ω) =

ω2
0k

2

[
cw +

mc∑
m=1

|V0m|2Sξcm,ξcm(ω)

]
ω4

0k
4

4

[
cw +

mc∑
m=1

|V0m|2Sξcm,ξcm(ω)

]2

+ ω2

(13)

Equation (12) is particularly interesting, as it is consistent
with well known results concerning the scaling of the noise
sources by ω2 on the phase noise spectrum. The expression,
however, is confined to a non-negligible frequency offset from
the ω0 harmonics. Close to these harmonics, the spectrum (13)
becomes Lorentzian, which is again an expected result [20].
Notice also that the magnitude of the phase noise spectrum
depends on the harmonic content of the PPV multiplied times
the source modulation functions (see (9) and (10)).

A. Comparison among [6], [30] and [32]

We discuss here briefly the differences among the ap-
proaches presented in references [6], [30], [32]. A detailed
comparison can be found in [33], where also the PSDs are
presented. Notice that the same nonlinear S-ODE (7) was
found in [30], however in order to find the phase noise
characterization Kaertner made a zero order approximation of
the S-ODE reducing it to the linear case:

dα
dt

= vT
1(t)Bw(t)ξw(t) +

mc∑
m=1

vT
1(t)Bwm(t)ξcm(t). (14)

Therefore, the results in [30] derive from an approximation of
the correct phase equation (7) neglecting the α dependence
on the right hand side. Although this does not impair the
general shape of the output spectrum, that retains both the

exclusive dependence on the spectral components of the PPV
and of the modulating functions and the Lorentzian shape, the
approximation becomes significant for the accurate description
of specific behaviors such as injection locking or power/ground
interference analysis: see [34] and references therein for a
discussion.

The comparison with the Impulse Sensitivity Function (ISF)
theory proposed in [32] (and summarized here in Appendix B)
is made more complex by the several ISF definitions that can
be exploited:

1) the numerical ISF defined in [32, Appendix A] as the
phase fluctuation induced by a delta function perturba-
tion in the oscillator variables calculated through time-
domain simulations corresponds to the PPV [34], and
therefore since in [32] the phase fluctuation is obtained
through a linear response theory the time perturbation
satisfies (14) (although in the original paper this relation
is expressed in integral form), with the same limitations;

2) the closed-form ISF [32, Appendix B] corresponds to the
projection along the direct Floquet eigenvector u1(t), as
opposite to the correct use of the PPV, and thus may
severely undermine the accuracy of the calculated phase
variation.

B. Amplitude noise

Projection of the full S-ODE along the other elements of
the chosen basis yields a vector S-ODE having δx(t) as an
unknown, whose solution characterizes the amplitude noise
of the oscillator. Details on the projection procedure, and
of the intricacies related to the use of Itô calculus, can be
found in [15], [35]. In the simplest case, i.e. treating δx(t)
as a linear perturbation of the limit cycle affected by phase
noise, some of the present authors were able to prove that
xS(t + α(t)) and δx(t) become asymptotically uncorrelated
stochastic processes, while the corresponding amplitude noise
PSD depends on the remaining n− 1 FEs and Floquet eigen-
vectors [25]. The formulae are very complex, but nevertheless
easily implementable into EDA tools provided that the relevant
Floquet quantities have been accurately determined [36]–[38].

Notice that the same S-ODE for amplitude noise discussed
in [25], [31] was already derived in [30]. Although the solution
outlined in [30] is based on the linear phase equation (14) as
opposed to the nonlinear equation (7), the resulting spectra
show, as in [25], that only the Floquet exponents characterized
by a magnitude of the real part much lower than ω0 provide
a significant contribution.

Amplitude noise was also tackled in [24], where the am-
plitude ISF is defined properly extending the concept of ISF
used for phase noise characterization. The amplitude ISF
basically amounts to select the Floquet subspace that mostly
influences the amplitude fluctuation, thus corresponding to an
approximation of the full theory in [25].

Finally, we remark that a careful treatment of the amplitude
noise elimination leads to the presence of higher order terms
in the phase noise equation (see [15], [39] and the references
therein) that also influence the noiseless oscillation frequency.
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x1

x2

xS( )t

v1( )t

v2( )t

u1( )t

u2( )t

Fig. 2. Representation of the limit cycle for the simple 2D oscillator (15),
along with the direct and adjoint Floquet eigenvectors (here shown for t =
π/8).

VI. A SIMPLE 2D EXAMPLE

As an example we consider an extremely simple au-
tonomous system, the 2D oscillator proposed in [40] written
here in cartesian coordinates:

ẋ1 = x1 − x2 − (x1 + x2)
√
x2

1 + x2
2 + εξ1 (15a)

ẋ2 = x1 + x2 + (x1 − x2)
√
x2

1 + x2
2 + εξ2 (15b)

where ε is a parameter introduced to modulate the magnitude
of the unit white Gaussian noise sources ξ (in other words,
we set the colored noise sources to zero). The WP is defined
by the solution of (15) for ε = 0:

xS(t) =

[
xS1(t)

xS2(t)

]
=

[
cos(2t)

sin(2t)

]
. (16)

This very simple example allows to evaluate analytically the
Floquet exponents and eigenvectors. The structural FE µ1 = 0
is characterized by the direct eigenvector u1(t) and by the PPV
v1(t):

u1(t) =

[
− sin(2t)

cos(2t)

]
v1(t) =

[
cos(2t)− sin(2t)

cos(2t) + sin(2t)

]
, (17)

while for the second FE we find µ2 = −1 and

u2(t) =
1

2

[
− cos(2t)− sin(2t)

cos(2t)− sin(2t)

]
v2(t) = 2

[
− cos(2t)

− sin(2t)

]
.

(18)
For both eigenspaces, we have chosen to normalize to 1
the direct eigenvector, while for the adjoint v(t) the bi-
orthogonality condition uT

j (t)vj(t) = 1 was imposed. The
four Floquet eigenvectors are shown in Fig. 2: notice that
u1 and u2 are not orthogonal (though linearly independent),
as well as the PPV and v2. On the other hand, the couples
(u1,v2) and (u2,v1) are orthogonal.

Therefore, the correct time perturbation S-ODE (7) reads
dα
dt

= [cos(2(t+ α(t)))− sin(2(t+ α(t)))] εξ1(t)

+ [cos(2(t+ α(t))) + sin(2(t+ α(t)))] εξ2(t) (19)

both for the rigorous theory in [6] and for the numerical ISF
[32], while the approximated theory in [30] (and the original
implementation of [32] with the numerical ISF) amounts to
solve (14)
dα
dt

= [cos(2t)− sin(2t)] εξ1(t) + [cos(2t) + sin(2t)] εξ2(t).

(20)

Finally, the use of the closed form ISF leads to the Langevin
equation

dα
dt

= − sin(2t)εξ1(t) + cos(2t)εξ2(t). (21)

The classical approach to study S-ODEs such as the time
perturbation equations above amounts to convert them into
the corresponding Fokker-Planck equation [41] that defines
the evolution of the probability density function p(α, t) for
process α(t), the advantage being that such equation is entirely
in the standard functions domain (i.e., no stochastic processes
are involved). The derivation of the Fokker-Planck equation
equivalent to (19), (20) and (21) leads to the same diffusion
type equation:

∂p

∂t
= D

∂2p

∂α2 (22)

where however D = ε2 for (19) and (20), while D = ε2/2
for (21). This very simple behavior is due to the extreme
symmetry of system (15): as clearly visible in (17) and (18),
the components of the Floquet vectors exhibit a constant phase
shift as a consequence of the rotational invariance of (15). The
same argument justifies also the unexpected equivalence of the
two approaches from [6] and [30], which is clearly peculiar
to this specific case.

The solution of (22) is a Gaussian random process

p(α, t) =
1√

4πDt
e
− α2

4Dt (23)

yielding a variance for the time perturbation equal to σ2(t) =
2Dt (linearly increasing with time, as expected). Therefore,
the approaches (19) and (20) are characterized by a phase
noise σ2(t) = 2ε2t, while the closed form ISF model (21)
leads to a Gaussian process with variance σ2(t) = ε2t, i.e.
half of the correct result. A comparison between the models
is shown in Fig. 3.

VII. CONCLUSIONS

We have reviewed the available approaches to oscillator
noise analysis that are currently implemented in modern EDA
tools for low noise oscillator design. Starting from the common
ground of Floquet analysis for the linearized system that is
obtained as a result of the perturbation of the autonomous
system equations around the noiseless working point, the
approaches are presented in a unified way and they are then
discussed with the aim of pointing out the common elements
and the major differences.
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Fig. 3. Representation of the probability density function p(α, t) for the oscillator (15) according to the noise model in (19) and (20) (left), and to the closed
form ISF (21) (right). In both cases ε2 = 0.2 was assumed.

APPENDIX A
A FLOQUET THEORY PRIMER

Floquet theory [11], [42] is the basis for the most advanced
oscillator noise theories, since it describes the input-output
relationship of a linear periodically time-varying (LPTV)
system of size n, such as

dy
dt

= A(t)y(t) (24)

where A(t) = A(t + T ) is a T -periodic matrix of size
n. Floquet theorem writes the solution of (24) with initial
condition y(0) = y0 as

y(t) = U(t)D(t)V(0)y0 (25)

where U(t) and V(t) are two T -periodic invertible square
matrices of size n such that U(t) = V−1(t), while matrix
D(t) is diagonal:

D(t) = diag {exp(µ1t), . . . , exp(µnt)} . (26)

The set of the n complex numbers µi defines the Floquet
exponents (FEs) of (24), while λi = exp(µiT ) are the
corresponding Floquet multipliers (FMs).

Since V(t)U(t) = In (the identity matrix of size n), the
columns ui(t) of U(t) and the rows vT

i (t) of V(t) form
a bi-orthogonal basis of Rn. Function ui(t) exp(µit) is a
solution of (24) with initial condition ui(0). On the other hand,
vi(t) exp(−µit) is a solution of the adjoint system associated
to (24), i.e.

dz
dt

= −AT(t)z(t), (27)

with initial condition vi(0). Therefore, given the FE µi, ui(t)
is the associated direct Floquet eigenvector, while vi(t) is the
adjoint Floquet eigenvector. A geometrical interpretation can
be found in [18]. The exponential dependence on µi implies
that an oscillator has an asymptotically stable orbit if and only
if all the FEs µi (i = 2, . . . , n) have negative real part, or
equivalently all the FMs λi (i = 2, . . . , n) are found inside
the unit circle of the complex plane.

A simple calculation [15] shows that the LPTV system
associated to the linearization of an autonomous system around
the oscillation noiseless working point xS(t) has always µ1 =
0 as a FE, with the associated direct (normalized) Floquet
eigenvector being the tangent to the oscillator limit cycle
u1(t) = ẋS(t)/‖ẋS(t)‖ ( ˙ denotes time derivative). The cor-
responding adjoint Floquet eigenvector v1(t) is the so-called
perturbation projection vector (PPV) that plays the leading
role in the assessment of phase noise [6], [18], [19]. However,
also the other FEs and eigenvectors are of importance, both
because they assess the stability of the circuit working point
[43], and because they are required to express the oscillator
amplitude noise [25]. The corresponding computation can be
performed both in the time- and frequency-domains, see e.g.
[36]–[38], [44]–[46].

APPENDIX B
THE ISF THEORY [32]

According to the definition given in [32], the ISF Γ(ω0τ)
“is a dimensionless, frequency- and amplitude-independent
periodic function with period 2π which describes how much
phase shift results from applying a unit impulse at time t = τ”.
This means that the ISF defined in this way corresponds to the
impulse response of the linearized equations defining the phase
perturbation. However the operative definitions described in
the original paper lead to different relations with reference to
the quantities as used in this review (we consider here, for the
sake of simplicity, the white noise sources) only:

1) the closed from ISF of [32, Appendix B] corresponds to
the impulse response of the linearized equations defining
the phase perturbation projected along the orbit tangent
versor u1(t):

α(t) =

∫ t

−∞
uT

1(t)Bw(t)ξw(t) dt. (28)

Notice that the normalization of the unit tangent, as
discussed in Appendix A, is necessary for establishing
a direct relationship with the closed form ISF;
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2) the numerical ISF of [32, Appendix A] is defined in
an incremental way by introducing an impulse pertur-
bation into the circuit equations, and determining the
corresponding time evolution of the phase variation. As
a consequence, it corresponds to the propagation of a
deterministic source into a phase variation, that in turn
was shown in [6] to be determined by the PPV:

α(t) =

∫ t

−∞
vT

1(t)Bw(t)ξw(t) dt. (29)

As a final remark, we point out that the correct use of
the ISF should be within the nonlinear S-ODE (7), and not
by exploiting the Kaertner approximation (14). The latter
corresponds directly to (29) while (28) leads to a different
S-ODE:

dα
dt

= uT
1(t)Bw(t)ξw(t). (30)
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