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Freight delivery services in urban areas: monitoring accessibility from 1 

vehicle traces and road network modelling 2 

Abstract 3 

Local Authorities plays a fundamental role in the management of city mobility and in accounting for the needs of 4 

different stakeholders involved in the urban freight transport. The aim of this study is to develop a method that could 5 

support the evaluation of the city accessibility for freight distribution services. As Local Authorities can use floating 6 

vehicle data (FVD), which are a current trend in mobility management, gaining new knowledge from data could be crucial 7 

to help the various stakeholders to better address their needs. Accessibility in urban areas is investigated through travel 8 

time estimations along the most frequently used routes connecting relevant nodes of the city and their average speed using 9 

a simplified road network model. After the description of the principal elements of the method, a test case is also presented 10 

for the urban area of Turin, Italy, to demonstrate the applicability of the procedures on a real scenario and dataset. The 11 

results confirm, also through the use of skim matrices, the value of FVD in assessing the accessibility of different zones 12 

interested in delivery operations, which may change over time, providing monitoring functions to urban logistics operators 13 

and Local Authorities in managing urban freight flows.  14 

 15 

Keywords: urban freight logistics; urban accessibility; vehicle trajectories; traffic congestion; transport modelling; Local 16 

Authorities 17 

 18 

1. Introduction 19 

1.1. Urban freight distribution scenario and planning tools 20 

Freight distribution is increasing its role in urban road traffic, owing to the growth of internet shopping, which is 21 
partially substituting traditional goods purchasing. In 2016, the e-commerce market accounted for 19.6 billion € in Italy, 22 
an 18% increase compared to 2015 (Freight Leaders Council, 2017), whilst the same market was 530 billion € for Europe 23 
in 2017, which was 15% higher than the previous year (European Ecommerce Report, 2017). As a result, an increasing 24 
amount of goods is travelling within cities and is delivered directly to individual consumers instead of arriving in bulk to 25 
select store locations. Obviously, this reflects the pattern of urban transport demand as an addition to the traditional 26 
distribution to shops.  27 

At the city level, the greater number of vehicles travelling around a city to make such deliveries adds to the existing 28 
traffic characterising an already congested road network. At the environmental level, recent analyses reveal that “in 29 
Europe urban freight is responsible for 25% of urban transport related CO2 emissions and 30 to 50% of other transport 30 
related pollutants” (Meyer and Meyer, 2013,p. 4). Consequently, public authorities are being asked to propose and test 31 
policies to control and manage traffic in cities with the expected aim of reducing air pollution, as well as to protect 32 
historical centres and monitor land use. The methodology proposed in this paper, based on the availability of a floating 33 
vehicle data (FVD) dataset, can be a possible tool also for Local Authorities to evaluate possible effects of those actions 34 
easily reversible, for which a continuous monitoring procedure could measure the impacts directly on the field. This 35 
approach is more simply implemented if compared with other model-based approaches, which often requiring 36 
simulations. Such measures can be managed in the framework of Sustainable Urban Mobility Plans (SUMPs), which are 37 
medium-term planning tools that are becoming mandatory for cities and metropolitan areas in European countries 38 
(ELTISplus, 2017). The evaluation of such policies and their effects on citizens and stakeholders should be assessed in 39 
both current and alternative scenarios by specific and measurable indicators. This monitoring of the planning process and 40 
of the impact of the implemented measures on city mobility is a fundamental requirement to promote actions which 41 
effectively contribute to achieving the expected benefits (Ambrosini et al., 2010). In addition, for the wider movement of 42 
goods travelling within cities, local authorities are required to propose specific regulation strategies for urban freight 43 
distribution (Kiba-Janiak, 2017). In fact, the European Union requires cities to define urban freight plans to study 44 
measures to modify the efficiency of urban logistics, with the challenging objective of reducing the related greenhouse 45 
gas emissions and noise (Fossheim & Andersen, 2017). More specifically, SUMPs must include specific actions in their 46 
logistic components for the so-called Sustainable Urban Logistics Plan (SULP) (Ambrosino et al., 2015). 47 

As confirmed in a recent aforementioned study, deliveries have a significant impact in terms of traffic congestions 48 
around a city because they account for approximately 10–15% of all urban kilometres travelled (CIVITAS WIKI 49 
consortium, 2015). More specifically, approximately 25–30% of urban deliveries are carried out by light vans in Europe 50 
(ALICE & ERTRAC, 2015). Hence, information extracted from such rich and wide datasets could provide actual feedback 51 
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on freight traffic trends through the definition of specific indicators. Moreover, proper analysis could help in assessing 52 
the impact of the measures proposed at the city level, for example in the SULP (Diana et al., 2020).  53 

1.2. Research contributions on network monitoring and accessibility  54 

The aim of this study is to develop a method to measure city accessibility for freight distribution services using the 55 
positioning data collected during the trips taken in the van.  56 

In general, their travel time and the average speed can be easily estimated along the most frequently used paths that 57 
connect relevant zones in a city if vehicle data are frequently recorded and integrated with a geographic information 58 
system (GIS) (Pascale et al., 2015; Taylor et al., 2000). For example, Greaves and Figliozzi (2008) installed commercial 59 
global positioning system (GPS) devices in selected vehicles participating in a travel survey to detect the freight tour 60 
features in cities, and were able to record second-by-second trip data during delivery operations for the period of the 61 
experiment. A similar approach was applied by Ben-Akiva et al. (2016), in which GPS loggers were fitted in participants’ 62 
trucks and integrated with a web-based survey to detect route choice behaviour. As an alternative, smartphones can be 63 
used to detect high resolution vehicle traces (Ge & Fukuda, 2016), as demonstrated by Gonzalez-Feliu et al. (2013), in 64 
which data were analysed at the route level with primary focus on delivery bays. No mapping was performed to a road 65 
network model. In another study, Yang et al. (2014) used second-by-second GPS data to identify urban freight delivery 66 
stops. However, in practical applications, data available from commercial services (taxi or freight vehicle fleets) may not 67 
be collected with such high sample rates, and in these cases, alternate techniques need to be applied to extract useful 68 
information. 69 

 Cui et al. (2016) applied a method to estimate city accessibility by using GPS data collected from a taxi service, in 70 
which the data sampling ranges were from 30 s to 2 min, which did not achieve the 1 Hz sampling rate required to reliably 71 
map traffic conditions along road links. In their study, a network model is not used and travel times are related to points 72 
on a map where positioning data are available for vehicles. Then, trips are built to estimate accessibility using a zone-73 
based approach considering the points belonging to zones as starting or ending points. Other studies in the literature use 74 
GPS data for different applications, for instance Sharman and Roorda (2013) used GPS truck data to study the inter-75 
arrival duration, defined as the time between arrivals at a destination of two successive vehicles operated by the same 76 
carrier. Hess et al. (2015) proposed a novel application in route choice modelling using GPS data focussing on heavy 77 
goods vehicles. With respect to traditional survey techniques, GPS data provide a better estimation of parameters such as 78 
route length, number of stops, fuel consumption and CO2 emissions (Pluvinet et al., 2012). 79 

GPS data sent with a random sampling rate by transponders (from 1 to 8 pings/h) on trucks were used to analyse the 80 
functional corridors of the state of Mississippi, USA by Holt et al. (2017). They collected more than 26 million individual 81 
truck data points over four years, which were mapped directly on the links of a GIS road network to assess its performance 82 
in predicting freight transport statistics, such as travel time, average speed, and congestion in relevant connections. 83 

The amount of GPS data needed to provide an accurate and time-dependent speed estimation for real-time applications 84 
along selected corridors was investigated by Patire et al. (2015) for different sampling and penetration rates and for 85 
comparison with other technologies (e.g. inductive loops, Bluetooth). The study found that even though a higher average 86 
sampling rate produces more data points, it is preferable to collect data from different devices to improve the accuracy of 87 
the travel time measure on roads. Therefore, a higher penetration rate is more effective than a higher-resolution rate. For 88 
this reason, the approach developed in the present study uses an available dataset with a low sampling rate, and relies on 89 
the detection of multiple vehicles at the same node of a network model. 90 

1.3. Exploitation of the method 91 

As will be explained in more detail, the proposed method has a twofold relevance at the urban level. In fact, it can be 92 
exploited by public authorities to analyse the current network performance regarding freight delivery and to plan future 93 
measures (e.g. the introduction of a booking mechanism for loading/unloading bays, a special policy to dynamically 94 
manage access to restricted traffic areas, realisation of a freight route planner app to optimise deliveries (Pronello et al., 95 
2017)), but also by delivery service operators for shifting delivery times from congested to off-peak periods. Policies that 96 
shift urban goods deliveries from daytime to off-peak hours have the potential to increase the efficiency of freight 97 
distribution and reduce negative external impacts. The interaction between public authorities and delivery service 98 
operators, sharing the monitoring approach proposed, can also lead to the redefinition of the policies, including for 99 
example the rules of restricted traffic zones (time slots, access rights, fares) or even the use of dedicated lanes for the 100 
exclusive use of commercial vehicles at certain times and along selected routes. Freight transport management in urban 101 
areas can then be based on the observed traffic conditions. For instance, Fu and Jenelius (2017) used vehicle GPS probe 102 
data, fleet management data, and logistic information to assess the impacts of specific policies in Stockholm, Norway. 103 
According to de Palma and Lindsey (2011) various congestion pricing schemes can be adopted in urban areas to reduce 104 
congestion. The traditional approaches are based on facilities use, on cordoning-off crossings to protect specific areas of 105 
the city, or on zonal pricing to modify the behaviour of freight distributors. However, considering available technologies, 106 
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such as a global navigation satellite system (GNSS), more advanced schemes can be applied, such as distance-based 107 
pricing specifically set for vehicle types and time of day. For example, the Off-Hours Delivery experiment in New York 108 
City, USA, with a time-of-day pricing strategy shifted only 20% of carriers, but the savings in terms of travel time to all 109 
highway users was approximately 3 to 5 min per trip and to carriers that switched to off-hours was approximately 48 min 110 
per delivery tour, with economics savings estimated between 100$ and 200$ million per year in travel time saving and 111 
pollution reduction (Meyer & Meyer, 2013). 112 

The design process involving any of these actions needs knowledge of the network conditions and measurement of the 113 
accessibility to urban zones for delivery operations, which should be monitored during the implementation phase to adjust, 114 
if necessary, the tolling scheme. To achieve this objective, the raw data chosen for the methodology presented in the 115 
current study are van GPS traces because of their targeted information value for freight delivery in urban areas and their 116 
easy availability. Indeed, they are commonly exploited to monitor vehicle routes and to record stops for loading, 117 
unloading, and parking (Pirra & Diana, 2019). Good cooperation between the data owners (operators) and Local 118 
Authorities is fundamental because this allow the collection of such information. Therefore, Municipalities may establish 119 
some long-term agreements with those operators, such as special area access permission and operational licenses in 120 
exchange for the provision of that kind of datasets. 121 

 122 

2. Methodology 123 

In this paper’s framework, “accessibility” is defined as the ease and extent to which road networks enable delivery 124 
vehicle fleets to reach the various zones of a city. On the whole, a variety of methods have been developed for measuring 125 
accessibility and they can be classified according to Geurs and van Wee (2004) as the following:  126 

- Infrastructure-based measures, which analyse the performance of a transportation infrastructure. 127 
- Location-based measures based on indicators related to the spatial distribution of activities. 128 
- Person-based measures at the individual level, considering individual requirements and limitations. 129 
- Utility-based measures, which consider the benefits that people derive from levels of access based on spatially 130 

distributed activities.  131 
Additional categories are provided in Curl et al. (2011): 132 

- Cumulative measures, which represent the accessibility at a location to another or set of destinations. 133 
- Gravity-based measures, a weighted extension of cumulative measures. 134 

The approach chosen for the present study can be categorised as a mixed approach, because the measures used, such 135 
as travel times on the road network, describe the function of the transport system (infrastructure-based). Additionally, 136 
accessibility is defined as the degree to which two zones in the study area are connected (location-based) by using the 137 
travel time and speed of a set of vehicles, estimated by their positioning data.  138 

The main steps of the procedure, shown in the scheme of Fig. 1, and also applied in a case study described in Section 139 
3, can be summarised as three main steps. 140 

2.1. Construction of the a priori network 141 

The first step of the methodology requires the creation of a sketch model of the road network, called a priori network, 142 
in which main links, nodes, and centroids are identified and classified on a georeferenced map. In this phase, a simplified 143 
links classification may be applied, identifying the motorways and the main roads in the city using a traffic modelling 144 
tool to create this high-level representation. Node selection can be performed by considering all intersections of the urban 145 
motorways regarding their connection role in the road structure, whereas only a subset of the urban area intersections 146 
should be selected based on their relevance to routes connecting the different zones of a city. Local and secondary streets 147 
should not be included in this simplified road network model. Indeed, the focus on the zones accessibility requires to 148 
consider only the main roads that could be followed by the vehicles during their travelling around the city for their 149 
deliveries.   150 

 151 
 152 
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2.2. Travel time estimation from GPS data  153 

Travel time estimation from GPS data is performed for the links connecting the selected nodes by exploiting the 154 
positioning data collected by light vans during their usual delivery operations in the city, which can be provided by 155 
tracking and tracing systems already available. The travel time calculation aims to better define the network features and 156 
road types for homogeneous time periods over a day. In this phase, a buffer for each node type is also defined to effectively 157 
detect as many vehicles as possible at road intersections and consequently their travel times along links. Each node of the 158 
a priori network and its buffer area can then be used to detect the moment when an equipped vehicle crosses the related 159 
road intersection. Mapping the vehicles at the nodes rather than along the arcs increases the chance of detecting them in 160 
the case of low sampling rates, because they usually spend more time at intersections (in particular when the traffic signal 161 
is red), and because the positioning accuracy based on a satellite’s line of sight is generally higher. This operation can be 162 
implemented through the creation of a circular boundary area around each node of the network by using GIS software. 163 
To extract information, only the vehicle positions in those areas are taken into account, storing the vehicle identifier, date 164 
and time of passage, position (latitude, longitude), course and speed. An explorative analysis can be conducted to 165 
determine the proper dimension(s) of the boundaries in terms of their diameter to ascertain if the number of detected 166 
vehicles can be increased whilst taking into account the quality of vehicle positioning at intersections. Because the 167 
accuracy of GPS positioning is reduced, especially in urban canyons, a proper boundary around each node is determined 168 
to increase the chance of detecting vehicles at each node, as explained in the application example in Section 3. 169 

The travel time along links is estimated without applying classic map matching procedures based on a link approach, 170 
as in Holt et al. (2017), in which the vehicle position is associated to the links. Matching is accomplished by focussing on 171 
the time when a vehicle is detected at selected nodes of the road network. The time of detection is then referred to each 172 
vehicle travelling around the city on a specific working day (of the monthly observation period). A further key issue is to 173 
determine whether a vehicle has actually moved along the arc in its travel between the two nodes at the arc’s extremes by 174 
comparing the course of each GPS recording, i.e. the driving direction of the vehicle, with the direction of the arc. More 175 

Fig. 1 Flow diagram of developed methodology and data used in the three main steps 
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precisely, all the courses associated with GPS recordings of the selected vehicle in its travel between the two nodes are 176 
considered to verify that they are similar to the corresponding value of the arc bearing. Some variation in the course values 177 
is tolerated in the algorithm to include any measures that are different from the arc bearing value simply because of the 178 
road’s curvature. More precisely, the root mean square error between all GPS courses and the bearing is computed: if it 179 
is less than 50 degrees the vehicle is assumed travelling through the arc under consideration and without deviations(Pirra 180 
& Diana, 2019). 181 

Then, estimation of the link travel time (TT) is derived by computing the difference between the timestamps of the 182 
first recording in the boundary around the origin node and the first recording registered in the boundary around the end 183 
node. This value is related to phases when the vehicle is moving and those when it stops due to traffic conditions (delays 184 
at intersections, congestion, traffic lights) or service operation (e.g. the time required to make a delivery). The overall 185 
time interval for a series of subsequent 0 speed recordings along the selected arc is calculated and its duration is named 186 
ST (stop time).It is possible to find various values (Ns) of ST for each link, namely STi, i= 1,…,Ns. It is thus necessary 187 
to remove them to obtain the “real” travel time along the arc (TTr). However, while dealing with congestion, we could 188 
think to consider the stops due to traffic condition as part of the time required to travel along a road. Therefore, only the 189 
STi associated with the deliveries has to be removed from the travel time TT. A specific threshold of 120 s is defined to 190 
differentiate these two cases. Time ranges STi shorter than this value are commonly associated to typical maximum 191 
duration of a stop for yielding or at traffic lights, whereas service stops are normally longer (S. Greaves and Figliozzi, 192 
2008). Thus, when the computed STi is longer than 120 s, it is considered as a service stop and has to be removed from 193 
TT, otherwise it could be considered as part of the time necessary to travel along the road. The final value TTr for each 194 
arc is thus obtained as  195 

𝑇𝑇𝑟 = 𝑇𝑇 − ∑ 𝑆𝑇𝑖

𝑁𝑠

𝑖=1
 196 

Where Ns is the total number of stops intervals found and  197 

𝑆𝑇𝑖 =  {
0  𝑖𝑓 𝑆𝑇𝑖 ≤ 120 𝑠

𝑆𝑇𝑖  𝑖𝑓 𝑆𝑇𝑖 > 120 𝑠 
 198 

 199 

2.3. Construction and validation of the a posteriori network  200 

The data derived from the previous steps of the methodology are exploited to define the final network, called a 201 
posteriori, which represents an updated model with estimated travel time information and a more realistic road 202 
classification based on observed travel speed. In fact, the main street characteristics originally associated in the a priori 203 
network are refined using the travel time information extracted from the GPS traces dataset. Moreover, the known link 204 
lengths along with the estimated time necessary to travel along each of the arcs of the network are used to compute average 205 
speeds, thus creating a broader and more reliable classification of the links. Many values of travel time can be associated 206 
to a certain arc during the investigation period (one month). The speed value used to refine the links classification is 207 
therefore computed starting from the average travel time obtained by removing the outliers to reduce the influence of 208 
exogenous factors, such as road work, that could worsen traffic conditions on some days of the observation period. To 209 
improve consistency, classes can be defined based on the average speed distributions of mapped links presenting at least 210 
10 measures (after outlier removal) and the shape of the plot, as it will be clarified the case study in Section 3.3.  211 

At this point, model verification is necessary to ascertain if the travel time values estimated to measure the accessibility 212 
among selected zones provide consistent values compared to those supplied by map providers on the web (e.g. Open 213 
Street Map, Google Maps, Here). Moreover, a validation of link classifications is performed to check if the simplified 214 
approach used yields acceptable results for the estimation of accessibility. In fact, as explained previously, each link is 215 
assigned to a specific class according to the average speed derived from the previous step of the methodology. This new 216 
categorised value is associated with each of the links. This is an approximation that allows better management of the 217 
model and guarantees negligible loss of information with respect to the travel time estimated between zones. As an 218 
alternative approach, the specific speed values estimated for each link can be used to map the accessibility to the zones 219 
of the study area. Therefore, the validation process involves a comparison between these two scenarios to validate the 220 
approach and the classification adopted. 221 

A further step requires investigating the accessibility matrix estimation for the zones of the study area by considering 222 
skim matrices of travel times along the best route generated by the traffic modelling tool for the a posteriori network at 223 
two principal time periods of each day and comparing them to similar results from the a priori network. A skim matrix 224 
includes impedances between zones and can provide numerical quantification on the accessibility of different parts of the 225 
study area (Mcnally, 2007). Therefore, it is exploited to evaluate the city’s accessibility by considering the travel time 226 
(min) and distance (km) indicators. The analysis, performed using the OmniTRANS tool, focusses on the computation of 227 
the shortest path between the various centroid pairs, where the algorithm considers the travel time or the distance as the 228 
main link parameter. 229 
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3. Application to a case study 230 

The proposed methodology is applied to a real case study represented by the city of Turin, capital of the Piedmont region 231 
in north-west Italy. Its centre includes more than 10,000 economic activities. The wide diffusion of e-commerce deliveries 232 
coupled with normal freight transport represents 8% of Turin’s total traffic (Freight Leaders Council, 2017), with the 233 
associated need for proper accessibility evaluation. Due to the interest on the topic, the city has been actively involved in 234 
European projects dealing with urban freight mobility. Moreover, Turin has implemented a set of ‘push and pull’ measures 235 
combining both incentives and restrictions for those operators that follow a Freight Quality Partnership Agreement in 236 
their delivery activities. Most of these measures aim at reducing and rationalising deliveries in the city centre, which is 237 
characterised by a limited traffic zone.    238 

3.1. Construction of the a priori network   239 

A preliminary network has been imported from OpenStreetMap to map the accessibility in the selected study area (Fig. 240 
2). This network contains a large number of arcs and nodes (in our case, more than 10,000 links and 5000 nodes), in 241 
which the network connectivity is not always guaranteed and includes some link directions that need to be checked. For 242 
this reason, as described in Section 2, an a priori network was created manually based on this georeferenced map by 243 
selecting principal nodes and links.  244 

The network in our case study contains 408 two-way links, including 84 connectors, 110 nodes and 18 centroids. Only 245 
two main types of links are defined to simplify the network: 246 

- “Motorway” includes the links for urban motorways. The speed setting is 80 km/h according to the authors’ 247 
experience of the average speed during congested periods. 248 

- “Road2lanes” includes all other links. The speed setting is set to 30 km/h (although the maximum speed is 50 249 
km/h) to consider the presence and effect of secondary intersections along the links affecting traffic 250 
conditions.  251 

One internal centroid is located at the Turin city centre, whereas 17 external centroids are chosen according to their 252 
relevance in terms of connections with the urban network, including the main high-speed road (A55 Turin Ring Road), 253 
for its relevance to freight distribution vehicles (Fig. 3). 254 

 255 

 256 
Fig. 2 Original network of Turin area (Source: OpenStreetMap) 257 
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 258 
Fig. 3 A priori network of Turin area: Motorways in dark grey, Road2lanes in light grey and connectors in dashed red (Source: OmniTRANS model) 259 

3.2. Travel time estimation from GPS data  260 

The proposed method is applied on a dataset consisting of 360,820 GPS positions in Turin related to vehicles (light 261 
vans) belonging to logistics fleets delivering goods throughout the city (Pirra & Diana, 2019). More precisely, GPS traces 262 
were collected for 28 different vans in the period from April 29 to May 29, 2017, however only 23 vehicles were detected 263 
while travelling within the selected area during work days. Each recording includes time and day, latitude and longitude, 264 
instantaneous velocity and bearing. 265 

 266 
Fig. 4 Recording distributions according to the time of day for 30 min time ranges 267 

The time periods investigated are not referred to an hourly basis; their range is selected according to the frequency of 268 
the position data collected at various moments of a day (Fig. 4). Considering the specific characteristics of the dataset 269 
(delivery operations, small number of vehicles), wide time periods must be set to capture a larger number of vehicles and 270 

Centroids ID Name

1
Turin City 

Center

2
Settimo 

Torinese

3 Mappano

4
Borgaro 

Torinese

5 Venaria Reale

6 Pianezza

7 Rivoli

8
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Torino

9
Orbassano-

Sito

10 Candiolo

11 La Loggia

12
Highway 

South (A6)

13
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Trofarello-

Cambiano-

Moncalieri 

Chieri

14 Grugliasco

15 Collegno

16
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North (A5-A4)

17
San Mauro-

Pescarito

18 Chieri

Absolute frequency [#] 
T
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e 

[H
H

.m
m

] 
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to refer the estimated speed to homogeneous periods. Moreover, it is necessary to recall that the vans are travelling around 271 
the city to deliver goods to shops mainly during normal business hours. Off peak travel times are not considered in the 272 
analysis, because the influence of congestion on the travel could is not relevant. According to such observations, the 273 
analysis in subsequent sections is applied based on the following two-time ranges: 274 

- H1  9.00 - 12.30 a.m. 275 
- H2  4.00 - 6.00 p.m. 276 

As discussed in the Methodology section, it is necessary to detect as many vehicles at road intersections as possible to 277 
compute their travel times along links. Two main classes of nodes are identified to adapt a boundary area to the relevance 278 
of the road intersection: one represents the case where a “Motorway” road is present (meaning Motorway to Motorway 279 
and Motorway to Road2Lanes), while the other includes the crossings of “Road2lanes”. For both classes, six radii were 280 
evaluated, from a minimum of 50 m to a maximum of 300 m, considered in 50 m increments. 281 

The selected values of the radii for the different classes of nodes are given below and Fig. 5 shows examples of two 282 
common node types. 283 

- Intersection of two “Motorway” roads or “Motorway” to “Road2Lanes”   r = 200 m 284 
- Intersection of two “Road2lanes” roads  r = 100 m 285 

 286 

 
(a) 

 
(b) 

Fig. 5  Examples of the two classes of nodes and positioning data: (a) intersection connecting two “Road2lanes” and (b) a node at the crossing of a 287 
“Motorway” and a “Road2lanes” (Source: QGIS). 288 

These values are selected by combining a numerical analysis with evaluation of the map. In fact, the number of links 289 
(roads) where vehicles have travelled is computed for the various combinations of radius values. As expected, higher 290 
numbers of passages are detected if the boundaries are wider for both classes of nodes (e.g. 250 m). However, some 291 
problems regarding the quality of the results could arise in those cases. Fig. 6 shows an example for a link in the city 292 
centre belonging to the “Road2lanes” class and the connecting nodes 10037 and 10038. Two different radii are proposed 293 
for the boundaries, namely 100 m (Fig. 6(a)) and 250 m (Fig. 6 (b)), as well as a selection of positions recorded for two 294 
vehicles travelling in that area of the city. Fig. 6(a) shows that a vehicle has effectively travelled along the selected arc 295 
because it has been localised in the 100 m boundaries around both nodes. By contrast, the image presented in Fig. 6(b) 296 
highlights the role of a proper radius. In this figure, the radius is set too high, and other vehicles travelling along parallel 297 
roads can be erroneously taken into consideration. To avoid this drawback, the selected radii are those aforementioned. 298 
 299 

 
(a) 

 
(b) 

Fig. 6 Example of a link (blue line) connecting nodes 10037 and 10038, both representing intersections of two “Road2lanes” in the city centre. The 300 
images represent two possible radii length: (a) 100 m and (b) 250 m (Source: QGIS). 301 
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As discussed previously, the procedure is conducted in two steps by dividing the recordings according to the time 302 
ranges H1 and H2. Considering the small number of vehicles included in the dataset, the application of the methodology 303 
described in the previous sections provides observed travel time only for a certain number of arcs in the a priori network. 304 
As indicated previously, GPS traces were collected for only 23 vehicles, with 22 of them found travelling along the a 305 
priori network arcs. However, a detailed count yielded values of travel time for 216 of the 324 arcs composing the network 306 
in the time range H1, whereas this number declined to 155 in H2. As explained previously, the dataset encompassed one 307 
month of recordings, thus, each link could have been travelled more than once in each time interval. For example, it is 308 
possible to find up to 63 values for the same arc travelled by different vehicles. This is logical because, in the cited case, 309 
the corresponding road is one of the main access routes for vehicles entering the city from the north, where some of the 310 
main logistic structures are located. However, because a single and representative value of speed is associated with each 311 
link during a given time period, this can be estimated by considering the average travel time. A further refinement is 312 
actually proposed to improve the reliability of the final value obtained; the average is computed only after removal of the 313 
outliers from all possible travel times found for each specific arc. By applying this operation, it is possible to avoid the 314 
influence that unexpected fluctuations in the values collected could have on the final average travel time. On the whole, 315 
outliers were found and removed from 21% of the arcs in H1 and 17% in H2. 316 

3.3. Construction of the a posteriori network  317 

As explained in Section 2, the information derived from the GPS traces dataset is exploited to compute the average 318 
speed for each a priori network link, which is determined from the relationships among the distances between nodes and 319 
the corresponding average travel times. In such manner, the original road characteristics associated by default to the 320 
various arcs are now closer to reality, as perceived by vehicles travelling within the city. To gain consistency in the 321 
classification, this operation is performed considering only those arcs with at least 10 values of computed speed after 322 
outlier removal for H1, namely 18% of all arcs (38 of 216). The average length of these links is 1.7 km with 89% of them 323 
longer than 500 m. 324 

Fig. 7 shows the approach adopted to create new classifications for the a posteriori network. The average speed values 325 
for the 38 arcs are firstly organized in decreasing trend (red line), based on the corresponding minimum and maximum 326 
values (green and blue lines). Then, five new classes are defined from the distribution of values and slopes in the plot. In 327 
particular, the limits of Type3 have been identified according to the highest slope variations, and then, two additional 328 
types for higher speeds and two additional types for lower speeds are introduced, approximating the shape of the average 329 
distribution. The minimum and maximum distributions confirm that the range around the average is quite narrow, with 330 
some exceptions, which pertain to short links that have a negligible effect on the travel time estimation along the routes. 331 
Considering the larger size of the GPS traces dataset recorded in time period H1, this period is used as the reference for 332 
class definition. 333 

 334 

 335 
Fig. 7 Average speeds ([km/h) for the 38 arcs of the a posteriori network used to define the new road classifications 336 

Table 1 provides further details on these new classes: their names (first column), the extreme values of average speed 337 
used to assign each arc to the different classes (second column) and the corresponding average travel speeds that are 338 
associated with each road type (third column). Moreover, the number of links of the a posteriori network that are currently 339 
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assigned to each of the five classes is provided, both for those arcs with at least 10 measures (fourth column) and for those 340 
with at least 5 measures (last column). Note that the majority of arcs fall in the “slowest” class. For a deeper investigation, 341 
it could be useful to check where the different types of links are located on the city map to gain profitable information on 342 
how the logistic fleet “perceives” accessibility and mobility around the city. 343 

Table 1 Characteristics of the a posteriori network road type classification (time range H1). 344 
New road 

type class 

Criteria  

[km/h] 

Average  

[km/h] 

No. arcs  

10 values 

No. arcs  

5 values 

Type1 s* > 110 120 9 12 

Type2 110 ≤ s < 80 105 4 5 

Type3 80 ≤ s < 40 58 2 3 

Type4 40 ≤ s < 20 29 9 13 

Type5 s ≤ 20 10 14 44 

* s: speed  345 
 346 

In Fig. 8, the a posteriori network for H1 refines the one presented in Fig. 3 (a priori). More precisely, the figure 347 

contains the a posteriori network with its new classification for those arcs with at least 10 values of speed (Fig. 8(a)) and 348 

with at least five measures (Fig. 8(b)). A total of 38 updated (coloured) arcs are highlighted in the first case, while this 349 

number increases to 77 in the second. The comparison between the a priori and a posteriori network helps to increase 350 

knowledge of roads that are frequently travelled by the vehicles of this specific dataset. For example, it is important to 351 

note that many of the secondary arcs (those previously classified as “Road2lanes” in Fig. 3) are not as frequently covered 352 

by logistic fleet routes in Fig. 8(a), with the exception of those entering the city from the north-east and the south-west 353 

(violet and pink links). This meets expectations because the corresponding roads are along the connections between the 354 

areas around Turin where logistic structures are mainly located. Moreover, it is worth highlighting that the average travel 355 

speeds associated with those arcs are the lowest (29 or 10 km/h), as identified by the violet and pink coloured lines, 356 

representing somewhat congested streets. On the other hand, higher values are found for the Turin Ring road. In fact, both 357 

maps in Fig. 8 show cyan and green links for this road, meaning that the delivery vehicles travel at average speeds of 120 358 

km/h and 105 km/h, respectively. These considerations are applied in the following evaluations of the results obtained by 359 

analysing the connections of pairs of centroids through shortest paths. 360 

Although the dataset for H1 with more than 10 measures of speed has been used to classify the links of the a 361 

posteriori network, additional information could be gained considering a wider amount of links, including those with at 362 

least five values of speed, which account for 36% of the total links travelled by the fleet. Fig. 8(b) displays them on the 363 

map, providing a more detailed characterisation of the city centre compared to Fig. 8(a). This will be exploited in depth 364 

in the following sections to gain knowledge regarding city accessibility as perceived by the delivery fleet. A similar 365 

representation for the other time range (H2) is shown in Fig. 9. Here, the classification derived previously is applied and 366 

those arcs with at least five values of average speed are displayed and a total of 44 links is found. The matching of this 367 

map with the corresponding one for H1 (Fig. 8(b)) stresses that different roads are travelled in the two periods of the day 368 

by fleet vehicles. Moreover, a further variation is observed when comparing the average speed of some links composing 369 

the Turin Ring road. In fact, for H1 (Fig. 8(b)), higher speed values are detected (Type1 and Type 2, respectively 120 370 

km/h and 105 km/h), whereas in H2 the average travel speed decreases to 58 km/h or even 10 km/h for some links (Fig. 371 

9). During the late afternoon, these congested road conditions are familiar to frequent drivers, which is confirmed by the 372 

information extracted from the GPS traces dataset. In addition, these measures correspond to different days of the month, 373 

indicating that this situation is rather common and is not simply due to an unusual event, such as a car accident or the 374 

presence of road work. The choice of more than 10 speed measures should limit the influence of such random events in 375 

the estimated values.  376 

 377 
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(a) (b) 

Fig. 8 A posteriori networks using arcs with at least (a) 10 measures and (b) 5 measures for the time interval H1 (Source: OmniTRANS) 378 

 379 
Fig. 9 A posteriori network using arcs with at least 5 measures for the time interval H2 (refer to Fig. 6 for the legends, source: OmniTRANS) 380 
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3.4. Verification and validation of a posteriori network 381 

As explained in Section 3.3, the arcs of the network where data are available have been assigned to one of the five 382 
possible classes according to the computed average travel speed. As discussed in the Methodology sections, an alternative 383 
approach would require use of specific speed values estimated for each link to evaluate the accessibility to the zones in 384 
the study area. Hence, validation of the classification leading to the a posteriori network definition involves a comparison 385 
between these two scenarios through comparison of the time necessary to travel amongst the origin/destination (O/D) 386 
pairs of the network. In this test case, for all O/D pairs, the difference in travel time is less than 1 min, with the exception 387 
of some routes directed to zone 18 (less than 4 min), because of low speed links (Type 5) with higher travel times (Fig. 388 
10). Therefore, the validity of the proposed classification is confirmed when approximating specific link values with 389 
respect to the accessibility estimation among zones.  390 

 391 
Fig. 10 Difference in the values of travel time [min] of shortest paths connecting 18 centroids using real speed versus the a posteriori H1 network 392 

(where speeds are represented by classes).  393 

The length and travel time duration of the minimum paths for some selected connections are checked with respect to 394 
three applications available on the Web and operated by well-known map providers: Google maps 395 
(www.google.com/maps), Here data (www.here.com) and OpenStreetMap (www.openstreetmap.org). The travel time 396 
comparisons are presented in Table 2. 397 

Table 2 Travel time [min] comparison for different routes between pairs of centroids using various commercial applications (see Fig. 11 for centroid 398 
positions) 399 

Route A posteriori network Google Maps Here OSM 

10080-10066 22 18-28 25 20 

10066-10080 28 20-35 28 21 

10087-10106 36 24-50 33 31 

10106-10087 27 24-50 30 32 

10080-10114 34 26-45 36 33 

10114-10080 25 26-50 34 32 
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 400 

  
(a) (b) 

 
(c) 

 
(d) 

Fig. 11 Minimum path comparisons using different commercial applications (example of route from node 10080 to node 10066): (a) OmniTRANS, 401 
(b) Google Maps, (c) Here, (d) OpenStreetMap 402 

As indicated in Table 2, each Web service provides different values for similar routes (Fig. 11). Google Map, for 403 
instance, specifies a range of travel time consistent with the one obtained with the presented methodology. One of the 404 
reasons behind these differences could lie in the vehicle types included in the travel time calculation. In our case, the 405 
recordings come from delivery vans, while other web services could also draw from other sources. It could be expected 406 
that their duties influence the speed of the former kind of vehicle, but, as presented in the methodology section, our 407 
procedure deals with removing the stop time required in those activities. The verification presented can indicate that the 408 
network model will not provide out of range values for travel times between relevant zone connections and the results 409 
that we obtain are consistent with those derived from other tools.  410 

4. Discussion on the accessibility results 411 

4.1. Time and distance influence on route selection 412 

The relevance of time for the best route selection can be measured by comparing the travel length for the shortest paths 413 
found (considering time as the link attribute) to the length of the path between the same pair of centroids on the basis of 414 
distance attributes. Fig. 12 visualises these differences between lengths obtained for the two types of path calculations, 415 
considering each time range (H1 and H2) separately. It is interesting to note the polarisation of greater variations in certain 416 
zones, meaning that the contribution of the GPS dataset has a relevant influence on the travel time necessary to go from 417 

10066 

10080 

10087 

10106 

10114 
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specific centroids to others. However, the absence of a complete refinement of the network has a definite impact, as no 418 
information could be added to a more “static” component of the network, such as the distance, which is computed based 419 
on the lengths of the arcs. For example, assuming time as the attribute, although the length of the path from 13 to 17 is 420 
23 km greater than the case of assuming distance, 18 min have been saved, as shown in the first row of Table 3. Fig. 13 421 
shows the changes in this path, presumably as a result of congestion and the refined information regarding the travel speed 422 
contained in the a posteriori network. It is interesting to note that in the second time range (H2), the major change is 423 
symmetrical to the case of H1 (last two rows of Table 3). The information derived by such type of value analysis could 424 
provide useful insight as to the level of efficiency of the network. In fact, if the reduction of time necessary to connect 425 
two centroids is associated with an increase in the kilometres travelled, this would imply greater consumption of resources 426 
by the vehicles related to the distance, such as fuel or tyres. 427 

 428 

 
(a) 

 
(b) 

Fig. 12 Length variation [km] of shortest path for time/distance-based algorithm in the two time ranges: (a) H1 and (b) H2  429 

Table 3 Shortest paths comparison for a particular route (centroids 13-17)  430  

From To 
Distance_T*  

[km] 

Travel 

time_T* 

[min] 

Distance_D* 

[km] 

Travel 

time_D* 

[min] 

Δ distance  

[km] 

H1 
13 17 46.3 42 23.0 60 23.3 

17 13 24.7 49 23.0 60 1.7 

        

H2 
13 17 24.7 50 23.0 60 1.7 

17 13 46.3 48 23.0 60 23.3 
*“T” = shortest path based on the travel time / “D” = shortest path based on the distance 431 

   432 
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(a) 

 
(b) 

Fig. 13 Different shortest paths connecting centroids 13 and 17 for time range H1: (a) 46.3 km and (b) 24.7 km (source: OmniTRANS). 433 

4.2. Skim matrices comparison for the two time periods 434 

The influence of floating car data (FCD) integration on the travel time matrices is highlighted in this section by 435 
considering that in different time periods, the speed may change on the congested links. In Fig. 14, the differences of 436 
travel time between the best paths (selected on the basis of the time attributes) of the two time periods are depicted for 437 
the various zones. The highest value corresponds to approximately 15 min and the same connections can be slower or 438 
faster for the two periods, depending on the pairs of zones.  439 

 440 
Fig. 14 Travel time difference [min] between time ranges H1 and H2 for the scenarios of the a posteriori network with at least 5 measures. 441 
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(a) 

 
(b) 

Fig. 15 Travel time difference [min] between the a priori and a posteriori scenarios for time range: (a) H1 and (b) H2. In both cases, the a posteriori 442 
network with at least 5 measurements is considered.  443 

The valued added by the refinement process on the network model by separating the time periods is confirmed in Fig. 444 
15, where the differences are apparent by comparing the travel time as estimated by the skim matrix for the a priori and 445 
a posteriori networks of H1 and H2. In both cases, a low value, seen as a difference and not as an absolute value, 446 
corresponds to more time required to connect a specific pair of centroids in the a posteriori scenario. For example, as 447 
confirmation of the discussion in Section 3.3, paths reaching centroid 18 in Fig. 15(a) are usually associated with negative 448 
values mainly because most of the nearby links are characterised by low speed values in the a posteriori case, as can be 449 
observed by comparing Fig. 3 and Fig. 8(a). However, the richness given by the knowledge derived with the refinement 450 
of the a priori network is confirmed by the fact that 77% of the values are different from zero in both cases.  451 

4.3. Insight on accessibility for specific zones 452 

A further challenging application of the method focusses on the measurement of the accessibility to and from crucial 453 
centroids for delivery operations, such as the city centre for its business relevance, the connections with external 454 
metropolitan areas, or the zones where depots are located. This information, in terms of travel time, may be helpful to 455 
properly plan delivery trips by fleet managers or to support location decisions for logistic structures within a city. In fact, 456 
the knowledge of the shortest paths for different network configurations (in H1 and H2 time periods in this case) could 457 
provide interesting feedback on the accessibility of various zones under investigation. 458 

A first focus could be the city centre, i.e. centroid 1, as origin (Fig. 16(a)) or destination (Fig. 16(b)) of all possible 459 
connections with other centroids. For instance, in the first case, few variations in values are found, meaning that both the 460 
time range and the refinement of the a priori network seem to have minor influence on the travel time when the routes 461 
are oriented towards the city centre.  462 

 463 
 464 
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(a) (b) 

Fig. 16 Comparison between the travel time [min] for three different scenarios involving: (a) to and (b) from the city centre (centroid 1). 465 

The accessibility of the Motorways located in the northern part of the city (i.e. to and from Milan) is another example 466 
of applying the proposed method to measure the quality of the network with respect to external stakeholders, as shown in 467 
Fig. 17. In this case, reaching other zones is strongly influenced by the time period, as confirmed by the differences 468 
between H1 and H2, as well as by the refinement process of the network with respect to the a priori design. Finally, 469 
similar charts are shown in Fig. 18 for centroid 17, which approximates the position of the area where a cluster of depots 470 
managed by freight distribution companies is currently located. Most of the variations are found, as for the previous 471 
centroid, for travel along paths connecting to that specific zone rather than for those leaving it, as shown in Fig. 18(a) and 472 
(b), respectively. 473 

It is worth observing that the assumptions adopted for the speed values in the a priori network produce travel time 474 
values in Fig. 17 and Fig. 18 that are intermediate between those in H1 and H2. This reveals that the authors’ knowledge 475 
of the average speed used to preliminarily classify the links seems to be affected by the average traffic conditions in the 476 
two periods. 477 

 478 

(a) (b) 

Fig. 17 Comparison between the travel time in three different scenarios involving: (a) to and (b) from Motorway North (centroid 16) 479 
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(a) (b) 

Fig. 18 Comparison between the travel time in three different scenarios involving: (a) to and (b) from the depots area (centroid 17)  480 

Conclusion 481 

The methodology presented in this paper was developed to investigate accessibility in urban areas, as perceived by 482 
freight distribution services operating using delivery vans, through the estimation of the average speed in a road network 483 
model. The low time resolution (sampling rate) of positioning data affected the model design, because not all road links 484 
connecting consecutive intersections could be included, only relevant arterials. For this reason, an approach based on 485 
nodes was adopted to detect vehicle positions along their travel routes, whereas the link information was used only to 486 
check a vehicle’s direction. A classification of the links was also performed to simplify the model management based on 487 
the estimated speed between nodes of the road network.  488 

The main results deriving from the case study in Turin confirm that the FCD values available from common 489 
commercial services can be used to improve the knowledge of the road network performance for various applications. In 490 
this study, high-level accessibility matrices were built to compare different zones of the city interested in delivery 491 
operations by analysing the most used urban connections. These first results are related to a specific type of trajectory 492 
data, collected by light duty vehicles, and they depict a well-defined situation that could be undoubtedly informative for 493 
certain stakeholders, such as public authorities and urban logistics operators.  494 

The comparison of the travel time connecting different areas is another important characteristic to take into account. 495 
From the results of the application, for example, Motorway North (centroid 16) can be reached from some zones in 496 
approximately 20 min in the morning, but this value increases to 35 min if the same route is taken in the afternoon. 497 
However, the period does not significantly affect accessibility when considering travel in the opposite direction. This kind 498 
of information could provide useful suggestions on the creation of specific time ranges that could be exploited efficiently 499 
for the delivery operations along the day. 500 

The proposed method and the derived accessibility matrices can be exploited by Local Authorities to obtain a global 501 
picture of the current network performance for management purposes. Furthermore, better knowledge of different 502 
scenarios can support the planning of future measures to regulate urban freight deliveries. The monitoring of the 503 
accessibility can help in the validation of reversible measures proposed at the city level such as: (a) use of reserved lanes 504 
also for delivery vans, (b) regulation of the time ranges for entering the city centre, (c) exploitation of special permissions. 505 

Other stakeholder categories that might benefit from the results, such as travel time to reach an established zone, are 506 
van/fleet operators. They could exploit such findings as support for: (a) their decisions when planning delivery routes, (b) 507 
choosing the optimal time range(s) for parcel distribution by shifting from congested to off-peak periods, and (c) providing 508 
more accurate delivery time windows to end users. Overall, Local Authorities have to be able to access and manage this 509 
kind of information because they are expected to take into account the needs of different stakeholders acting in the field 510 
to be sure of creating the proper strategy for freight transport at the city level. 511 

Based on the proposed framework, future work could try to apply the methodology by extending the focus to other 512 
urban areas where deliveries or city logistic operations are relevant. Besides, the availability of a more extensive database 513 
and integrating the trajectories of more freight operators could extend the knowledge pertaining to urban accessibility. 514 
Targeted analyses could also focus on different period of the year (summer/winter) or days of the week, to identify 515 
particular trends. The power of the approach proposed lies in the possibility of evaluating and monitoring the effects of 516 
reversible actions proposed at the city level (access in certain areas, use of reserved lanes, etc.) that would require a 517 
simulation model not always easily to be implemented. With all these aims, a network modelling tool, although here 518 
applied with only a small portion of its functionalities, could be used to manage additional associated information, such 519 
as traffic flow on links or the travel demand between specific zones. 520 
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