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Abstract: Nowadays, manufacturing companies need to improve their production monitoring
and prediction to be more flexible and re-configurable. To do so, the digitization of the
manufacturing environment is a very critical issue. This paper proposes an approach to develop
digital twins in this environment. Digital twins are virtual systems, real time connected with
their physical counterpart, which replicate exactly their behaviour. Discrete event simulation
models, connected in real-time with their real system counterparts, are developed in this work.
Two industrial use cases are analysed, to show the benefits that this promising technology can

bring to the manufacturing industry.
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1. INTRODUCTION

The rise of the Fourth Industrial (I4.0) revolution has
opened an incredible amount of opportunities and has been
creating new needs in industries. In particular, companies
want to achieve the possibility to control, monitor and
predict the performance of their equipment in an effective
way to be flexible enough to market needs. Big data, pre-
dictive maintenance, Internet of Things (IoT) are some of
the most promising enabling technologies of 14.0. However,
these technologies still do not really close the loop from
the physical to the digital world. From this perspective,
to link these two worlds, the cyber physical system (CPS)
and cyber physical production system (CPPS) are two key
concepts. The first is defined as ”systems of collaborating
computational entities which are in intensive connection
with the surrounding physical world and its on-going
processes, providing and using, at the same time, data-
accessing and data-processing services available on the
internet” (Monostori, 2014). The second consist of ”au-
tonomous and cooperative elements and sub-systems that
are getting into connection with each other in situation
dependent ways, on and across all levels of production,
from processes through machines up to production and
logistics networks” (Monostori, 2014). Digital twins, i.e.,
the virtual components of a CPS, are virtual systems that
replicate real ones and, consequently, usually represent the
connection between physical and virtual worlds. For this
purpose, they continuously need data from the real sys-
tems to describe their status. These data, in manufacturing
context, are shop floor data (Tao and Zhang, 2017). Shop
floor data enable digital twins to be synchronized with the
field. This communication needs to be bi-univocal (from

physical to digital and vice versa) (Lu et al., 2020; Modoni
et al., 2019). Generally, a simulator is used to build the dig-
ital twin (DT), in particular the virtual shop floor (Tao and
Zhang, 2017). This must be able to autonomously update
itself when and if the real system changes. Moreover, it
has to be able to perform real time simulation in proactive
and reactive mode, after deviation or disturbance from the
foreseen plan (Monostori et al., 2016).

Nowadays, simulators are mostly used in the building
phase of physical systems for performance evaluation pur-
poses. Instead, in the production phase, they are used for
performance prediction in what-if analysis, by collecting
data from the physical machinery for a period of time
that enables the identification of a typical behaviour. Con-
sequently, the majority of simulators are not real time
connected with the equipment. In this sense, in the man-
ufacturing context, it is possible to currently identify a
gap between the initial installation and commissioning of
a production line and its potential connection with its
virtual counterpart. In fact, supplier companies of automa-
tion systems usually provide production lines that have
previously required a simulator. This has been used to
prove that the cycle time requested by the customer is
achievable. Then the physical system has been installed,
tested and finally delivered to the plant. In the majority
of the cases, the simulator used at the early stage of the
project will not be exploited anymore and not always sold
to the customer. In fact, the line managers are used to
require the development of a new simulation model during
the life cycle of the system for scenarios evaluation.

This paper proposes real use cases of manufacturing sys-
tems’ DT developed in the design phase and still used in
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the control and production phase. An autonomous trigger
mechanism is developed to continuously detect anoma-
lous behavior of the production lines during control and
production phase. Thus, production lines are real time
connected with their virtual counterpart. If an irregularity
is observed, the simulators are run and fed with data
collected from the field to predict the systems perfor-
mance. Also, the DT's are useful to autonomously evaluate
alternative scenarios to increase performance, based on the
actual functioning of real systems.

The remainder of the paper is structured as follows.
Section 2 shows the relevant literature and section 3 the
contribution of this work. The description of the approach
and of the use cases are reported in Section 4 and 5,
respectively. Finally, conclusions are drawn in Section 6.

2. LITERATURE REVIEW

The digital twin objectives can be declined in different
ways and the related literature does not show the same
technological features and functionalities (Cimino et al.,
2019). On one hand, the DT is defined not only for a
prognostic assessment at a design stage (static perspec-
tive), but also for a continuous check and control (dynamic
perspective) (Negri et al., 2017). In this context, DTs are
used to reflect the current status of the system and to
perform real-time monitoring and optimization, decision
making, predictive and remote maintenance (Tao et al.,
2018). According to this perspective, DT can be defined
as a decision support tool when it is eventually linked to
a Manufacturing Execution System (MES) (Kunath and
Winkler, 2018). Also, DTs can be defined as a support tool
on the experimental phase of a system life cycle (Dahmen
and Rossmann, 2018; Sujové et al., 2019).

Simulation and simulators play a significant role in the
development of a DT (Negri et al., 2017). The simulation
model can have different shapes: 3D dynamical Finite
Element Method (FEM)-based models or multi physi-
cal models, prediction models, discrete event simulation
(DES) models or Simulink models (Cimino et al., 2019).
In addition, the so called information model could be
based essentially on ISO format (Lu et al., 2020). However,
focusing on the applications in which a DES model is used
as a digital twin, various approaches can be identified.
In fact, it can be used in synergy with other models
such as an agent-based one. In this case, when an error
occurs, the agent-based model uses agents that compete
for executing the previously failed, unfinished task, while
the DES model forecasts show the diversion from the
planned course (Beregi et al., 2018). In other scenarios,
DES models can be used as a virtual counterpart to evalu-
ate performances in what-if scenarios, even without a real
time connection with the field or, at most, by collecting
data only for a limited amount of time to identify typical
functioning of the system (Sujové et al., 2019; Karanjkar
et al., 2018). Some applications exist to connect in real
time the DES model with the field, with the purpose of
mirroring the physical equipment functioning (Vachélek
et al., 2017; Garrido and Sdez, 2019).

Moreover, DTs are applied in various industries: there
are use cases in manufacturing facilities or automotive
companies (Karanjkar et al., 2018; Nonaka et al., 2015;

Sujovd et al., 2019) and others on ”ad hoc” systems
(e.g., production lines installed in laboratory environment)
(Beregi et al., 2018; Vachdlek et al., 2017; Cimino et al.,
2019).

In conclusion, there are few cases presented within the
literature that deals with industrial applications of dis-
crete event simulation combined with a continuous real
time connection with the field with the aim of forecasting
system performances. Moreover, there is a lack of common
vision and architecture that has to be followed to imple-
ment applications.

3. CONTRIBUTION

This paper addresses the implementation of DTs through
simulators connected in real time with their physical coun-
terpart, to be used during the production phase. The
simulator is a DES model connected with the physical
machinery thanks to an additional software layer. This is
essentially composed by an autonomous trigger mechanism
able to detect anomalous behavior of the physical system,
a data pre-processing that extracts the actual function-
ing of the equipment in terms of statistical distributions,
and an interface to feed and run the simulator without
human intervention. Therefore, the DT is able to predict
the production performances and give the plant staff an
effective decision support tool. Also, sensitivity analysis
of the actual behaviour of the line can be automatically
performed with the model. That analysis can also au-
tonomously evaluate different scenarios to find the best
configuration on the system. Moreover, two use cases are
adopted for the design and validation and are represented
by two assembly production lines of Comau (an Italian
company of industrial automation based in Turin, Italy)
and in a Comau customer plant.

4. APPROACH DEFINITION

In order to implement the DT, three modules are devel-
oped in terms of architecture: the input data management,
the simulation model and the output analysis. Each mod-
ule contains micro-services, dedicated to single operations.

The input data management module is dedicated to data
collection from the field. In particular, data have different
types of sources: Manufacturing Execution System, ware-
house, real time operational, Work In Progress (WIP),
Material Requirements Planning (MRP) and Enterprise
Resource Planning (ERP). These data are collected with
specific connectors (e.g., database connectors, real time
protocols for industrial communications, sensors and so
on), and then pre-processed to extract as much knowledge
as possible. In this context, we are interested in: 1) the
cycle time for each operation in the production line (the
real and the target); 2) the list of failures and down-
time occurred in the line (failure data); 3) the warehouse
availability (WIP data); 4) the order list and the related
delivery time and the staff planning. In particular, the
cycle time data are processed in order to verify if a trend
exists leading to a deviation from the targeted behavior,
to calculate its statistical distribution and to feed the DES
model. Through a micro-service that exploits the Moving
Average Convergence Divergence (MACD) methodology
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(Papadamou and Tsopoglou, 2001), it is possible to isolate
the subset of data collected after the starting of the trend.
Then, to obtain the slope (i.e., the direction and steepness
of the cycle time time series), an ordinary least squares
model or a Theil-Sen estimator are used. If this slope is
significantly different from zero, the fitting distribution
micro-service calculates the best statistical distribution for
that data, using Kolmogorov Smirnov hypothesis test with
a subset of possible continuous distributions.

The simulation model represents the second and crucial
part of the architecture. It consists of a DES model able to
use the above mentioned real time data as initial settings.
The model plays the role of the digital twin having access
to that information and perfectly replicating the actual
behavior of the plant. Once created with the native blocks
of the software (e.g., sources, buffers, conveyors, processes
and so on), it is enriched with functions and connectors
that allow the automatic insertion of parameters, the
start of execution and the export of results. In particular,
methods are implemented to allow the processing block to
use the right processing time for the specific entity it has
to work on, by reading this value from the imported data.
Moreover, the DES model is self-resetted and runs with
a user specified duration, based on the specific needs of
the use case. Finally, when the simulation stops, a method
extracts the values of specific KPIs (e.g., throughput per
day, per hour, per minute for each entity type or machine
usage) in order to export them automatically. Finally, a
configuration matrix is added, to enable the user to change
the flow of the model evaluating alternative production
strategies. For example, it is possible to add resources
to a process, activate backup stations, change the buffer
capacity or the number of working shifts without manually
modifying the DES model.

The data coming from the model execution are visual-
ized in a graphical user interface (GUI), to show to the
final users the consequences of the actual behavior of
the line. In particular, the results of the simulation are
compared with the expected target performances in terms
of throughput, machine usage, availability, and revenues.
Moreover, in the GUI the user can create a scenario to
be simulated with real time data, in order to find how
to improve the performances previously estimated. This
arrangement is essentially a modification of the previously
mentioned configuration matrix. Also in this case, results
are shown in terms of target and forecast KPI comparison.
To summarize, the main goal of the GUI is to give the user
a decision support tool that provides suggestions immedi-
ately applicable in the plant to control its performances.
The resulting architecture is depicted in Fig. 1.

5. USE CASES FOR APPROACH VALIDATION

To test and validate the proposed approach, the DT is
implemented in two different use cases. The first is a
manual assembly line in Comau, headquarter in Turin,
while the second is a line located at a customer plant.
The first line is a brownfield case, i.e., an already existing
manufacturing line in which the proposed tool has been
added. The second case is a greenfield case, i.e., a new
physical system on an automate cell in the final assembly
phase of an automotive production line. The proposed

Automatic trigger
mechanisms

‘ Data
‘ collection

Data pre
processing

Discrete Event
Simulator

Output
analysis

Scheduler

Station
Station

Fig. 1. Architecture of digital twin.
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Fig. 2. Assembly production line scheme.

architecture is applicable in both cases with promising
results.

The input data management and the output analysis
are developed in Python and are the same for each use
case, except for specific functions for data pre-processing.
Instead, the choice of the software to implement the DES
models actually depends on company requirements. The
Comau (brownfield) use case was implemented in Flexsim,
as it is internally used for research scope. The second
(greenfield) use case was implemented in Plant Simulation,
as it was a customer requirement. The use of different
softwares proves that the approach is agnostic to a specific
simulation engine. Finally, the GUI is implemented in
Python Plotly and Angular.

5.1 Brownfield case

The use case addresses an assembly line composed of
four main parts, as shown in Fig. 2. Specifically, on the
left side there are two parallel operations for the first
and second component assembly (with 4 and 12 parallel
stations, respectively) and the marriage of these two parts
(with 4 parallel stations). On the right side, there are the
third component assembly, with 4 operations in series,
the final marriage of the three components and a final
operation. All of these operations are manual and, hence,
a Programmable Logic Controller (PLC) is not present. At
the end of each of them, a human operator confirms the
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success of the OP with a barcode reader that registers the
event in the central database. The aim of the DT in this
use case is to predict the line throughput per shift, day and
week, and anomaly deviations from the target cycle time.
In addition, the DT is used to find efficiency measures (e.g.,
add a shift or increase the resources available in OPs) to
minimize the production delay to deliver the goods on time
to customers or at least decrease it.

The first step is to collect and pre-process data coming
from the Comau central database. This contains the op-
erational data of the line, but also the production plan
(i.e., the list of jobs to be done during the day, week
and month). The first micro-service of the input data
management module analyses the first type of data. It
calculates the cycle time of every OP using the timestamp
of two consecutive confirmations and eventually removes
outlier values (based on their quantiles). The output of this
function is reported in Table 1. The timestamp column
represents the time the production of a piece of product
variant ends in station object that had a duration, in
seconds, equal to cycle time. These data are processed
in order to detect a possible trend or deviation from
the target behavior and, consequently, to find the best
statistical distribution for the process, which presents the
anomaly, using the specific micro-service. Finally, the best
result is translated into Flexsim syntax (i.e., normal(3600,
900) represents the normal distribution with mean 3600
and standard deviation 900, both expressed in seconds)
and inserted into a table of a dedicated database reached
from the DES model. On the other hand, the production
plan is read from the database and then transformed in
Flexsim format to be readable in the Source block, as
shown in Tables 2 and 3, and inserted in the previously
mentioned database. In these tables, each row represents
a batch of items to be created in the simulation, which is
characterized as follow: item name takes the default value
”Product”, the quantity is the batch size and optional label
specifies a property of the item. In our case, this represents
the variant of the piece. Table 3 contains an additional
column, arrival time, to specify the time that the entity
has to be created in the simulation.

This first step of the methodology is repeated with a daily
frequency by considering data collected with one week
horizon. On one hand, the definition of this strategy is
aligned with the (roughly) one-hour cycle time of this
line; on the other hand, it was aligned with line personnel
opinion.

To make all the above data available for the DES, a connec-
tor is configured in the model in order to allow information
to be caught from external sources. In this way, the model
is able to import the process actual cycle time and the
scheduling of the production, and also to export result
data (i.e., predicted throughput per hour, day and shift,
machine usage and availability). The DES model, shown
in Fig. 3, is built using three different entity sources for
stations that represent the components assembly. All of
them follow the same production plan. Then, to model the
assembly and marriage operations, process and combiner
blocks are used. The baseline model is configured with
two working shifts, one first component assembly station
and one marriage station disabled, according to the real
functioning of the physical line.

i

Fig. 3. Flexsim simulation model.

To conclude, the results are shown in the GUI that
visualizes the input data analysis with histograms and
boxplots, and the results of trend detection and fitting
distribution in table format, as reported in Fig. 4. Then,
the results of the simulation, in terms of throughput, and
the results of different scenarios evaluation are reported
in Figures 5 and 6, respectively. This use case addresses
the following scenarios: three working shifts instead of two,
activate one more station for the first component assembly,
activate one more station of component marriage. The
definition of such scenarios followed a discussions with
the plant personnel and represents the most feasible and
applicable line improvements.

The most important feature of this approach is the enabled
possibility to make sensitivity analysis of the input data
and of the actual behavior on the output KPIs. First, it
is possible to determine how much and in what time a
deviation of the cycle time significantly affects production
in terms of throughput. Moreover, it is possible to under-
stand if this deviation produces an unexpected bottleneck
in the system that could influence the target station usage
or availability as well as the throughput. Finally, thanks to
the possibility of evaluating different scenarios and model
configurations, the user can understand how to increase
the efficiency of the line based on the actual behavior.

Table 1. Operational data structure after in-

put.
timestamp object cycle time  product variant
10:12:15 22/10/2020 opl0 3600 A
11:12:15 22/10/2020 opl0 3600 A
4250 B

12:12:15 22/10/2020 op20

Table 2. Flexsim Source data acceptable for-

mats.
item name quantity optional label
Product 1 label value
Product 1 label value

Table 3. Flexsim Source data acceptable for-

mats.
arrival time  item name quantity optional label
0 Product 1 label value
0 Product 1 label value

5.2 Greenfield case

The second use case is under development by Comau in
a customer plant whose layout cannot be displayed due
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Fig. 4. Data management module visualization.
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Fig. 5. Simulated throughput visualization.

to patent confidentiality reasons. The system is an auto-
mated cell in the final assembly phase of an automotive
production line. All the stations are robotic and, due to
the fact that the flow is fixed and without buffers within
the stations, there is backup equipment activated only in
the case of faults on the primary machinery. Differently
from the previous use case, here a PLC exists. As Comau
has followed the cell development since its design stage,
Comau control engineers are able to program the PLC in
order to record on specific variables, called tags, the cycle
time of each operation. In this way, this time is available
for the analysis.

With the specific micro-service, input data are aggregated
to obtain the duration of a series of operations that repre-
sents a unique block of the simulation model (e.g., all the
operations that compose the pick or the place operation
of a robot, such as the validation of the vision system of
the right positioning or the right vacuum engage). Then,

Control Room - Assembly Line Dashboard

Variant B Variant C
Overview Statistical Real Time Scenario
Analysis Simulated Evaluation
Data
object enable capacity
2_enabled_shifts 1 0
3_enabled_shifts 0 0
1_extra_component1_station_enabled 1 0
1_extra_marriage_station_enabled 0 0

my_new_scenario

CONFIGURE THIS SCENARIO

Planned Poduction

Object
component1

op60

Week
planned_component!_week

planned_op60_week

Simulated Poduction
Object
component!

op60

planned_component2_week

Week
scenario_component1_week

scenario_op60_week

Day
planned_component1_day
planned_op60_day

planned_component2_day

Day
scenario_component1_day

scenario_op60_day

Shift
planned_component1_shift
planned_op60_shift

planned_component2_shift

Shift
scenario_component!_shift

scenario_op60_shift

scenario week  scenario_component2_day scenario_component2_shift

Fig. 6. User interface to configure a new scenario and its
simulated throughput visualization.

the trend detection micro-service tests if a deviation from
the target cycle time exists with a hourly frequency and
by using data collected through one day and, in this case,
the fitting distribution micro-service calculates the best
distribution for the cycle times. Notice that these services,
deployed on the Azure Cloud, enable this approach not to
be a stand-alone implementation but part of the customer
information technology system. Finally, these data feed
the simulation model implemented in Plant Simulation. To
interact with the simulator, a micro-service based on Plant
Simulation native internal web server was implemented.
In fact, the data exchange was done by HTTP POST
requests.

Regarding the results, also in this case, the sensitivity
analysis that can be done is very promising. First, the
impact of micro stoppages on the throughput of the pro-
duction line can be evaluated. Second, it can be assessed
whether and when to activate the backup equipment can
improve performance by losing only an acceptable number
of jobs per hour (JPH). Finally, if the input analysis shows
that, with a particular type of product, the production line
has a systematic increase on the cycle time, it is possible
to change the production plan to temporarily stop the
production of that variant of product.

6. CONCLUSIONS AND FUTURE WORKS

Digital twins are some of the most promising technologies
of 14.0, due to their potential capacity to make manu-
facturing systems more flexible and re-configurable. The
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key concept is the real time connection with the field in
order to replicate into the digital environment the physical
world. This paper proposes an approach to implement the
DT in a manufacturing environment using a simulator as
virtual counterpart (specifically, a DES model). In fact,
usually a simulator of the manufacturing environment
already exists because it has been developed during the de-
sign of the physical system but, until now, it has not been
connected and exploited during the production phase. In
this paper, the simulator is used as DT from the design
to the production phase. In fact, an approach to connect
the DES model in real time is proposed; the DES model
is developed at the beginning of the system life cycle,
with the physical equipment, analysing and pre-processing
data coming from the field. Afterwards, the results of the
simulation are shown to give at the user a decision support
tool to compare the predicted performances of the line
with the planned ones. In conclusion, the two proposed
industrial use cases reveal the promising benefits of the
followed approach.

Future works should address data pre-process, not only
for the evaluation of cycle times, but also for all the
other types of data used to feed the simulator. In fact,
feeding the DT with more and more information will
increase its adherence to the real system. Moreover, efforts
should focus on the implementation of a methodology that,
starting from the input data, is able to autonomously
create the DES model and to catch the variations of the
simulator from the real system. Finally, to close the loop
from the virtual to the physical equipment, methods to
enhance the communication between the DT to the real
system should be developed, to apply corrective methods
to improve the performances of the production line in real
time.
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