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Abstract. The quality of transmission (QoT) estimation of lightpaths
(LPs) has both technological and economic significance from the oper-
ator’s perspective. Typically, the network administrator configures the
network element (NE) working point according to the specified nominal
values given by vendors. These operational NEs experienced some varia-
tion from the given nominal working point and thus put up uncertainty
during their operation, resulting in the introduction of uncertainty in
estimating LP QoT. Consequently, a substantial margin is required to
avoid any network outage. In this context, to reduce the required mar-
gin provisioning, a machine learning (ML) based framework is proposed
which is cross-trained using the information retrieved from the fully op-
erational network and utilized to support the QoT estimation unit of an
un-used sister network.

Keywords: Machine Learning · QoT-estimation · Generalized SNR.

1 Introduction

The latest evolving technologies such as 5G, virtual and augmented reality, in-
ternet of things (IOTs), and different cloud platforms increase the trend of the
global internet traffic [1]. This upsurge of the latest technologies and bandwidth-
hungry applications has put on high demand and new requirements for capacity
improvement and optical networks’ reliability. To accommodate this remarkable
growth of internet traffic and maximize profits on CAPEX assets, the network
operator always requests the full exploitation of the remaining capacity of the
already deployed infrastructure. To this aim, the data transport layer must be
pushed to reach the maximum capacity limit. The primary technologies for ex-
ploiting data transport are the dense-wavelength-division multiplexed (DWDM)
together with coherent transmission. These technologies pave a path for evolving
technologies like elastic optical networks (EONs) and optical software-defined
networking (Optical-SDN). The EONs enable efficient utilization of the avail-
able spectrum by enabling the network controller to offer flexible assignment of
spectrum slices to the particular traffic request [2]. At the same time, the SDN
controller empowers the separate configuration of the working points of each NE
and provides the mean for a customized network management system.



The foundation step towards elastic and customized network management is
the abstraction of the optical transport network as a topological grid subjective
with the GSNR degradation during the propagation through optical line systems
(OLSs) which comprise fiber spans followed by amplifies [3]. Typically, OLSs are
managed with the centralized operating system in the control plane [4]. This
centralized controller adjusts the amplifier operations and subsequently defines
the QoT deprivation. The exploitation of the exact nominal working point en-
ables well estimation of the total LP QoT. Hence, during the provisioning of
LP, a smaller system margin is demanded, and subsequently, more traffic can be
accommodated, assisting improved utilization of the mounted infrastructure.

In the current frame of reference, QoT is characterized in terms of the gen-
eralized SNR (GSNR), which incorporates the impact of ASE noise and NLI
accumulation [5]. The flexible transceiver considered in this work is character-
ized by providing an OSNR threshold for a given modulation format; the existing
GSNR of a given LP describes the path viability. Thus, the main application of
SDN towards the transport layer is a QoT estimator (QoT-E); providing the
network information, the QoT-E engine calculates the GSNR over a particular
LP. Referring to the Telecom Infra Project [5, 6], it has been widely validated
by providing the precise information of the physical layer; a QoT-E engine can
deliver a precise estimation of GSNR. Generally, NEs suffered from a variation
in the working point due to the hardware (HW) aging, the variation of spectral
load at OLS, and different environmental effects during field operations. These
induced variations affect the actual GSNR estimation using the nominal values
by the QoT-E engine [7]. Additionally, amplifiers’ ripples gain, noise figure, and
the fiber connector/insertion losses also yield GSNR uncertainties. Consequently,
the calculated nominal GSNR on a given LP demands a reasonable margin de-
ployment to prevent any network outage [8].

This work’s primary motivation is to reduce the GSNR uncertainty of a
particular LP and, consequently, facilitate reliable path calculation for the LP
provision at the lowest possible margin. The proposed work is simulated con-
sidering an open optical network setup, where the network controller deploys
the QoT-E engine as an application program interface (API). Suppose the con-
troller is provided with the exact knowledge network condition, i.e., an accurate
characterization of operating parameters of every NE. In this case, the QoT-E
can calculate the GSNR with reasonable precision, as demonstrated in [5, 6]. In
contrast to this, during the unavailability of the actual characterization of the
operating point of every NE, the QoT-E depends on the nominal characteriza-
tion of the working point of every NE. The QoT-E engine exploits this nominal
characterization and calculates a nominal GSNR. The obtained nominal GSNR
has an uncertainty in its measurement as formerly described.

In the current investigation, the information retrieved from an in-service
operating network is used to cross-training the ML framework operating in the
controller of another un-used sister network. This cross-trained module supports
the QoT-E unit of an un-used network in estimating accurate GSNR of LP. The
proposed work considers two different networks based on topology, but both are
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Fig. 1: (a) EU Network Topology (b) USA Network Topology (c) Abstraction of Optical Network

the same on the install HW, like fiber class and erbium-doped fiber amplifiers
(EDFAs). The networking topologies considered in this analysis; the European
Union (EU) network topology as a well-operative network and USA network
topology as un-used sister network (see Fig. 1a and Fig. 1b). The dataset is
obtained synthetically by perturbing the estimated QoT of LP with proper ran-
dom spectral-load-dependent NE parameters; specifically, we focused on EDFA
ripples and uncertainties in connector losses.

The ML framework proposed in the current simulation scenario reduces the
GSNR uncertainty of the LP of an un-used sister network. The presented ML
module corrects the GSNR calculation of the QoT-E unit of an un-used sister
network, which exploits nominal NE parameters to estimate it. The data-driven
techniques based on ML are already used in the optical networks for different
applications; in [9, 10] the authors proposed an ML-based technique for network
performance monitoring. In [11, 12] ML framework is proposed for QoT estima-
tion. More than a few data-driven procedures for QoT estimation of LP prior
to its real deployment in the network are demonstrated in [13–15]. In [16], the
domain adaptation method is used to estimate the QoT of LP. The authors
in [17] achieved the precision in QoT estimation using active learning and do-
main adaptation procedures. Finally, a comprehensive review of ML-employed
applications in optical networks is reported in [18].

The core distinction of this work from the already performed investigations
is that this scheme proposed the cross-training technique to train an ML module
efficiently. Besides this, the cross-trained ML module operates synergically with
the QoT-E engine in the network controller. This synergic use’s primary purpose
is to reduce the GSNR uncertainties induced by EDFA gain ripples, noise figure,
and the uncertainties induced by fiber connector losses.

2 Networks Model & Data Generation

In the present work, a core optical network is mapped as a topological graph
having edges represented as OLSs. In contrast, nodes are portrayed as a site of
reconfigurable optical add-drop multiplexing (ROADM). The considered OLSs
include a span of fibers separated by equidistant amplifiers. The OLSs are man-
aged by a centralized controller and are supposed to be operated at optimal
operating point [19]. The controller responsible for configuring the OLS exploits
the parameters related to the physical layer. Regarding these parameters, the



more vulnerable parameters are the fiber connector/insertion losses, amplifier
ripples gain (Uniform Variation of 1 dB), and noise figure ([6 - 11] dB), typically
varying with the spectral-load. Besides this, fiber losses such as fiber attenuation
(α=0.2 dB/km) and dispersion (D=16.0 ps/nm/km) also take into account
to get a realistic simulating environment. The statistics of considered connec-
tor losses are defined by an exponential distribution (λ = 4) termed in the
analysis [20]. The metric of QoT, i.e., the GSNR of any given LP propagated
from source node towards destination node traversing through a definite OLSs
connected them is presented as 1/GSNR =

∑

n 1/GSNRn, where n is the to-
tal number of OLSs connecting the given source node to the destination node
revealed in Fig. 1c. The GSNR metric of the given LP is presented by:

GSNR =
PRx

PASE + PNLI

=
(

OSNR−1 + SNR−1
NL

)

−1
, (1)

where OSNR= PRx/PASE is the optical signal to noise ratio detectable by opti-
cal channel monitors, SNRNL = PRx/PNLI is the nonlinear SNR induced by NLI
only and is recovered using the digital signal processing constellation. PRx is the
channel power at the receiver end, PASE is the ASE noise power, and PNLI is the
accumulated NLI power. The GSNR is associated with the bit error rate (BER)
by the BER vs. OSNR description for the particular modulation format [5].

To limit the computational effort, the considered OLSs operate no more
than 76 channels around the basic 50GHz grid on the C-band, having entire
bandwidth of almost 4THz. Indicating standard 96 channels on the entire C-
band does not anticipate significant differences in the results. The considered
transceivers work at 32GBaud, and the configured EDFAs work at a fixed out-
put power mode supplying 0 dBm power against each channel. The simulated
network connections are supposed to be operated using standard single-mode
fiber (SSMF) with a maximum span-length of 80 km. An open-source network
simulation tool called GNPy is used to mimic the real field data to obtain a
realistic dataset. Moreover, the considered tool is selected as it is more reliable
and well-tested (see [21, 22]). Usually, this library creates the network templates
for the physical layer by simulating an end-to-end environment [23]. The open-
source GNPy library is resolved spectrally and is instituted on the generalized-
Gaussian-noise (GGN) model [24]. Exploiting the spectral resolution capability,
the GNPy is constituted to clone the network data in the real field environment.
The cloned dataset includes channel power at receiver, ASE noise, NLI accu-
mulation, the GSNR for every LP, and finally, the total spans traversed from
source-to-destination (s → d). Considering the optimal signal power, the ASE
noise is the main factor as at optimal level ASE is always duple the NLI [3][25].
Unusually, ASE is also very tricky to estimate, as it varies with the operating
condition of EDFAs [26], which ultimately hinges on the spectral-load [27]. In
this perspective, the engendered dataset is perturbed by changing the highly
fragile characteristics of EDFA, typically amplifier ripple gain and noise figure.

The mimicked dataset comprises two separate datasets; one section describes
an in-service network, whereas the other denotes an un-used network. The con-
sidered networks are characterized by distinct topologies having similar fiber
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Fig. 2: (a) GSNR Distribution (b) Train path GSNR Statistical Analysis (c) Model Orchestration

class and transmission apparatus. Nevertheless, they are exclusive in amplifier
parameters like amplifier ripple gain, noise figure, and fiber connector losses.
Following the network composition of both datasets (in-service & un-used), the
next section is the spectral-load. In the present simulation, the spectral-load of
a given simulated link is the subset of 276 possible realization of spectral-load
against considered 76 channels. In the reflected subset of spectral-load, each (s
→ d) pair has 1024 combinations of random traffic having maximum occupation
ranges between 34% to 100% of overall considered bandwidth. The initial subset
of the dataset is created against the EU network topology ( in-service network).
In contrast, the other subset of the dataset is created against the USA network
topology (un-used network).

3 GSNR Statistical Analysis

In the current frame of reference, to compute the GSNR of un-used network,
the network controller of this nascent network can only depend on the nominal
explanation of the system (noise figure = 8.75 dB, gain ripple = flat ripple and
insertion losses = 0.3 dB). Exploitation exclusively this nominal behavior of a
network, the network controller calculates GSNR, a nominal one. This estimated
GSNR has a certain level of ambiguity anticipated by the discrepancy in NEs
operating points. Fig. 2a indicates the GSNR distribution for the entire WDM
comb for the given path Vienna → Warsaw. Observing Fig. 2a, it is well demon-
strated that the given GSNR for path Vienna → Warsaw is distributed across
the mean value, observing the probability density function it is well approxi-
mated as Gaussian. Similar behavior is observed for the other simulated links of
un-used network. Going into more details, Fig. 2b reveals similar outcomes for
all wavelengths on the same Vienna → Warsaw path. In Fig. 2b, the statistical
breakdown of a particular variation is depicted. Besides this assessment, a small
number of significant concerns evolve by calculating the average of the GSNRs
for full train realizations of the given path, introduced in Fig. 2b. The average
of GSNRs presented by green dots characterizes the OLSs module, ranging be-
tween 12.75 dB, and 13.27 dB, with standard deviations (error bars) 0.20 dB to
0.28 dB. A purple line depicts the nominal GSNRs for the given path. The bluish
and orange lines bordered the maximum and the minimum GSNRs values for
every channel. The dotted reddish line specifies the global minimum GSNR of



12.02 dB for the given path. The current GSNR indicators show up two methods
to deliver QoT.

In the first approach, reflecting a worst-case (WC) setup without any knowl-
edge, the constant GSNR threshold should be applied for all the channels with a
value smaller than an anticipated global minimum (12.02 dB) to avoid any net-
work outage. In this approach, the fluctuation in GSNR values ranges between
13.68 dB to 12.02 dB; this creates almost a 1.6 dB of margin requested by the
GSNR uncertainty.

In the second approach, we considered the nominal GSNR estimation of the
core QoT-E engine. In this method, we have two states of GSNR description
around the nominal one. The first one comprises those channels having GSNR
values higher than the nominal GSNR estimation. The second one is those chan-
nels having GSNR values lower than the nominal estimation. To measure the
uncertainty in GSNR estimation in this approach, we calculate the difference
between the nominal and actual one using Eq. 2. Considering the first case, the

∆GSNR = GSNRnominal −GSNRactual , (2)

one with higher GSNR values than the nominal estimation reporting a max-
imum GSNR uncertainty of 0.85dB (the maximum difference between purple
line & blue line) having negative ∆GSNR− description. This ∆GSNR− case is
not critical as the available GSNR threshold of these channels at a transceiver
is higher than the estimated nominal GSNR. The transceiver, in this case, can
quickly deploy a reliable LP. In contrast to this, the second case, the one hav-
ing lower GSNR values than the nominal estimation unfolding a maximum
GSNR uncertainty of almost 1.25 dB (the maximum difference between purple
line & orange line) having positive ∆GSNR+ description. Unlike the first case,
the ∆GSNR+ case is much more critical as the available GSNR threshold of
these channels at a transceiver is lower than the estimated nominal GSNR. The
transceiver, in this case, will be configured with a high margin to deploy an LP
reliably and keep the network in-service state.

(a) (b)

Fig. 3: (a)Machine Learning Module (b) Test path GSNR Statistical Analysis

Consequently, the main challenge in the current simulating environment is
dealing with a more critical ∆GSNR+ case. In the current study, the main
objective is to decrease the error (∆GSNR+) in the estimation of the QoT-E
engine of the GNPy unit, in the absence of exact system parameters. To this



aim, we consider the exploitation of the data retrieved from the EU network
to cross-train ML unit operating on the controller of the USA network. The
proposed cross-trained ML element is utilized to assist the main QoT-E engine
of un-used USA network shown in Fig. 2c. The proposed scheme delivers a QoT
rectifying apparatus that can provide precise QoT estimation of LP prior to its
actual provisioning in the network.

4 Visual Inspection of Machine Learning Module

The present simulation scenario employs the data-driven ML model, which is
initially cross-trained. It is then deployed in the controller of an un-used net-
work, where it helps to correct the GSNR estimation of the core QoT-E engine.
Similar to other data-driven methods, the proposed ML prototype training and
testing procedures need to define the features and response variable, indicating
the structural inputs and outputs. The operated well-defined features incorpo-
rate channel power at receiver, NLI accumulation, ASE noise, frequency of the
channel, and the fiber spans between the given s → d node. Along with this, the
manipulated response variable is the GSNR correction parameter; ∆GSNR of
the given LP depicted in Fig. 3a. The overall sum of the participation features
comprises 305 definitions; (1+(4x76) = 305) the number spans plus the channel
power at receiver, the NLI accumulation, the ASE noise, and channel frequency.

The proposed ML unit obtained the perceptive ability to provide the GSNR
correcting metric by mapping the features and response variable of an in-service
network. The defined functionality is achieved by using Deep Neural Network
(DNN) [28], which is an excellent data-driven model to discover the correlation
among the given features and required response variable. The presented DNN in

this work is structured by utilizing open-source APIs of TensorFlow© library
[29], and is configured by numerous set of hyper-parameters like training steps =
1000, supplied by default Keras optimizer as adaptive gradient algorithm along
with learning rate = 0.01 coupled with regularization L1 = 0.001 [30]. Addition-
ally, Relu is nominated as an activation function to allows the efficient inter-
pretation of the provided input features into the desired response variable with
minimum complexity [31]. Lastly, the important hyper-parameter like hidden-
layers size, DNN is configured with several combinations of hidden-layers size
along with different neuron units to attain the good compromise between accu-
racy and complexity. To this aim, the DNN developed for QoT correction utilizes
three hidden-layers, holding twenty neurons respectively. Moreover, mean square
error (MSE) is used as a loss function (see Eq. 3) to assessed the proposed DNN,

MSE =

N
∑

j=0

(

∆GSNRp
j −∆GSNRa

j

)2

N
, (3)

where ∆GSNRr
j and ∆GSNRp

j are the actual and DNN generated predicted
measurements of error in GSNR estimation of a channel under test for the jth
spectral-load, correspondingly, andN is the over-all sum of∆GSNR combination
of the test set. The proposed DNN is further shaped for training, authentication,
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and examination by the traditional regulation 70/15/15 and is crossed-trained by
∆GSNR responses of a random spectral-load of an already deployed EU network.
After proper cross-training, the cross-trained ML module is used synergically
with the QoT-E agent of GNPy to assist the QoT-E agent in precisely estimating
LP GSNR value before its deployment. In the current setup, the training set data
entails 4096 combinations for four s → d paths (1024 realizations for each s → d
pair ) Frankfurt → Istanbul, London → Madrid, Brussels → Bucharest, Vienna
→ Warsaw of an EU network having span length of 34, 19, 30 and 7 respectively.
The test set in the proposed frame work contains 6144 combinations for six s
→ d paths Charlotte → Chicago, Louisville → Memphis, Memphis → Miami,
Kansas City → Las-Vegas, Little Rock → Long Island, Los Angeles → Louisville
of the USA network having span length 20, 7, 24, 30, 26, 46 respectively.

5 Results and Discussion

The performance of the proposed DNN to reduce the error in the GSNR estima-
tion of the QoT-E engine of an un-used network is summarized in this section.
The proposed work considers the ∆GSNR+ case only, as this is a more critical
margin as compared to ∆GSNR− described in Sec. 3.

To simplify the description of the acquired outcomes, we initially describe the
results related to one Louisville → Memphis path of the USA network. Speci-
fying the statistical analysis of GSNR of this path, we put the base reference,
∆GSNR+ retrieved by mirroring minimumGSNRmeasurement (10.81) dB demon-
strated in Fig. 3b. This particular case represents a rough estimation, and it
offered a reference level. This approach creates a margin of ∆GSNR+

without−ML

= GSNRnominal - GSNRGlobalminimum = 1.1 dB on the WC scenario. Next the
QoT-E unit is assisted by the cross-trained DNN, the given framework deliv-
ers a definitive QoT-E allowing reduction in the margin of ∆GSNR+

with−ML =
GSNRnominal - GSNRpredicted = 0.6 dB on the similar path. The results are
illustrated in Fig. 4. The reliability and scalability of the proposed scheme are
further verified on five additional paths of the USA network defined in Sec. 4.



The results related to all the studied paths are shown in Fig. 4 which reported
the error distribution with and without ML assistance. In Fig. 4, it is seen that
the proposed DNN unit dramatically decrease the error in QoT estimation.

6 Conclusion

The proposed work exploits a data-driven method to assist in predicting the
QoT of a given LP. The proposed scheme is cross-trained by using the dataset
of in-service network and utilize it to decrease the GSNR margin of an un-used
network. The core DNN unit of the cross-trained framework is developed by

utilizing the TensorFlow© platform. The generated dataset is obtained syn-
thetically for the two considered networking topologies utilizing the open-source
GNPy library. The generated dataset explicitly considered the uncertainties in-
duced in GSNR measurement owed by fiber connector losses, amplifiers gain
ripple, and noise figure. Promising results are achieved, showing that the syner-
getic utilization of an ML along with the core QoT-E significantly reduces the
uncertainty in GSNR estimation and, consequently, enables a reduction in the
required system margin.
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