
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Self-adjusting advertisement of cache indicators with bandwidth constraints / Cohen, I.; Einziger, G.; Scalosub, G.. -
ELETTRONICO. - 2021-:(2021), pp. 1-10. ((Intervento presentato al convegno 40th IEEE Conference on Computer
Communications, INFOCOM 2021 tenutosi a https://ieeexplore.ieee.org/document/9488680 nel 2021
[10.1109/INFOCOM42981.2021.9488680].

Original

Self-adjusting advertisement of cache indicators with bandwidth constraints

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/INFOCOM42981.2021.9488680

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2920092 since: 2021-09-01T14:07:07Z

Institute of Electrical and Electronics Engineers Inc.

Self-adjusting Advertisement of Cache Indicators
with Bandwidth Constraints

Itamar Cohen∗, Gil Einziger†, and Gabriel Scalosub‡
∗Politecnico di Torino, Italy

†Department of Computer Science, Ben-Gurion University of the Negev, Israel
‡School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel

itamar.cohen@polito.it, gilein@bgu.ac.il, sgabriel@bgu.ac.il,

Abstract—Cache advertisements reduce the access cost by
allowing users to skip the cache when it does not contain their
datum. Such advertisements are used in multiple networked
domains such as mobile ad-hoc networks, wide area networks,
and information-centric networking. The selection of an adver-
tisement strategy exposes a trade-off between the access cost and
bandwidth consumption. Still, existing works mostly apply a trial-
and-error approach for selecting the best strategy, as the rigorous
foundations required for optimizing such decisions is lacking.

Our work shows that the desired advertisement policy depends
on numerous parameters such as the cache policy, the workload,
the cache size, and the available bandwidth. In particular, we
show that there is no ideal single configuration. Therefore, we
design an adaptive, self-adjusting algorithm that periodically
selects an advertisement policy. Our algorithm does not require
any prior information about the cache policy, cache size, or work-
load, and does not require any apriori configuration. Through
extensive simulations, using several state-of-the-art cache policies,
and real workloads, we show that our approach attains a similar
cost to that of the best static configuration (which is only
identified in retrospect) in each case.

I. INTRODUCTION

Caching is a fundamental optimization technique where a
small subset of the data is stored in a cache, which is cheaper
to access than the regular storage. Caching is common to the
point where it is present in some form in almost all computing
environments and systems, ranging from micro-controllers,
through PCs and servers, and onto distributed cloud services.

In large distributed systems, caches often further optimize
performance by advertising their content. Such advertisements
allow clients to bypass the cache when it is unlikely to
contain the requested datum, thus reducing the total access
cost, where “cost” can reflect bandwidth, access time, or
energy [1]–[3]. Content advertisements are used in mobile
ad-hoc networks [4], [5], content delivery networks (CDN) [3],
[6], [7], information centric networking (ICN) [8], [9], and in
wide-area networks [10].

Ideally, the advertisement policy would reflect the cached
content at any given time, but such a solution is bandwidth-
intensive. Content advertisement is often restricted to a
bandwidth budget. Therefore, systems often compromise on
advertising approximate indicators that approximate the cached
content [11]–[13] to reduce the advertisement size, at the cost

* The work was done while this author was with Ben-Gurion University.

2 16 128 1K 8K
10−4

10−3

10−2

10−1

Update interval (#requests)
R

at
io

False negative

2 16 128 1K 8K

Update interval (#requests)

False positive

2-BPE 4-BPE 8-BPE 16-BPE

Fig. 1. Effect of the update interval on the false-negative errors (left) and
false-positive errors (right) for optimally configured Bloom filter indicators.
Both axis are in log-scale, and the cache size is 8K, policy is LRU, trace is
F1 (described in Sec. VI).

of some probability of generating false-positive errors [1], [6],
[11], [13]–[17]. Such errors imply that indicators sometimes
mistakenly assert that a datum is stored in the cache, causing
redundant cache accesses.

When constantly sending indicator advertisements, the
advertised content remains fresh in the sense that it accurately
reflects the (approximate) state of the cached content, and we
only experience errors due to hash collisions. In bandwidth-
constrained environments, insisting on freshness mandates the
usage of relatively small (and inaccurate) indicators to cope
with the bandwidth budget, which would otherwise imply
packet drop and increased error rate. An alternative is to send
an indicator advertisement only occasionally. When using such
an approach, the advertised content gradually becomes stale,
in the sense that it takes time for the indicator available at the
clients to reflect changes in the cached content, which again
leads to an increased error rate.

To illustrate the above scenarios, consider an advertisement
transmission, followed by having the cache admit a new item
(x) and evict some item (y), such that these events are not
(yet) advertised to the clients. When the client tests for y,
the indicator falsely indicates that y is in the cache, resulting
in a false-positive error. Similarly, a query for x is likely to
falsely indicate that x is not in the cache (as it wasn’t in the
cache at the time the advertisement was sent), resulting in a
false-negative error. Thus, staleness creates both false-positive
and false-negative errors, and we expect fewer of these errors,

the more frequently we refresh the advertisements.
Figure 1 shows the percentage of false indications as

a function of the time between subsequent advertisements,
referred to as the update interval. Here, the advertisement size
is expressed by the number of Bits Per cached Element (BPE),
while the update interval is expressed in terms of requests
between subsequent updates. Notice that the X-axis and the
Y-axis are in logarithmic scale. Figure 1 (left) shows that
the false-negative ratio increases with the update interval, as
we qualitatively explained above, and that it may reach non-
negligible rates. Figure 1 (right) demonstrates that increasing
the update interval also affects the false-positive errors, but the
effect is less pronounced than it is on false-negatives.

The combination of approximate indicators and staleness
makes selecting a cache advertisement policy a challenging
task. Intuitively, the cache may send an advertisement of size x
once every y requests, or a more accurate advertisement of size
β · x (β > 1) once every β · y requests. Both options require
similar bandwidth, but it is unclear which of them would
do better. Note that although the probability of false-positive
due to hash collisions is relatively well understood [11], the
errors caused by stale advertisements are difficult to predict as
they depend on the workload, the cache policy, and the cache
size. Furthermore, existing works do not address the complex
interplay between advertisement strategy, indicator size, update
interval, and access cost [4], [10], [18], [19]. Instead, most
works fix an advertisement policy by crude estimations and
rules-of-thumb, rather than by optimizing it according to the
system being used, and the workload being served [20], [21].
While such an approach may work in some scenarios, changes
in either the cache policy, the workload, the cache size, or
the budget, may deteriorate performance significantly, as we
demonstrate in Sec. IV.

Our contribution: Our proposed solutions make advertise-
ments easier to use in caching systems. Our first contribution
is the formulation of the problem and a rigorous study of the
problem domain. We perform a simulation-based study using
state-of-the-art cache policies and real workloads, demonstrat-
ing that the best advertisement strategy depends on numerous
factors such as the cache policy, the cache size, the workload,
and the communication budget. Our study implies that using
previously developed approaches require extensive testing under
varying conditions, to optimize the advertisement policy. Worse
yet, every change in the system parameters requires revisiting
the previous decisions. Such optimization is rarely done in
practice because it is time-consuming, and more importantly,
because some affecting parameters are uncontrollable by the
system designers. E.g., the workload may change dynamically,
and the cache size may vary between deployments.

In light of this challenge, we suggest an adaptive, self-
adjusting, algorithm that periodically updates its advertisement
strategy. Through an extensive simulation study using real
workloads, and state of the art cache policies, we show that
our algorithm matches the performance of the best static
strategy, that can only be determined in retrospect. Adopting
our proposed solution implies that system designers are no

longer required to optimize their advertisement policy. The
algorithm adapts to the system configuration, as well as to the
dynamic workload characteristics in runtime.

II. RELATED WORK

Indicators are used to periodically advertise the cache content
in multiple networking environments, including wide-area
networks [10], content delivery networks [3], [6], [7], [22],
information centric networking [8], [9], [23]–[25], and wireless
networks [4], [5]. Indicators make use of randomized hash-
based data structures such as Bloom filters [11], [12], [26],
and fingerprint hash tables [13], [16].

While conceptually simple, there are numerous challenges
in utilizing indicators. For example, the study in [1] shows
that indicators may degrade the performance in some scenarios
in what they refer to as the “Bloom Paradox”. The work
of [27], tackles a distributed scenario where multiple caches
send indicators, and the client needs to formulate an access
strategy that minimizes the access cost. The work of [28]
suggests methods to reduce the transmission overheads of
indicators, at the expense of larger local memory consumption.
The works [29], [30] reduce the transmission overheads by
accurately advertising important information, while allowing
less important information to be stale, or less accurate. The
work [15] surveys many optimizations to indicators, such as
the support for removals and dynamically scaling. While such
structures are used by our work, the exact construction is not
a central part of our work.

Staleness is a major challenge for cache advertisements. The
work of [31] suggests advertisement strategies that make the
impact of staleness on the false-positive ratio and the false-
negative ratio predictable. However, their proposed solution
requires sending an update whenever sufficiently many bits of
the indicator have changed. This might impose a hefty toll on
the bandwidth consumption, and may well violate the available
budget. The works [4], [10], [18], [19] perform simulation
studies in order to identify “reasonable” advertisement policies
for some concrete settings (workload, cache size, cache policy,
miss penalty). Several other works [32]–[36] address the
problem of maintaining a bandwidth budget when sending
advertisements using a trial-and-error approach. Such an
approach usually requires a lot of effort on the part of system
designers, and as the workload may change, one might still end
up exceeding (or under-utilizing) the budget. In comparison,
our work includes an autonomous self-adjusting mechanism
that utilizes the budget efficiently without resorting to trial-
and-error.

In Squid cache [21], the update interval is fixed and defaults
to sending an update once in a hour [20], [21]. Since such
a solution is problematic, Squid’s spec defines the problem
of scaling the update interval as an "open issue" [21]. In
comparison, our work provides a good solution that adapts
the update interval, and the indicator size, to the current
situation. To the best of our knowledge, our work is the first
to automatically optimize the advertisement strategy, while
efficiently utilizing a fixed bandwidth budget.

TABLE I
LIST OF NOTATION

Symbol Meaning
C Cache size [number of elements]
St Set of data items in the cache at time t
It Indicator at time t

It(x) Indication for datum x
|Imin| , |Imax| Minimal, maximal feasible indicator size [bits]
FPt, FNt False-positive, false-negative estimate of indicator It

M Miss penalty
|I| Indicator size [bits]
u Update interval [number of cache requests]

umin, umax Minimal, maximal update interval [requests]
B Bandwidth budget [bits/request]
T Re-configuration interval [number of cache requests]
α tradeoff parameter balancing accuracy / responsiveness

/ bandwdith variation
P Cache policy
W Workload (trace)

III. SYSTEM MODEL

This section formally defines our system model, as well as
our notation (which is also summarized in Table I).

Cache and cost model: We consider a cache that contains, at
any time t, some set of items St. The maximal number of items
in the cache is C. Clients issue a sequence of requests/queries
for data. The clients may request the data from the cache, or
from some remote storage. Without loss of generality, we refer
to each request as arriving in a unique time slot t. Yet, when
clear from the context, we sometimes omit the subscript t.

Accessing the cache incurs some access cost, which we
normalize to 1 without loss of generality. Cache access cost
is due whenever the cache is accessed, even if the requested
datum is not in the cache. If a cache access for datum d at time
t results in a cache miss, i.e., d /∈ St, then an additional miss
penalty M > 1 is incurred. This miss penalty is also imposed
whenever the cache is not accessed for a given request. The
miss penalty reflects the cost of retrieving the datum from
some remote storage. The cost M includes notifying the cache
about the data access, in which case the cache may decide to
admit the datum towards serving future requests, depending on
the policy being applied for admitting and evicting items from
the cache. The service cost is the sum of the cache access cost,
and the miss penalty cost. To make a meaningful comparison
of performance, we focus our attention on the average service
cost of all the requests in the sequence, thus following similar
cost models studied in previous works [27], [37].

Indicators, update intervals, and configurations: At any
time t, the cache may advertise an indicator It that approxi-
mates St at time t. For any indicator It, given a datum x, a
positive indication of It indicates that x ∈ St, while a negative
indication of It indicates that x /∈ St. It may generate false-
positive and false-negative errors. A positive indication is said
to be a false-positive when x /∈ St. Similarly, a negative
indication is said to be a false-negative when x ∈ St. We
let FPt and FNt denote the estimates at time t of the false-
positive probability, and the false-negative probability, of a
cache request, respectively. We let |It| denote the size of the

indicator It in bits. To use only feasible sizes, the indicator
size should be within some predefined range [|Imin| , |Imax|].

Given some positive integer T , we consider a non-
overlapping partitioning of time (or equivalently, the sequence
of requests) into segments of length T . The update interval
ut is the number of requests between subsequent indicator
updates that the cache sends to the users. At any time t, ut
represents the time between the last update that was sent,
and the next update scheduled to be sent. When considering
dynamic algorithms, we allow the value of ut to be adjusted
only at the end of a segment.

The update interval is at least umin. One could use umin = 1,
but a slightly higher interval enables piggybacking indicator
updates on packets carrying cached data payloads, to avoid
transmission overheads [38]. We also use a maximal update
interval denoted umax (which we discuss in the sequel). We
refer to the tuple (|It| , ut) as a configuration.

An advertisement that includes the full indicator I , is called
a full-indicator update. Alternatively, an update that contains
the list of bits in the indicator that have flipped since the
previous advertisements is called a delta update. Specifying Itamar: Added a paragraph below, due to a

reviewer’s comment, that we didn’t explain
when the cache sends delta updates.

Itamar: Added a paragraph below, due to a
reviewer’s comment, that we didn’t explain
when the cache sends delta updates.the location of each bit in the indicator requires log |I| bits.

We assume that the cache uses a delta update whenever this
consumes less bandwidth than sending a full indicator, namely,
when the number of bits flipped in the indicator since the last
update is less than |I|

log|I| .
Bandwidth constraints: To model the system’s bandwidth

constraint, we use the previously defined partitioning of time
into segments. The transmitted bandwidth cost of configuration
(|It| , ut) over a segment of length T ending at time t is the
average number of update bits per request, being sent to the
user during the segment. We denote this cost by BWt. Since
indicators are usually of size Θ(C), and since we would like
to potentially allow the algorithm to transmit more than one
update during a segment, we require that T ≥ max {umax, C}.
In particular, we choose T = α · max {umax, C}, for some
positive integer α. Parameter α serves to control the tradeoff
between (i) the variance of the statistics gathered during a
segment, and (ii) the dynamic response of the algorithm across
segments. I.e., if α is small, then statistics are gathered over a
short interval, and may capture only very transient behavior
which could be very different in the following segment. On
the other hand, if α is large, then the algorithm maintains its
current configuration longer, even though workload and system
characteristics may change significantly during the segment.

We target system configurations that satisfy budget con-
straints, defined by a bandwidth budget of B bits/request. The
budget constraint requires that the bandwidth cost in each
segment is at most B. We note that when sending a full
indicator in each update we must have

|It|
ut
≤ B. (1)

We use this equation for determining umax as the minimal
value satisfying Eq. 1, which implies that umax =

⌊ |Imax|
B

⌋
.

A configuration (|I| , u) is said to be static if for every
time t, |It| = |I| and ut = u. Such a configuration is said
to satisfy the budget constraint if in every segment of length
T , the overall bandwidth cost of using (|I| , u) is at most
B · T , i.e. BWt ≤ B for every time t in which a segment
ends. We note that due to the dynamic nature of caching
environments, it may be impossible to verify a-priori that
a specific static configuration does not violate the budget
constraint. In particular, a configurations that uses delta updates
might end up violating the budget if there are too many updates.

In our work, we are interested in dynamic configurations
that may re-scale and adjust both |It| and ut over time. Such
dynamic configurations may also occasionally end up oversub-
scribing the network. However, using dynamic configurations
one can strive to satisfy the budget constraint over all segments,
by adjusting to the current workload pattern, while (implicitly
or explicitly) taking into account additional system parameters
related to, e.g., the cache size, or the cache policy. Although
dynamic configurations may sometimes violate the budget
constraint, a careful adjustment of the configurations throughout
the system’s lifetime may reduce this violation significantly
(e.g., compared to static configurations).

Since configurations (either static or dynamic) may end up
violating the budget constraint, we apply a network policing
mechanism that enforces the budget constraint as follow: At
the beginning of each segment, the cache receives B ·T tokens.
Once the overall number of bits sent for indicator advertisement
during the segment reaches B · T , all further updates during
the segment are dropped by the network policing mechanism.
This model conforms to common network policing behaviour
that may selectively drop packets when a user oversubscribes
its allotted resources. In this sense, the transmitted bandwidth
cost BWt may indeed be larger than the budget, but in effect,
the network will never forward more traffic than the amount
prescribed by the budget B. Lastly, we note that α also serves
to define the time horizon for which we enforce the budget
violation. I.e., choosing a larger value for α implies that we
allow larger fluctuations in bandwidth usage during a segment,
as long as the overall bandwidth cost is maintained over the
entire segment.

In what follows, we consider distinct system scenarios,
where each scenario is defined by the cache size C, policy
P , workload W , and budget B. We denote such a scenario
by (C,P,W,B). We will be studying static advertisement
configurations for a variety of scenarios, as well as dynamic
advertisement configuration strategies that adapt to dynamically
changing scenarios. Our work considers the problem of
(dynamically) adjusting the configuration so as to minimize
the (average) service cost within a given bandwidth budget. To
simplify expressions throughout our work, all logarithms are
of base 2.

IV. MOTIVATION AND PRELIMINARIES

This section provides insights into the performance of
static configurations to further motivate dynamic advertisement
strategies. We present the results of several experiments,

Scarab Wiki1
1.8

1.85

1.9

1.95

co
st
|L

R
U

,1
6K

conf1W
(40K,umin)

conf2W
(140K,umin)

W-tLFU LRU

2

2.5

3

co
st
|P

6,
64

K

conf1P
(960K,14K)

conf2P
(415K,22K)

64K16K

1.6

1.8

2

2.2

co
st
|F

2,
L

R
U

conf1C
(103K,5K)

conf2C
(283K,14K)

Fig. 2. Differences in cost for static configurations when varying workload
(left), policy (center), and cache size (right). For each aspect being compared,
one configuration is better for one value (workload / policy / cache size),
whereas another configuration is better for the other value.

which use several real-life workloads and state-of-the-art cache
policies. Our results show that there is no “one-size-fits-all”
configuration and that using static configurations may lead to
substantial performance degradation in highly dynamic systems.

For each scenario (C,P,W,B) considered, we perform a
grid-search of static configurations and find the best con-
figuration that satisfies the bandwidth budget constraint for
this scenario. We then compare the performance of these
configurations when used for scenarios that differ by merely
one aspect, where we focus here on changing either the cache
size, the policy, or the workload, to exemplify the effect each
of these system aspects has on system performance, given a
specific configuration. In this evaluation, we set umin = 10,
|Imin| = 2.5 · C, |Imax| = 15 · C, M = 3, α = 10, and
B = 20.1 We demonstrate configurations that exhibit very
good performance for some scenarios, but changing merely
one aspect in the scenario results in significant performance
degradation.

Figure 2 shows the results of several such experiments. In
Figure 2 (left) we consider two workloads W1,W2, where W1

is the Scarab trace, and W2 is the Wiki1 trace, with confW1
and confW2 being their best static configurations, respectively.
The policy is LRU, and the cache size is C = 16K. One can
note that for each workload Wi, using confWj j 6= i incurs
a toll as large as 5% compared to using confWi . In Figure 2
(center), one can see similar results hold for varying the cache
policies. Here we consider policies P1, P2, where P1 is W-
tLFU and P2 is LRU, with confP1 and confP2 being their best
static configurations, respectively. The workload is P6, and the
cache size is C = 64K. In Figure 2 (right), one can see the
same effect is manifested for the case where we vary the cache
size. Here we consider cache sizes C1 = 16K and C2 = 64K,
with confC1 and confC2 being their best static configurations,
respectively. The cache policy, in this case, is LRU, and the
workload is F2. In all plots, the configurations are specified in
the legend (up to rounding to the nearest K).

V. ALGORITHM CAB

In this section, we introduce the Cache-indicators Advertise-
ment with Budget constraint (CAB) algorithm. The pseudo-
code of CAB is provided in Algorithm 1. We begin with a

1We describe the specific workloads and cache policies, as well as the
methodology of our grid search and the choice of parameters, in Sec. VI.

high-level description of our algorithmic concepts and then
detail the optimization it employs in its decisions.

A. High-Level Overview

CAB has two challenges, one for each of the following two
regimes: (i) when sending full indicators, and (ii) when sending
delta updates.

1) Full-Indicator Regime: When sending full indicators,
the problem is to find the right balance between the update
interval and the accuracy of the indicator. In this regime, a
configuration (|It| , ut) sends an advertisement of size |It|
once in ut requests. Recall that by Eq. 1, we must satisfy
|It|
ut
≤ B. Here, our approach is to choose, among all the

possible configurations that satisfy Eq. 1, a configuration that
equalizes the additional cost caused by false-negative errors
(controlled by the update interval) and false-positive errors
(mainly controlled by the indicator size).

2) Delta Regime: When only sending the bits that have
changed since the previous advertisement, increasing the update
interval would usually have very little effect on the consumed
bandwidth. Intuitively, updating about a single change in the
cache once every u requests consumes a similar bandwidth
as updating about x changes in the cache once in every x · u
requests. The only exception to this rule-of-thumb happens due
to hash collisions, e.g., when some of the x changes in the
cache occasionally flip and re-flip the same bit in the indicator.
However, when u is small, this effect is negligible. Hence,
we favor sending updates as soon as possible, i.e., we set the
update interval to umin.

Once the update interval is fixed, the remaining challenge
is to dynamically-scale the indicator size |I| to utilize all the
budget without exceeding it. However, sending changes may
become infeasible (e.g., when the hit ratio drops and more items
are admitted to the cache), and in that case, we might need to
return to the full indicator regime. We trigger such a transition
when we exceed the budget while using the minimal indicator
size, |Imin|. To do so, we increase the update interval to the
“safe zone” of sending full indicators, i.e., satisfying Eq. 1, in
which case we can assure compliance with the budget constraint.
Such a step allows us to search for better configurations in
subsequent segments (as also demonstrated in Sec. VI).

Co-similarity and system lifetime: Our algorithm implicitly
assumes that the behaviour of the cache in the next segment
will be similar to its behaviour in the current segment. While
such an assumption is not always correct, many underlying
caching algorithms make similar assumptions. E.g., adaptive
caches [39], [40] assume that the past access pattern provides
a good indication of the future access pattern. Thus, our
assumptions are reasonable in workloads where adaptive
caching works well [39]–[41]. It should be noted that in Sec. VI
we demonstrate the effectiveness of our approach in a variety
of scenarios and workloads. CAB is oblivious of the cache
policy that manages the evictions and admissions, as we show
in Sec. VI. Instead, CAB uses only the information of false-
positive and false-negative errors, as well as the bandwidth
cost, to adapt its advertisement strategy. Such information

Algorithm 1 CAB(B)

1: |I0| = |Imin| , u0 =
⌊
|I0|
B

⌋
2: T = α ·max {umax, C}
3: for every time slot t = T, 2T, 3T, . . . do
4: if ∃ full indicator update during [t− T, t) then
5: |It+1| = FitToRange

(⌊
|It|
√

FPt

(M−1)·FNt

⌋)
6: ut+1 =

⌊ |It+1|
B

⌋
7: else . all updates are delta-updates
8: if |It| > |Imin| or BWt ≤ B then
9: ut+1 = umin

10: |It+1| = FitToRange
(⌊
e
W

(
B|It| log|It|

BWt

)⌋)
.

Lambert W function
11: else . |It| = |Imin| and BWt > B
12: |It+1| = |It| . indicator size remains |Imin|
13: ut+1 =

⌊
|It+1|
B

⌋
14: end if
15: end if
16: end for

17: procedure FitToRange(size)
18: return max {min {size, |Imax|} , |Imin|}
19: end procedure

indirectly includes some details about the cache policy, e.g.,
when the cache policy rapidly changes the cached content, then
a large update interval is likely to cause plenty of false-negative
errors. Alternatively, when the cache policy hardly changes the
cached content, the same (long) update interval results in few
false-negative errors.

B. Detailed Description

The CAB algorithm (formally defined in Algorithm 1) is an
implementation of the approach outlined above. The algorithm
begins with an arbitrary configuration that satisfies the budget
constraint (line 1). The algorithm then sets the segment size T
(line 2), such that the configuration may be updated at the end
of each segment (at times t = T, 2T, . . .). T is set to ensure
that sufficient statistics can be obtained during a segment, for
determining the configuration to be used towards the following
segment. This is controlled by the value of α, as described in
Sec. III. We note that it usually suffices to set α to a small
constant number (e.g., throughout our evaluation in Sec. VI
we use α = 10). At every time t = T, 2T, . . ., we let FPt and
FNt denote the false-positive ratio and the false-negative ratio
during the segment ending at t, and we recall that BWt denotes
the bandwidth cost (i.e., number of bits being sent by CAB,
divided by T) during this segment. Whenever a configuration
is chosen, the procedure FitToRange (lines 17-19) ensures
that the indicator size is within the prescribed bounds, i.e.,
in [|Imin| , |Imax|]. For determining the indicator’s size and
the update interval, CAB distinguishes between three cases
(marked by different shaded colors in Algorithm 1). In what

follows, we discuss the algorithmic design criteria for each of
these cases.

1) Full indicator updates: The first case (lines 4-6) is when
a full indicator is sent in (at least) one of the updates during
the segment ending at t. We refer to this case as having the
algorithm work in Mode 1 (shaded red). In this operation mode,
we expect to have FPt > 0 due to using indicators (which
by nature provide merely an approximate representation of
the cached content), and FNt > 0 due to staleness. CAB
adjusts its indicator size and update interval in an attempt
to strike a balance between the loss of performance caused
by false-negatives, and false-positives. This approach makes
the reasonable assumption that false-negatives increase when
increasing the update interval (as exhibited, e.g., in Fig. 1),
and false-positives increase when decreasing the indicator size.
Due to the budget constraint, the indicator size and the update
interval are positively correlated.

For understanding the choice made in line 5, one should
note that (i) a false-positive indication incurs an unwarranted
extra cost of 1, whereas (ii) a false-negative indication incurs
an unwarranted extra cost of (M − 1) (since we could have
incurred a cost of 1 by merely accessing the cache). It
follows that targeting having (M − 1) false-positives (which
are relatively cheap) for every single false-negative (which
is relatively expensive) would balance the unwarranted extra
costs. I.e., we would like to have (M − 1) · FN = FP , or
equivalently, FP

(M−1)·FN = 1. When considering FPt and FNt,
if (M−1) ·FNt < FPt, we would like to decrease the number
of false-positives, even at the cost of some additional false-
negatives, which translates to increasing the indicator size (and
in turn also increasing the update interval). If, on the other
hand, (M−1) ·FNt > FPt, we would like to do the converse.
We use the term

√
FPt

(M−1)·FNt
as the step size (and direction)

for updating the indicator size. This step size implies the same
factor for adjusting the update interval (for maintaining the
budget constraint, as verified by line 6). By this, we effectively
distribute the required change of FP

(M−1)·FN equally across the
indicator size (governing the behavior of false-positives) and
the update interval (governing the behavior of false-negatives).
The combined effect brings us closer to having FP

(M−1)·FN = 1.
The algorithm may adjust the indicator size to ensure that it is
within the allowed range, and then adjusts the update interval
to satisfy Eq. 1, and avoid violating the budget constraint.

2) Delta-updates, no budget violation or non-minimal indi-
cator size: Lines 8-10 describe a case where either the budget
constraint during the segment ending at t was satisfied (i.e.,
BWt ≤ B), or the indicator size can still be reduced (i.e.,
|It| > |Imin|). We refer to this case as having the algorithm
work in Mode 2 (shaded blue).

Assume first that there is no budget violation. By the
discussion presented in Sec. V-A, when sending delta-updates,
and when there is no budget violation, it is advisable to send
updates as fast as possible, i.e., using the minimal update
interval umin. This approach also implies that there will be no
(or very few) false-negatives, since we update the indicator with

the shortest allowed interval, keeping it (almost) up to date.
For determining the indicator size, we note that the overall
bandwidth available per request can be increased by a factor
of B

BWt
. It follows that we would like to utilize the entire

budget to minimize the number of false-positives. If, on the
other hand, there is a budget violation, but |It| > |Imin|, this
implies that we may remain in the delta regime, but will be
forced to reduce the indicator size to stay within budget.

To determine the ratio by which we should adjust the
indicator size, it is instructive to consider the effect of changing
the indicator size |It| by some factor β > 0. Such an adjustment
implies that every change in the cache will cause β times
more/less (depending on whether β > 1 or not) changed bits
in the indicator. Furthermore, adjusting the indicator size by a
factor of β implies that specifying each index in the indicator
would now requires log(β · |It|) bits instead of log |It|. It
follows that the overall number of bits sent for each change in
the cache would increase/decrease by a factor of β · log(β·|It|)log|It| .
We would like the overall change in the number of bits sent
to be equal to B

BWt
, to match the budget. Formally, we seek a

new indicator size |I| s.t:

|I| log |I|
|It| log |It|

=
B

BWt
, (2)

where we replace β by |I|
|It| . The solution to this equation is

obtained by using the Lambert W function [42], implying that

the new indicator size should be set to
⌊
e
W

(
B|It| log|It|

BWt

)⌋
.2 The

algorithm then ensures that the best indicator size in this case
falls within the allowed range.

3) Delta-updates, budget violation, minimal indicator size:
The third and last case is when we use the minimal indicator
size, but we still violate the budget. We refer to this case as
having the algorithm work in Mode 3 (shaded green).

In such a case, the only way to ensure feasibility is to
increase the update interval, as done in lines 11-13, in order
to satisfy Eq. 1. Such a scenario indeed occurs in practice
(as we show in Sec. VI), and handling this case ensures that
the algorithm can return to the configurations covered by the
previous two cases. Mode 3 allows the algorithm to transcend
to a considerably different state where we may prefer to send
full indicators. Without it, CAB cannot leave the delta regime.

VI. PERFORMANCE EVALUATION

In this section, we present the results of our simulation study.
Setup and system parameters: We focus on scenarios han-

dled by general-purpose caching libraries such as Caffeine [43],
Ristretto [44], Guava Cache [45], and the likes. In particular, we
use Caffeine for the evaluation of our proposed solution.3 The
cache has a split get/put interface where get tests the cache, and
put updates the cache. We extended Caffeine’s simulator [43]
to simulate the access cost with cache advertisements. In

2The Lambert W function is the inverse of the function f(w) = wew . It
can be used for solving the equation x lnx = a by substituting y = lnx,
resulting in yey = a, implying that x = ey = eW (a).

3Caffeine is arguably the most popular Java libraries and is used in tens of
large open-source projects such as Cassandra, Corfu, and Infinispan.

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5

2
2.5

3
3.5

4

F1
|c

os
t

4K

LRU

W
-tL

FU
FRD

Hyp
er

16K

LRU

W
-tL

FU
FRD

Hyp
er

64K

CAB SC CF

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5

2
2.5

3
3.5

4

F2
|c

os
t

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5

2
2.5

3
3.5

4

W
ik

i1
|c

os
t

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5

2
2.5

3
3.5

4

W
ik

i2
|c

os
t

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5

2
2.5

3
3.5

4

Sc
ar

ab
|c

os
t

4K

LRU

W
-tL

FU
FRD

Hyp
er

16K

LRU

W
-tL

FU
FRD

Hyp
er

64K

CAB SC CF

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5

2
2.5

3
3.5

4

P3
|c

os
t

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5

2
2.5

3
3.5

4

P6
|c

os
t

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5

2
2.5

3
3.5

4
P8
|c

os
t

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

Fig. 3. Access cost for CAB the best feasible static configuration (SC), and always accessing the cache (CF).

our implementation, we issue a get request upon a positive
indication, and we issue a put after handling the request
regardless of indications. Our advertisement mechanism uses
the Orestes Bloom filters library [46]. The cache maintains a
four-bit Counting Bloom Filter (CBF) [12]. However, before
sending an update, the cache compresses the CBF to a simple
Bloom Filter (BF) [11], where a bit in the BF is set iff the
respective counter in the CBF is (strictly) positive. We optimally
configure the number of hash functions to minimize the false-
positive rate [14].

We set umin = 10 to minimize the transmission overheads.
We set |Imin| to 2.5 · C which suffices for a false-positive
ratio of 30%, and |Imax| to 15 ·C that implies a false-positive
ratio of 0.07% [14]. Our default budget is B = 20, which sets
umax to |Imax|

B = 0.75 · C. We assume a miss penalty M = 3,
which is typical for edge computing, where the delay from a
cloud processing unit to the memory in the CDN is three times
higher than the delay from the cache located at the edge [47].

Benchmarks: The static configuration benchmark (SC) is
the best static configuration across a grid of configurations
satisfying the budget constraints in all segments; We consider a
set of possible indicator sizes

{
|Imin| · (1.1)i|i = 0, . . . , 18

}
⊆

[|Imin| , |Imax|],4 and also the maximal indicator size |Imax|.

4|Imin| · (1.1)i ≤ |Imax| implies in this case that i ≤ b log 6
log 1.1

c = 18.

The update intervals considered are taken from the range{
umin · (1.15)j |j = 0, . . . , log(umax/umin)

log(1.15)

}
. For example, for

cache sizes 4K, 16K, and 64K, the number of possible update
intervals considered in the grid are 41, 51, and 61, respectively.
We note that SC can only be determined in retrospect. We also
evaluate the CacheFirst (CF) policy that always accesses the
cache (without indicators) to quantify the access cost reduction
from using advertisements.

Traces: We use the following real workloads, which are
commonly used when evaluating caching systems: (i) Scarab:
A trace from Scarab Research, a personalized recommendation
system for e-commerce sites [48]. (ii) F1, F2: Traces taken
from a financial transaction processing system [49]. (iii) P3, P6,
P8: Traces of disk accesses in Windows servers [40]. (iv) Wiki1,
Wiki2: Read requests to Wikipedia pages [50].

Cache policies: We simulated the classic LRU policy,
along with three highly competitive policies, including W-
TinyLFU [51] (also denoted by W-tLFU)), FRD [52], and
Hyperbolic [41]. For completeness, we now very briefly outline
these policies.

The Least Recently Used (LRU) policy evicts the least
recently accessed item. It assumes that recently accessed items
would be accessed again. The W-tLFU policy combines LRU
with a frequency-based cache. Items are only admitted to a
frequency-based cache if they are more frequent in a long

history, which is represented as a CBF for space efficiency.
FRD varies the time it retains admitted items according to
their past access pattern. First-timers are admitted for a short
duration, while previously encountered items are admitted for
a longer duration. FRD uses extensive metadata about past
accesses to distinguish first-timers from recurring items. Finally,
Hyperbolic caching is an adaptive cache policy that changes
its eviction policy according to the workload.

A. Competitive Evaluation:

CAB across workloads and policies: Our first experiment
compares the access cost for the four cache policies when
varying the cache size and the workload. Figure 3 shows the
results of these experiments. First, observe that increasing the
cache size reduces the access costs, as expected by cache
policies. Further, observe that for most traces, the differences
between the cache policies are not very large, and are smaller
than the differences between the CF and SC policy. This implies
that the potential benefit from advertising cache content may be
higher than the benefit from changing the cache policy. Finally,
observe that the performance of CAB is very similar to that
of the SC benchmark. In some cases, (e.g., F1 4K LRU) CAB
is even slightly better than the best static configuration. Such
a result implies that conditions change during the trace and
that CAB manages to adjust itself according to these changes,
thus reducing cost. In other cases, CAB is slightly worse than
the best configuration, but the difference is always small. CAB
operates in real time, without prior knowledge of the system
configuration, or the workload (other than knowing the cache
size, the budget, and the bounds on the indicator sizes).

CAB across budgets and policies: We now repeat the
experiment for varying budgets. Fig. ?? illustrates these results.
As expected, in all policies CAB and SC improve when the
budget increases. As in our previous experiment, CAB matches
the performance of SC regardless of budget. However, for
W-tLFU CAB is not as good as SC for a small budget (10).
The reason for this is that W-tLFU contains a very small and
rapidly-changing Window cache, which forces CAB into short
update intervals, which are bad for the larger and less dynamic
Main cache (consuming 99% of the cache space). Alternatively,
notice that CAB is slightly better than SC for a budget of 40
across all policies, implying that it manages to adapt to the
changes within the trace.

B. CAB Under the Hood:

We now turn to highlight the performance and behavior
of CAB in dynamic settings, where the workload changes.
In this experiment, we run several traces one after another.
Since each workload’s characteristics are slightly different,
such an experiment allows us to follow the dynamic change
of configuration performed by CAB and the system behavior
as it interacts with these changes.

Figure 4 shows various aspects of the execution of CAB for
a combination of traces F1 (dark shaded area) and F2 (light
shaded area), concatenated as F1→F2→F1→F2. Note that
both F1 and F2 are typical to the same application (financial

0 5 10 15 20 25 30 35
40
80

120
160
200
240

in
di

ca
to

r
si

ze
[K

b]

0 5 10 15 20 25 30 35
0
2
4
6
8

10
12

up
da

te
in

te
rv

al
[K

re
qu

es
ts

]

0 5 10 15 20 25 30 35
0.1
0.4
0.7

1
1.3
1.6
1.9

ut
ili

za
tio

n
[B
W
/
B

]
0 5 10 15 20 25 30 35

0
0.2
0.4
0.6
0.8

1

time [M requests]
hi

t
ra

tio

Fig. 4. The dynamics of CAB on a concatenated trace F1→F2→F1→F2. F1
requests are dark shaded, and F2 requests are light shaded. The cache size is
16K, the policy is LRU, and the budget is 20 bits/request.

transactions), and therefore such a concatenated workload may
indeed happen in practice. The total request count is ∼40M.
The experiment is performed using C = 16K, the LRU policy,
M = 3, and a budget of 20 bits/req. As in earlier experiments,
we take umin = 10, and α = 10. This implies T = 160K,
resulting in ∼250 configuration segments during the entire
simulation. Also, we set |Imin| = 2.5 ·C = 40K, and |Imax| =
15 · C = 240K.

The top subfigure shows the evolution of the indicator size. Itamar: In the version we submitted I had a
tiny bug in the calculation of Alg’s cost. I re-
run all the simulations. It hardly changed the
results. However, it indeed changed Fig. 4 (you
may observe the difference by viewing the file
CABinfocom21sumbitted.pdf, that I added to
this project). I changed the literal description of
that Fig. accordingly. Please carefully review.

Itamar: In the version we submitted I had a
tiny bug in the calculation of Alg’s cost. I re-
run all the simulations. It hardly changed the
results. However, it indeed changed Fig. 4 (you
may observe the difference by viewing the file
CABinfocom21sumbitted.pdf, that I added to
this project). I changed the literal description of
that Fig. accordingly. Please carefully review.

The second topmost subfigure shows the evolution of the update
interval. These two figures provide a glimpse into the evolution
of the configurations used by CAB. The bottom subfigure shows
the evolution of the hit ratio of the cache. We stress that the hit
ratio captures the ratio of requests that are actually found in
the cache, and is therefore an artifact of the settings (workload,
cache size, and cache policy). The advertisement policy doesn’t
impact the hit ratio. However, CAB’s advertisement policy
implicitly reacts to the hit ratio. The second bottom-most
subfigure shows the bandwidth utilization (normalized to the
bandwidth budget). Notice that the utilization is calculated
before network policing; hence CAB may try to exceed the
bandwidth (but the network policing prevents that).

These figures show the effect of the algorithm’s choices and
the properties of the workload. We now turn to explain and
describe the algorithm’s performance along time t (measured
by the request counts).
• t ∈ [0, 1M]: Soon after the beginning, CAB identifies that

the cache uses delta-updates, and thus sets ut = umin,
while adjusting the indicator size so as to comply with
the budget constraint (Mode 2).

• t ∼ 1M: The hit ratio (bottom subfigure) sharply decreases.
This translates to a substantial change in the cached
content, resulting in much larger delta updates that violate
the budget constraint (second-bottom subfigure). Notice
that CAB cannot exceed the budget, as its advertisements
are dropped once the budget is exhausted (leading to
additional errors). The algorithm fails to comply with the
budget constraint with a minimal update interval, even
when shrinking the indicator size to |Imin|. Hence, CAB
increases the update interval, to ensure adhering to the
budget restriction (Mode 3).

• t ∈ [1M, 5.5M]: CAB constantly works in Mode 1, mostly
sending full indicators (as it is cheaper than sending the
mere changes). During this time, the algorithm constantly
satisfies the budget constraint, and merely makes small
adjustments to the indicator size, and the update interval,
to optimize its usage of bandwidth while balancing the
extra costs incurred by false-positives and false-negatives.

• t ∈ [5.5M, 18M]: the F1 trace ends, and the F2 trace
begins. The hit ratio significantly increases, thus allowing
for using a much larger indicator, and more frequent
updates. The algorithm hence switches to Mode 2, and
persistently uses the minimal update interval. CAB occa-
sionally violates the budget constraint, and then shrinks
the indicator again, to stay within limits.

• t ∼ 18M: A sudden drop in the hit ratio does not allow the
algorithm to keep a minimal update interval anymore, even
when the indicator size is |Imin|. Hence, CAB switches
to mode 3, and significantly increases the update interval
to satisfy the budget constraint.

• t ∈ [18M, 20M]: The algorithm works in Mode 1, con-
stantly sending full indicators, and adjusting the indicator
size and the update interval to remain within budget. This
operation occurs alongside the general increase in hit ratio,
allowing the algorithm to settle for smaller indicator size
and update intervals.

• t ∈ [20M, 25.5M]: The algorithm again behaves as it did
when initially handling F1.

• t ∈ [25.5M, 40M]: The F2 trace arrives, and the algorithm
exhibits similar behavior when transitioning again to
handling F2. However, a closer look shows that the
indicator size and the update interval slightly differ from
those chosen by the algorithm in the previous run of F2,
which occurred in the interval t ∈ [5.5M, 18M]. These
changes further exemplify how the algorithm adapts even
to minor changes stemmed from differences in the cache’s
content at the beginning of the different runs of F2.

VII. DISCUSSION AND CONCLUSIONS

Many systems use cache advertisements, which highlight
the need for efficient cache advertisement strategies. Yet,
prior to our work, the literature lacked a rigorous method
to configure the advertisement strategy. Therefore, system

designers turn to design decisions based on rules-of-thumb and
ad-hoc benchmarks of typical workloads. Additionally, these
approaches are mostly limited to selecting a static advertisement
policy, which means that changes in system and workload
parameters might degrade the quality of their choice.

Our work surveys the possible modes of operations that
an advertisement policy can utilize. We empirically show
that there is no one-size-fits-all policy and that advertisement
policies’ performance depends on the cache policy, the cache
size, and the workload. Worse yet, static policies are ill-suited
for adaptive cache policies that change their behavior during
run-time [39]–[41].

We designed the novel CAB algorithm that adjusts the
advertisement policy according to the current conditions. CAB
reaches its decision by monitoring its bandwidth footprint,
false-positive, and false-negative errors. It is indifferent to the
cache size, the workload, and the cache policy (beyond their
indirect effect on the false-positive and false-negative rates).

We performed an extensive evaluation that uses eight
real workloads and tested the classic LRU policy and three
other leading cache management policies. We performed our
work under a strict network model that drops messages if
transmitting them would violate the bandwidth budget. Under
these conditions, CAB exhibits an overall cost comparable
(and sometimes superior) to the best static advertisement policy
for all cache sizes, workloads, and cache policies. CAB is a
game-changer as developers no longer need to optimize their
advertisement policy manually. Instead, they can use CAB
to optimize the advertisement strategy, shorten development
time, and attain good performance in a variety of scenarios
and system configurations. More so, CAB solves problems
that were encountered by many works [4], [10], [18], [19],
[31]–[36], and solved only in an ad-hoc manner.

Next, we run multiple traces one after another and show
that CAB successfully adapts to the changes in the workload,
varying its advertisement strategy according to the conditions,
and effectively transitioning between the delta and full-indicator
updates regimes. To the best of our knowledge, CAB is the
first to combine these options seamlessly. We note that CAB
changes its transmission policy quite often during the system’s
lifetime, which incurs computation costs at the cache. E.g.,
we need to prepare a new indicator every time we change the
indicator size. While we do not evaluate the CPU usage of the
cache, we sized the reconfiguration intervals to be ten times
the cache size. Thus, the amortized cost of computing a new
indicator is one indicator operation per 10 cache accesses. We
believe that such a configuration makes the additional overheads
manageable (if not negligible) since current indicators, such as
Bloom filter implementations [43], [46], reach over 20 million
ops per second on a single thread and are embarrassingly
parallel.

Another takeaway from our research is that false-negatives
cannot be neglected when advertising the cached content. Thus,
the works that neglect them [1], [27] limit their analysis to
a single mode of operations and are therefore incomplete.
Looking into the future, we plan to develop access strategies

that cope well with false-negatives, and then use such strategies
alongside CAB on a distributed network. Such a work may
borrow some ideas from [27], [31].

REFERENCES

[1] O. Rottenstreich and I. Keslassy, “The bloom paradox: When not to use
a bloom filter,” IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 703–716,
2015.

[2] X. Guo, T. Wang, and S. Wang, “Joint optimization of caching and
routing strategies in content delivery networks: A big data case,” in IEEE
ICC, 2019.

[3] B. Maggs and R. Sitaraman, “Algorithmic nuggets in content delivery,”
ACM SIGCOMM Comp. Comm. Rev., vol. 45, no. 3, pp. 52–66, 2015.

[4] I.-W. Ting and Y.-K. Chang, “Improved group-based cooperative caching
scheme for mobile ad hoc networks,” J. Parallel. and Distrib. Comp.,
vol. 73, no. 5, pp. 595–607, 2013.

[5] T. Le, Y. Lu, and M. Gerla, “Social caching and content retrieval in
disruption tolerant networks (dtns),” in 2015 International Conference
on Computing, Networking and Communications (ICNC). IEEE, 2015,
pp. 905–910.

[6] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An architecture for global-scale persistent storage,”
SIGPLAN Not., vol. 35, no. 11, pp. 190–201, 2000.

[7] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery network,”
in NSDI, 2017, pp. 483–498.

[8] M. Bilal and S. G. Kang, “A cache management scheme for efficient
content eviction and replication in cache networks,” IEEE Access, vol. 5,
pp. 1692–1701, 2017.

[9] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in ICN, 2012, pp. 55–60.

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scalable
wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw., vol. 8,
no. 3, pp. 281–293, 2000.

[11] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[12] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,
“An improved construction for counting bloom filters,” in ESA, 2006, pp.
684–695.

[13] G. Einziger and R. Friedman, “Tinyset: An access efficient self adjusting
bloom filter construction,” IEEE/ACM Trans. Netw., vol. 25, no. 4, pp.
2295–2307, 2017.

[14] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Comm. Surv. & Tut.,
vol. 14, no. 1, pp. 131–155, 2012.

[15] L. Luo, D. Guo, R. T. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Comm. Surv.
& Tut., vol. 21, no. 2, pp. 1912–1949, 2018.

[16] G. Einziger and R. Friedman, “Counting with tinytable: Every bit counts!”
in ICDCN, 2016, p. 27.

[17] Y. Kanizo, D. Hay, and I. Keslassy, “Access-efficient balanced bloom
filters,” Comput. Comm., vol. 36, no. 4, pp. 373–385, 2013.

[18] W. Shi and Y. Mao, “Performance evaluation of peer-to-peer web caching
systems,” J. of Sys. and Soft., vol. 79, no. 5, pp. 714–726, 2006.

[19] M. Tortelli, L. A. Grieco, and G. Boggia, “CCN forwarding engine based
on bloom filters,” in CFI, 2012, pp. 13–14.

[20] Squid Cache, “Squid-cache wiki.” [Online]. Available: https://wiki.
squid-cache.org/SquidFaq/CacheDigests#Would_it_be_possible_to_
stagger_the_timings_when_cache_digests_are_retrieved_from_peers.3F

[21] ——, “Squid digest spec, v5.” [Online]. Available: http://www.
squid-cache.org/CacheDigest/cache-digest-v5.txt

[22] X. Guo et al., “Joint optimization of caching and routing strategies in
content delivery networks: A big data case,” in IEEE ICC, 2019.

[23] R. Hou, L. Zhang, T. Wu, T. Mao, and J. Luo, “Bloom-filter-based
request node collaboration caching for named data networking,” Clust.
Comp., vol. 22, no. 3, pp. 6681–6692, 2019.

[24] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms
in information-centric networking,” IEEE Comm. Surv. & Tut., vol. 17,
no. 3, pp. 1473–1499, 2015.

[25] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Comp. Net., vol. 57, no. 16, pp. 3128–3141, 2013.

[26] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom
filters,” IEEE Trans on Knowl. and Data Eng., vol. 22, no. 1, pp. 120–133,
2009.

[27] I. Cohen, G. Einziger, R. Friedman, and G. Scalosub, “Access strategies
for network caching,” in IEEE INFOCOM, 2019, pp. 28–36.

[28] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 604–612, 2002.

[29] S. Z. Kiss, É. Hosszu, J. Tapolcai, L. Rónyai, and O. Rottenstreich,
“Bloom filter with a false positive free zone,” in INFOCOM, 2018, pp.
1412–1420.

[30] Y. Zhu, H. Jiang, J. Wang, and F. Xian, “HBA: Distributed metadata
management for large cluster-based storage systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 147, pp. 204–220, 2018.

[31] Y. Zhu and H. Jiang, “False rate analysis of bloom filter replicas in
distributed systems,” in ICPP, 2006, pp. 255–262.

[32] Hong Tang and Tao Yang, “An efficient data location protocol for
self.organizing storage clusters,” in ACM/IEEE Supercomputing, 2003,
pp. 53–53.

[33] J. Ledlie, L. Serban, and D. Toncheva, “Scaling filename queries in a
large-scale distributed file system,” 2002.

[34] M. Ripeanu and I. Foster, “A decentralized, adaptive, replica location
service,” 01 2002.

[35] P.-H. Hsiao, “Geographical region summary service for geographical
routing,” in Mobihoc, 2001, p. 263–266.

[36] H. Cai and J. Wang, “Foreseer: A novel, locality-aware peer-to-peer
system architecture for keyword searches,” in ACM/IFIP/USENIX
Middleware, 2004, p. 38–58.

[37] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. Kat, “It’s time to
revisit LRU vs. FIFO,” in HotStorage, 2020.

[38] A. Rousskov and D. Wessels, “Cache digests,” Comp. Net. and ISDN
Sys., vol. 30, no. 22-23, pp. 2155–2168, 1998.

[39] G. Einziger, O. Eytan, R. Friedman, and B. Manes, “Adaptive software
cache management,” in ACM Middleware, 2018, pp. 94–106.

[40] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache.” in Fast, no. 2003, 2003.

[41] A. Blankstein, S. Sen, and M. J. Freedman, “Hyperbolic caching: Flexible
caching for web applications,” in USENIX ATC, 2017, pp. 499–511.

[42] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth, “On the Lambert W function,” Adv. Comput. Math., vol. 5, no. 1,
pp. 329–359, 1996.

[43] B. Manes, “Caffeine: A high performance caching library for java.”
[Online]. Available: https://github.com/ben-manes/caffeine

[44] Dgraph Labs, Inc., “Ristretto: A high performance memory-bound go
cache.” [Online]. Available: https://github.com/dgraph-io/ristretto

[45] Google, “Guava: Google core libraries for java.” [Online]. Available:
https://github.com/google/guava

[46] Baqend GmbH, “Orestes: Bloom filter library for java.” [Online].
Available: https://github.com/Baqend/Orestes-Bloomfilter

[47] T. X. Tran and D. Pompili, “Octopus: A cooperative hierarchical caching
strategy for cloud radio access networks,” in IEEE MASS, 2016, pp.
154–162.

[48] “Caffeine’s simulator cache traces.” [Online]. Avail-
able: https://github.com/ben-manes/caffeine/tree/master/simulator/src/
main/resources/com/github/benmanes/caffeine/cache/simulator/parser

[49] M. Liberatore and P. Shenoy, “Umass trace repository,” 2016. [Online].
Available: http://traces.cs.umass.edu/

[50] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Comp. Net., vol. 53, no. 11, pp. 1830–1845,
2009.

[51] G. Einziger, R. Friedman, and B. Manes, “Tinylfu: A highly efficient
cache admission policy,” TOS, vol. 13, no. 4, pp. 35:1–35:31, 2017.

[52] S. Park and C. Park, “FRD: A filtering based buffer cache algorithm that
considers both frequency and reuse distance,” in MSST, 2017.

