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Cell Orientation under Stretch: Stability of a1

Linear Viscoelastic Model2

Giulio Lucci ∗†‡ Chiara Giverso ∗ Luigi Preziosi ∗3

May 10, 20214

Abstract5

The sensitivity of cells to alterations in the microenvironment and in particular to external6

mechanical stimuli is significant in many biological and physiological circumstances. In this re-7

gard, experimental assays demonstrated that, when a monolayer of cells cultured on an elastic8

substrate is subject to an external cyclic stretch with a sufficiently high frequency, a reorgani-9

zation of actin stress fibers and focal adhesions happens in order to reach a stable equilibrium10

orientation, characterized by a precise angle between the cell major axis and the largest strain11

direction. To examine the frequency effect on the orientation dynamics, we propose a linear12

viscoelastic model that describes the coupled evolution of the cellular stress and the orientation13

angle. We find that cell orientation oscillates tending to an angle that is predicted by the min-14

imization of a very general orthotropic elastic energy, as confirmed by a bifurcation analysis.15

Moreover, simulations show that the speed of convergence towards the predicted equilibrium16

orientation presents a changeover related to the viscous-elastic transition for viscoelastic materi-17

als. In particular, when the imposed oscillation period is lower than the characteristic turnover18

rate of the cytoskeleton and of adhesion molecules such as integrins, reorientation is significantly19

faster.20

21

Keywords: Cell orientation · Cell stretching · Stress fibers · Cell mechanosensing · Vis-22

coelasticity · Bifurcations23

24
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1 Introduction26

During their life cycle, cells are constantly exposed to numerous stimuli coming from the sur-27

rounding microenvironment. The nature of these cues is wide-ranging: among them, a significant28

role is played by mechanical prompts, since many experiments demonstrated that they trigger29

a cellular response [1, 6, 9, 15, 22, 29, 33, 47, 65, 74]. Cell sensitivity to mechanical actions30

is relevant in many biological and physiological circumstances, such as growth, differentiation,31
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motility, apoptosis and tissue fibrosis [7, 29, 65]. Its precise understanding has then gathered1

increasing research attention, since it could be helpful to acquire a deeper knowledge of some2

diseases and of morphogenesis, just to mention a few examples. For instance, an altered percep-3

tion of mechanical stimuli due to cell-cell contact inhibition and to cell tensile stress is known4

to have a role in tumourigenesis and cancer development [5, 8, 32, 36], and it is also related to5

epithelial-mesenchymal transition [31, 58] in neoplastic tissues.6

Moreover, the active response of the cell to mechanical interactions with the environment is7

involved in cell culturing, development, and tissue engineering. In particular, during embryo-8

genesis, the formation of residual stresses and active forces is believed to drive heart formation9

and looping [60]. Cardiac cell cultures also display enhanced hypertrophy, proliferation and10

alignment when subject to static or cyclic stress [64]. Notably, experimental tests carried out11

on several types of cells (like fibroblasts, myofibroblasts, cardiomyocites and endothelial cells)12

showed that alignment in response to a deformation is a common feature which proves their13

capability to adapt after mechanical stimuli [1, 9, 15, 40, 46, 47, 48]. In detail, when a monolayer14

undergoes a cyclic deformation, cells lying on the substrate tend to change their orientation in a15

precise way, until they reach a stable configuration characterized by a well-defined angle between16

their major axis and the direction of largest stretching. In this process, a fundamental role is17

played by the cytoskeleton [27, 47, 66, 67]: focal adhesions (FAs), i.e. protein complexes which18

provide cell contact with the substrate and the extracellular matrix, sense the mechanical stress19

and induce a remodelling of the cytoskeletal structure, through the formation of oriented actin20

stress fibers (SFs). These fiber bundles are able to develop contractile forces: when submitted21

to an external stretch, the cell reorganizes the SF structure, disrupting and rebuilding them in22

a specific direction to relieve the stress.23

Several works, both on the experimental [1, 11, 15, 23, 27, 30, 33, 40, 47, 68] and on the24

theoretical side [3, 9, 17, 18, 19, 67, 70], have tried to address the problem of cell reorientation25

under mechanical stretch. It is recognized that this mechanism is actively performed by the cell26

[69], and that it is induced by mechanical strain deforming the substrate to which they adhere.27

Moreover, there is common agreement on the fact that cells on a plane substrate undergoing28

a cyclic deformation orient their stress fibers in a direction which is oblique or in some cases29

perpendicular to the applied strain [9, 27, 40, 45]. Indeed, when the substrate deformation is30

transmitted to the cell cytoskeleton through FAs, a reorganization of SF structure happens: they31

are disassembled and rebuilt in a precise direction [56], fostering changes in shape and orientation32

of the whole cell. In addition, FAs themselves form clusters at the ends of aligned SFs, giving33

the cell an elongated and clearly oriented morphology (see Fig.1). Therefore it is possible to34

define an equilibrium orientation angle, θeq, that is the angle formed by the cell major axis35

and the direction of stretching when cell orientation does not evolve anymore. In this respect,36

mathematical models trying to predict this equilibrium orientation angle and the driving force37

of such a behaviour have been proposed, using different approaches but mainly in a linear elastic38

framework. For instance, the first attempts to describe cell orientation suggested a preference for39

the minimal strain or minimal stress directions [18, 19, 23, 40, 66, 68]. Looking closely at biaxial40

tests, Livne and coworkers [40] found a linear relationship between cos2 θeq and a parameter41

quantifying the biaxiality of the deformation.42

Remarkably, some experimental assays were performed applying deformations for which using43

linear elasticity should be theoretically inaccurate (e.g., up to 24% in [40] and up to 32% in [23]).44

Starting from this experimental evidence, Lucci and Preziosi [42] proved that a generalization45

of the linear relationship found in the linear elastic case by Livne et al. [40] also holds for46

a very large class of nonlinear constitutive orthotropic models. In the nonlinear framework,47

the squared cosine of the orientation angle is linearly dependent on a parameter which is the48

natural generalization of the one found in [40], with a slope depending on a combination of elastic49
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Figure 1: Sketch of experimental set-up, of the inner structure of a typical cell, and of its
adhesion to the substrate.
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coefficients characterizing the nonlinear strain energy.1

Nevertheless, there are other factors influencing the orientation of the cell, the most relevant2

of which is probably the frequency of the applied cyclic deformation [30, 38]. In fact, it has been3

observed that, in order to trigger such a response, the period of the stretching cycle must be4

sufficiently small [28, 30]. As specified in [30], this threshold seems to be cell-type dependent,5

leading to minimum frequencies that go from 0.01 Hz for rat embryonic fibroblasts to 0.1 Hz for6

human dermal fibroblasts. This mechanism cannot be covered by the purely elastic descriptions7

discussed above, and calls for the introduction of a characteristic response time that needs to be8

compared with the periodic deformation time scale. The existence of such a characteristic time9

might be related to the reorganization of the acto-myosin cytoskeleton and of the ensemble of focal10

adhesions with the substrate. Indeed, it is known that the characteristic turnover times of both11

phenomena are of the order of tens of seconds, or even minutes (see, for instance, [11, 50, 51, 63]).12

On the basis of this observation, in this paper we propose a viscoelastic model for cell pref-13

erential orientations, in order to describe reorganization processes occurring inside the cell and14

between the cell and its microenvironment when a mechanical deformation is applied to the15

substrate. To our knowledge, previous viscoelastic descriptions of cell stress fiber dynamics have16

been mainly focused on the microscopic scale [35, 55], while in this article we treat the monolayer17

as a continuum. In particular, we introduce an anisotropic viscoelastic description that couples18

the evolution of the SF orientation angle with the mechanical stress exerted on the cell as a con-19

sequence of cyclic stretching. Hence, the ensemble of cells lying on the substrate is considered20

as a Maxwell orthotropic fluid with a single relaxation time. We prove that, for high stretching21

frequencies, the cell cytoskeleton does not have enough time to reorganize and behaves elastically,22

while for slow processes the viscous character emerges.23

Futhermore, after having showed that the steady angles are predicted by an energy mini-24

mization, we work with a very general orthotropic material. An extensive bifurcation analysis25

is then performed, discussing the role of elastic parameters and finding the conditions under26

which a certain angle of cell orientation is stable. We find that also in this general set up there27

exists a linear relationship between cos2 θeq and a combination of parameters of the orthotropic28

elasticity tensor. The slope of the straight line fitting experimental data suggests that, among29

all coefficients, a more relevant role is played by those in charge of describing the cell response30

to elongation along its orientation axis and to shear.31

Finally, we perform some numerical simulations using the complete viscoelastic model, study-32

ing the reorientation dynamics in the high frequency and low frequency cases together with stress33

evolution. It is found that the cell orientation angle evolves toward the steady state predicted34

by the linear stability analysis, with a speed which depends on the elastic or viscous character35

of the system. Moreover, in accordance with the observation in [28, 30], simulations show that36

the speed of reorientation towards the equilibrium angle sensibly depends on the frequency of37

imposed oscillations. In particular, it presents a transition for values of the ratio of the oscilla-38

tion period and the characteristic time of viscoelasticity close to 2π, so that the time required to39

observe reorientation is of the order of days for smaller frequencies, saturating to one hour for40

larger frequencies.41

In detail, the paper is organized as follows. In Section 2 the general mathematical model42

is introduced, deriving the equations for the viscoelastic system and studying their significant43

limits, i.e. the high-frequency and low-frequency cases. Section 3 is devoted to a detailed44

bifurcation analysis of the model for an orthotropic energy density, deriving conditions under45

which equilibrium orientations are stable. In Section 4 we discuss the implementation and report46

some numerical results of our model, showing both the elastic and the viscous behaviour of the47

system. Finally, Section 5 is dedicated to a summary of the results and to the discussion of some48

open issues, which may be of interest for future research. In Appendix A we report some details49
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related to the possible presence of a symmetry breaking phenomenon.1

2 Viscoelastic Model2

We consider a two-dimensional substrate seeded of cells that is stretched biaxially. While the3

response of the extracellular material is in general isotropic and elastic, the mechanical behaviour4

of the ensemble of cells can be regarded as anisotropic and viscoelastic. The viscoelastic character5

is due to the reorganization of the acto-myosin network inside the cell and to the rearrangement6

of focal adhesions (FAs), performed through repeated detachments and attachments of integrin7

bonds with the substrate, especially under stretch, to relax the perceived stress (see, for instance,8

[54]). Instead, anisotropy derives from the fact that, when subject to a mechanical deformation,9

cells tend to build properly oriented actin stress fibers (SFs) within their cytoskeleton [29, 66].10

In addition, these SFs are linked by a network of proteins (such as fascin, fimbrin, α-actinin,11

filamin, ARP2-3 [14, 24, 57, 67]) that spans them orthogonally with respect to the fiber bundles12

or at well defined angles, as in the case or ARP2-3, as sketched in Fig. 1. As a consequence,13

the cell responds differently to stretches and stresses along its major axis with respect to the14

transversal axis and to shear as well.15

The main orientation of SFs, which will be identified by a unit vector N, can change in16

time due to several cues, among which mechanical deformations. We will here consider, as in17

experiments, that the specimen is subject to a biaxial stretch and take the x-axis aligned to the18

direction of maximal stretch. Then, the angle formed by N and the x-axis will be denoted by θ.19

Resorting to Lagrangian mechanics, we can relate the evolution in time of the orientation20

angle θ with the changes in the virtual work L done by the stress acting on the cell due to SF21

alignment. Considering an overdamped regime, which corresponds to neglecting inertial effects,22

we can then write23

0 = −η dθ
dt
− ∂L
∂θ

, (1)

where L := T : E, being T the excess Cauchy stress tensor and E the infinitesimal deformation24

tensor, is the work done by the stress, assuming that the mechanical behaviour is linear. More-25

over, η > 0 is a viscous-like coefficient measuring cell resistance to realignment. Since we are26

interested in deformation tests, where a periodic deformation is imposed to the specimen, E is27

assumed to be independent of θ and externally imposed. It is then convenient to rearrange Eq.28

(1) to get the following evolution equation for θ(t):29

dθ

dt
(t) = − 1

Kλθ

∂T
∂θ

(t|θ) : E(t) , (2)

where we identified K as the characteristic Young modulus of the material and λθ := η/K as a30

parameter related to the time the cell takes to reorient itself. The notation T(t|θ) reads as the31

stress at time t given the history of orientations θ.32

Equation (2) implies that, for a given deformation E, θ tends to assume a value such that the33

variation of T with respect to θ either vanishes or becomes orthogonal to E.34

Focusing on T, we assume here that the stress in the elastic substrate and the viscoelastic35

cellular component embedded in it is given by36

T(t|θ) =

∫ t

−∞
CI (θ(τ); t− τ)[E(t)− E(τ)] dτ , (3)

(see, for instance, [2] for the isotropic case and [52, 53] for the anisotropic case). We notice37

that the elements of the fourth-order tensor CI are all bounded and that, in the isotropic case,38
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CI reduces to the derivative of the so-called relaxation kernel (apart from the sign) times the1

identity tensor. The kernel CI depends on the alignment direction, i.e. on the orientation angle2

θ, which during the history of deformation can evolve in time. On the other hand, the second3

part of the kernel dependence takes into account the weight of past orientations (at time τ) on4

the present state of stress and represents memory effects of the viscoelastic material. We will5

assume that such a dependence is exponential with a single relaxation time λ [52, 53], that is,6

CI (θ(τ); t− τ) =
1

λ
CI 0(θ(τ))e−(t−τ)/λ, (4)

where CI 0(θ(τ)), which is the fourth-order elasticity tensor depending on the orientation direction7

θ at time τ , inherits form CI the boundedness and regularity properties. Therefore, we can write8

T(t|θ) =

∫ t

−∞

1

λ
e−(t−τ)/λCI 0(θ(τ))[E(t)− E(τ)] dτ . (5)

As usual in rheology, for this type of kernels it is useful to differentiate (5) and to rewrite the9

constitutive equation in the following differential form:10

λ
dT
dt

(t|θ) + T(t|θ) = C| 0(t|θ)dE
dt

(t) , (6)

where11

C| 0(t|θ) :=

∫ t

−∞
e−(t−τ)/λCI 0(θ(τ)) dτ =

∫ +∞

0

λe−sCI 0(θ(t− λs)) ds , (7)

is a functional on the exponentially weighted history of past orientations. We observe that, in12

the isotropic case, C| 0 is twice the so-called elastic viscosity, i.e., the area under the relaxation13

kernel (times the identity tensor).14

In Eq. (2) and (6) there are two intrinsic characteristic times: λ refers to the viscous behaviour15

of cells due, for instance, to the continuous renewal of adhesion bonds with the substrate, while16

λθ is related to the characteristic time of reorganization of stress fibers and consequently to the17

change in cell orientation. It is known that both remodelling phenomena occur on time scales18

of tens of seconds or even minutes [11, 50, 51, 63]. Now, given that in mechanical tests cells are19

often subject to cyclic strains, it is useful to discuss how the model behaves when the imposed20

oscillation period T is much shorter or longer than the characteristic times mentioned above. In21

order to do so, we observe that, for a periodic deformation E(t) = E0e
iωt, the expression of the22

stress (5) can be rewritten as23

T(t|θ) =
1

λ

[∫ t

−∞
e−(t−τ)/λ CI 0(θ(τ))

(
1− e−iω(t−τ)/λ

)
dτ

]
E0e

iωt

=

[∫ +∞

0

e−s CI 0(θ(t− λs))
(
1− e−iλωs

)
ds

]
E0e

iωt . (8)

2.1 High Frequency Regime24

First of all, we consider a high frequency regime with λ, λθ � T = 2π/ω, so that the relaxation25

times are much longer than the oscillation period of the deformation, i.e., the reorganization26
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process is slower than the imposed cyclic strain. In this case, it is useful to split the integral in1

Eq. (8) as2

T(t|θ) =

[∫ +∞

0

e−sCI 0(θ(t− λs)) ds
]
E0e

iωt −
[∫ +∞

0

e−sCI 0(θ(t− λs))e−iλωs ds
]
E0e

iωt. (9)

We observe that, as stated before, the coefficients of tensor CI 0(θ(t)) are regular in θ. In3

particular, they are bounded as well as their derivatives. Hence, by Riemann-Lebesgue lemma,4

the second integral in the r.h.s. of Eq. (9), which can be regarded as the unilateral Fourier5

transform of the L1 function e−sCI 0(θ(t− λs)), vanishes in the limit of high frequencies.6

As regards the first term, integrating by parts and exploiting Eq. (2) we have

T(t|θ) =

[
CI 0(θ(t)) +

λ

Kλθ

∫ +∞

0

e−s
∂CI 0

∂θ
(θ(t− λs))∂T

∂θ
(t− λs|θ) : E0e

iω(t−λs) ds

]
E0e

iωt

= CI 0(θ(t))E0e
iωt +

[
λ

Kλθ

∫ +∞

0

e−s
∂CI 0

∂θ
(θ(t− λs))∂T

∂θ
(t− λs|θ) : E0e

−iλωs ds

]
E0e

i2ωt.

Provided that, denoting by H(s) the Heaviside function, the tensorial function7

f(s) = H(s)
∂CI 0

∂θ
(θ(t− λs))∂T

∂θ
(t− λs|θ) : E0e

−s ∈ L1(R) ,

as we expect because of the boundedness of the derivative of the coefficients in CI 0, the integral8

in the stress expression corresponds to the Fourier transform of f(s), which again vanishes in the9

limit of high frequencies. Hence, in the high frequency regime we are left with10

T(t|θ) ≈ CI 0(θ(t))E0e
iωt. (10)

Such a constitutive equation corresponds to an anisotropic linear elastic response of the11

material, where CI 0(θ(t)) is the fourth-order elasticity tensor depending on the orientation θ.12

So, in the high frequency regime Eq. (2) can be simplified to13

dθ

dt
= − 1

η

[
∂CI 0

∂θ
E
]

: E = − 2

Kλθ

∂U

∂θ
, (11)

where14

U(t, θ) :=
1

2
E(t) : CI 0(θ)E(t) , (12)

is the elastic strain energy. Therefore, in the high frequency regime, the change in cell orientation15

is driven by the minimization of an elastic energy with respect to the orientation angle, coherently16

with previous models and experimental results [40, 42].17

2.2 Low Frequency Regime18

In a low frequency regime, in which the period of the cyclic strain imposed to the specimen is19

much longer than the characteristic time λ of cell relaxation, the reorientation process is faster20

than the external oscillations. Therefore, taking into account the approximation λ� T = 2π/ω,21

or equivalently λω � 1, we have that22

1− e−iλωs ≈ iλωs ,

7



and the stress can be expressed using Eq. (8) through1

T(t|θ) ≈ iλω
[∫ +∞

0

se−sCI 0(θ(t− λs)) ds
]
E0e

iωt, (13)

which, defining2

CI 0(t|θ) :=

∫ +∞

0

se−sCI 0(θ(t− λs)) ds ,

shows an anisotropic viscous-like response characterized by the constitutive equation3

T(t|θ) ≈ λCI 0(t|θ)dE
dt

(t) . (14)

Essentially, if the imposed oscillations are sufficiently slow, the system behaviour is similar
to the one of a viscous fluid with anisotropy induced by oriented cells. Moreover, since we are
mostly interested in steady orientations, given that CI 0(θ(t−λs)) is an analytic function on R it
is possible to write

CI 0(θ(t− λs)) = CI 0(θ(t)) + CI ′0(θ(t))
dθ

dt
(t)(−λs)

+
1

2

[
CI ′′0(θ(t))

(
dθ

dt
(t)

)2

+ CI ′0(θ(t))
d2θ

dt2
(t)

]
(−λs)2 + . . .

and therefore, at the equilibrium orientations,4

CI 0(θ(t− λs)) ≈ CI 0(θ(t)). (15)

By means of this approximation, we can write the steady state oscillatory stress in the low5

frequency regime using Eq. (14) and Eq. (15) as6

T(t|θ) ≈ λCI 0(θ(t))
dE
dt

(t) . (16)

Comparing the latter with the stress in the high frequency case (10), we observe that they7

essentially differ for a factor λω, as will be highlighted in the simulations.8

Finally, recalling Eq. (2), we have that the angle θ tends to assume, as already stated, the9

configuration such that
∂T
∂θ
⊥ E, which in the low frequency limit writes as10 (

∂CI 0

∂θ

dE
dt

)
⊥ E .

However, since the deformation is periodic, the last condition can be rephrased as11

iω

(
∂CI 0

∂θ
E0

)
: E0 = 0 =⇒ ∂U

∂θ
= 0 ,

where U is the elastic energy defined in (12). Therefore, we conclude that in the low frequency12

regime also in the viscoelastic case the steady cell configurations are predicted by a minimization13

with respect to the orientation angle θ of the energy introduced in the elastic case.14

15

We remark that, even though our model predicts that the equilibrium orientation of the cell16

is the same in both regimes, the characteristic time of reorientation is highly influenced by the17

frequency, leading therefore to different final orientation angles of the cell in the two regimes,18

considering the time of the biological experiment, as will be shown in Section 4.19
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3 Bifurcation Analysis1

In this Section, we study equilibrium orientations and their bifurcations. Our goal is to de-2

scribe the monolayer subject to a periodic stretch through its elastic energy, since the steady3

orientation of the cells is predicted by its minimization as discussed above. This allows us to4

study in detail the equilibrium angles in terms of a very general strain energy, looking for those5

orientations which minimize it for a fixed deformation. Finally, we draw bifurcation diagrams in6

terms of a parameter that quantifies the biaxiality of the deformation, putting in evidence the7

conditions under which the preferential orientations exist and are stable. This is in agreement8

with previous works showing that an energetic approach allows to reproduce experimental data9

of cell orientation more accurately [40].10

3.1 Elastic Energy and Deformation11

We consider the most general elastic energy density U depending on the classical first three12

invariants I1 := trC, I2 := 1
2

[
(trC)2 − trC2

]
and I3 := detC (where C = FTF is the right13

Cauchy-Green deformation tensor and F is the deformation gradient) representing the isotropic14

response of the material, and on the anisotropic invariants [49]15

I4 := N · CN = |FN|2, I5 := N · C2N = |CN|2,

I6 := N⊥ · CN⊥ = |FN⊥|2, I7 := N⊥ · C2N⊥ = |CN⊥|2,

I8 := N⊥ · CN = (FN⊥) · FN .

(17)

Then, the general energy functional can be written as16

U = Ui(I1, I2, I3) + U`(I1, I2, I3, I4, I5, I6, I7, I8) + Uq(I4, I5, I6, I7, I8), (18)

where Ui is the purely isotropic contribution, Uq is the purely anisotropic one and U` includes a17

coupling between isotropic and anisotropic terms. However, since the invariants I1, I2, I3 do not18

depend on the orientation angle, the inclusion of Ui will not influence the following discussion.19

Henceforth, the energy dependence upon it will not be explicitly mentioned anymore, though20

one should recall that this term might appear in an irrelevant way as an extra contribution in21

the energy that does not alter our results and conclusions.22

Considering the limit of small deformations and denoting by E the infinitesimal strain tensor,
one has

I4 ≈ 1 + 2N · EN , I5 ≈ 1 + 4N · EN ,

I6 ≈ 1 + 2N⊥ · EN⊥ , I7 ≈ 1 + 4N⊥ · EN⊥ ,

I8 ≈ 2N⊥ · EN,

so that in linear elasticity it is impossibile to discriminate the dependence on I4 (resp. I6) from23

the one on I5 (resp. I7), since they both merge in a dependence on N · EN (resp. N⊥ · EN⊥).24

As a consequence, working in a linear framework, from now on we will consider the following25

dependences:26

Uq = Uq

(
Î4, Î6, I8

)
and U` = U`

(
ÎiÎ4, ÎiÎ6, ÎiI8

)
, i = 1, 2, 3,

9



where we have defined1

Î1 := I1 − 2, Î2 := I2 − 2, Î3 := I3 − 1,

Î4 := I4 − 1 ∝ N · EN, Î6 := I6 − 1 ∝ N⊥ · EN⊥.

(19)

Consider now a biaxial extension experiment. We assume that the deformation inside the speci-2

men is homogeneous, so that in two dimensions the deformation gradient reads3

F =

(
λx 0
0 λy

)
,

where we take λx > λy since in our notation, as stated before, the maximum stretching is4

performed along the x-direction. For future comparison we will denote λx = 1+ε and λy = 1−rε,5

so that for small ε - i.e. for small deformations - the infinitesimal strain tensor writes6

E =

(
ε 0
0 −rε

)
, (20)

where the parameter r is often referred to as the biaxiality ratio. We also observe that the7

assumption λx > λy implies r + 1 > 0. Finally, we remark that the particular case λx = λy,8

corresponding to r = −1, will not be discussed explicitly and is not really interesting from the9

practical point of view as experimental evidence showed that, under equi-biaxial stretch, cells do10

not orient in a specific direction in the plane of the deformation [67].11

Recalling that θ is the angle formed by the average cell orientation direction and the x-axis,12

then N = (cos θ, sin θ) and one has13

N · EN = (cos2 θ − r sin2 θ)ε = [(r + 1) cos2 θ − r]ε ,

N⊥ · EN⊥ = [1− (r + 1) cos2 θ]ε ,

N⊥ · EN = −(r + 1) sin θ cos θ ε ,

and therefore, in the small deformation approximation, we can write both terms U` and Uq of14

the elastic energy as functions of θ.15

As regards Uq, the most general elastic constitutive model for linear elasticity takes the16

following quadratic form:17

Uq

(
Î4, Î6, I8

)
=

1

2
K‖(N · EN)2 +

1

2
K⊥(N⊥ · EN⊥)2 +

1

2
Ks(N⊥ · EN)2

+K‖⊥(N · EN)(N⊥ · EN⊥) +K‖s(N · EN)(N⊥ · EN) +K⊥s(N⊥ · EN⊥)(N⊥ · EN) ,

(21)

where K‖ is a coefficient related to the stiffness to stretching in the direction of cell orientation,18

K⊥ to the one in the orthogonal direction, and Ks to the one related to shear. The other19

coefficients are due to mixing effects among these three. We remark that the coefficient Ks20

weights the response to shear: then, at the microsopic level, it quantifies the resistance to a21

change in angle between stress fibers, which also involves the cross-linking network of proteins22

like filamin, Rho/Rac GTPases, and ARP2/3 mentioned above.23

In terms of θ, the anisotropic part of the energy can then be written as

Uq(θ) =
1

2
ε2
{
K‖[ξ(θ)− r]2 +K⊥[1− ξ(θ)]2 +Ks ξ(θ)[r + 1− ξ(θ)]

+ 2K‖⊥[ξ(θ)− r][1− ξ(θ)]− 2K‖s[ξ(θ)− r](r + 1) sin θ cos θ

10



− 2K⊥s[1− ξ(θ)](r + 1) sin θ cos θ
}
, (22)

where ξ(θ) := (r+ 1) cos2 θ. We remark that, here and in the remainder of this Section, we have1

dropped the explicit energy dependence on t, since we are interested in the steady orientations2

of the cells which do not depend on time.3

Moreover, we point out that, in the following, we will take K‖s = K⊥s = 0 due to symmetry
requirements on the energy. Indeed, for the problem at hand, biological observations suggest
that the energy must be symmetric with respect to θ = 0 and θ = π/2, that is,

U(−θ) = U(π − θ) = U(θ) ∀θ .

These symmetries are biologically reasonable and not surprising: in absence of other directional4

stimuli, there is no reason why the cell should prefer the configuration −θ instead of the one5

characterized by the angle θ, as well as π−θ instead of θ, since they are the same up to a change6

in the viewpoint. In this context, the cell does not own a real orientation with a head and a7

tail [68], but rather a direction along which it reorients its stress fibers and focal adhesions as a8

consequence of mechanical stretch. Such a fact is translated in the energy symmetries, leading to9

configurations which are energetically equivalent. It is clear that, among the invariants appearing10

in the energy, the one which can lead to symmetry issues is I8, because it gives rise to terms like11

sin θ cos θ which do not preserve the above symmetries. Hence, it is reasonable to assume that Uq12

depends on I8 only through its square, leading to K‖s = K⊥s = 0. For the sake of completeness,13

in Appendix A we also discuss the case K‖s,K⊥s 6= 0, showing that their introduction provokes14

a symmetry breaking which is not biologically feasible, unless one needs to account for other15

directional cues.16

17

Instead, concerning U`, we firstly drop the dependence on I8 for the same symmetry reasons18

discussed above. Moreover, we observe that, in the linearized case, the contribution of Î3 is19

equivalent to the one of Î1. In fact, since C ≈ I + 2E, we have that20

Î1 = tr(C)− 2 ≈ 2 tr(E) ≈ Î3,

neglecting terms of higher order. Consequently, the dependence on Î3 can be dropped and merged
with the one on Î1. Finally, since we are considering a quadratic approximation of the energy in
the linear regime, the only admissible couplings between the other invariants are Î1Î4 and Î1Î6,
because products involving Î2 would have a higher order. Therefore, the dependence on Î2 can
be neglected as well, and the most general expression of the coupling term becomes

U`

(
Î1, Î4, Î6

)
= 2K14(trE)(N · EN) + 2K16(trE)(N⊥ · EN⊥) ,

or, as a function of θ,

U`(θ) = 2ε2(1− r)
[
(K14 −K16)ξ(θ) + (K16 − rK14)

]
,

where K14 and K16 are coefficients that weigh the coupling between the three invariants involved.21

Since we want to study in more detail the equilibrium orientations and their stability, we take22

the first derivative of the overall energy with respect to θ and obtain23

U ′(θ) = U ′q(θ) + U ′`(θ)

= ε2
{
K‖ [ξ(θ)− r] +K⊥ [ξ(θ)− 1] +

(
1

2
Ks +K‖⊥

)
[r + 1− 2ξ(θ)]

11



+2(K14 −K16)(1− r)
}
ξ′(θ) . (23)

Before going on, we notice that such a derivative vanishes for θ = π/4 when r = 1, since in this1

case ξ(π/4) = 1. This fact is coherent with experimental observations [40] suggesting that π/4 is2

an equilibrium orientation when the biaxiality ratio amounts to 1, i.e., λx = 1+ ε and λy = 1− ε.3

In order to rewrite the expression (23) in a more compact form, we define4

K̂‖ := K‖ + 4K14 , K̂⊥ := K⊥ + 4K16 , Km :=
1

2
Ks +K‖⊥ + 2K14 + 2K16 , (24)

so that

U ′(θ) = ε2
{
K̂‖ [ξ(θ)− r] + K̂⊥ [ξ(θ)− 1] +Km [1 + r − 2ξ(θ)]

}
ξ′(θ)

= ε2
[
Aξ(θ)−B(r + 1) + C

]
ξ′(θ) , (25)

setting5

A := K̂‖ + K̂⊥ − 2Km , B := K̂‖ −Km , C := K̂‖ − K̂⊥. (26)

Since, under mechanical stretch, cell stress fibers are mainly aligned to the preferred direction,6

coherently with [6] in the following we will take K̂‖ > K̂⊥. As a consequence, C is always7

positive, while the sign of A and B cannot be determined a priori, since it depends on the8

relative magnitude of the various coefficients involved.9

Finally, to study the stability of the equilibrium orientations we will need to examine the sign10

of the second derivative of the energy, which reads11

U ′′(θ) = ε2
{
Aξ′(θ)2 + [Aξ(θ)−B(r + 1) + C] ξ′′(θ)

}
. (27)

3.2 Equilibrium Orientations and Stability12

Recalling (25), the equilibrium orientations are given by13

θ : ξ′(θ) = 0 i.e. θ = kπ/2, k ∈ Z or θ : Aξ(θ)−B(r + 1) + C = 0 ,

the latter meaning14

cos2 θ =
B

A
− C

A

1

1 + r
=

1

2
+K

(
1

2
− 1

1 + r

)
, (28)

where we have defined15

K :=
C

A
=

K̂‖ − K̂⊥
K̂‖ + K̂⊥ − 2Km

. (29)

So, in addition to the angles θ = k π2 , one might have other four symmetric equilibrium angles16

given by (28) that depend only on the combination of parameters contained in K. For simplicity,17

we will denote these configurations as oblique equilibria, while those with θ = kπ will be referred18

to as parallel equilibria and those with θ = 2k+1
2 π as perpendicular equilibria, where the definition19

of parallel and perpendicular obviously refers to the stretching direction.20

As we shall see, the discussion will depend on the sign of K (i.e., whether A is positive or21

negative, having observed that C > 0) and whether |K| is smaller or larger than 1. For this22

12



purpose it is useful to define1

ρ‖ :=
K − 1

2K
=
Km − K̂⊥
K̂‖ − K̂⊥

,

ρ⊥ :=
K + 1

2K
=
K̂‖ −Km

K̂‖ − K̂⊥
,

ρ :=
K + 1

K − 1
=
K̂‖ −Km

Km − K̂⊥
.

(30)

Then, the existence of the oblique equilibrium angle depends on the value of the biaxiality ratio2

r. Namely, referring to Fig. 2, the equilibrium orientation defined by (28) exists if3

ρ‖ <
1

1 + r
< ρ⊥ or

1

ρ
< r < ρ when K > 1 ,

0 <
1

1 + r
< ρ⊥ or r >

1

ρ
when 0 < K < 1 ,

0 <
1

1 + r
< ρ‖ or r > ρ when − 1 < K < 0 ,

ρ⊥ <
1

1 + r
< ρ‖ or ρ < r <

1

ρ
when K < −1 .

Looking at the stability of this orientation, recalling (27) one readily has that the second4

derivative evaluated in this configuration is U ′′(θ) = ε2Aξ′(θ)2, which is positive provided that5

A > 0. So, if the coefficient A is positive, or equivalently if K > 0, the oblique equilibrium6

angle turns out to be stable. Otherwise, if the combination of elastic coefficients in A becomes7

negative, the oblique orientation is unstable.8

Looking instead at parallel orientations, e.g., θ = 0, we have that9

U ′′(0) = −2ε2(r + 1)[(A−B)(r + 1) + C]. (31)

Therefore, referring again to Fig. 2 and observing that A − B = −ρ‖C, such an orientation is10

stable if11

1

1 + r
< ρ‖. (32)

Consequently, if ρ‖ > 0 (i.e. if K < 0 or K > 1) the parallel orientation is stable under the12

condition (32), while if ρ‖ < 0 (i.e. if 0 < K < 1) it is always unstable.13

Finally, the perpendicular orientations, e.g. θ = π/2, are stable if14

U ′′
(π

2

)
= −2ε2(r + 1)[B(r + 1)− C] > 0, (33)

leading to the condition15

1

1 + r
> ρ⊥, (34)

or equivalently r < 1/ρ. However, if K ∈ (−1, 0) the r.h.s. of (34) is negative. So, in this range16

the perpendicular orientation is always stable, while outside the aforementioned interval stability17

is granted whenever r satisfies (34).18

Taken together, these results show that, as shown in Figs. 2(b), 2(d) for any quadratic19

orthotropic elastic energy in a linear regime, oblique equilibrium angles follow a straight line in20

13



(a) (b)

(c) (d)

Figure 2: Bifurcation diagrams for positive K (top) and negative K (bottom). The bifurcation

values are obtained for (1 + r)−1 = ρ‖ = (Km − K̂⊥)/(K̂‖ − K̂⊥) and (1 + r)−1 = ρ⊥ = (K̂‖ −
Km)/(K̂‖ − K̂⊥). The insets and dots in (a) and (b) show representative cellular orientations:
perpendicular (green), oblique (purple) and parallel (red).
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the
(
(1 + r)−1, cos2 θ

)
plane upon changes in the values of the biaxiality ratio. This is confirmed1

by experimental assays: in the set-up of the experiments by Livne et al. [40], collected data of2

the oblique orientation seem to align along a straight line with K = 1.26± 0.08.3

Figure 2 summarizes the above discussion : in Fig. 2(a) and 2(c) we show the bifurcation4

diagram in the (r, θ) plane for K > 1 and K < −1 respectively, while in Fig. 2(b) and 2(d)5

we report the straight lines in the
(
(1 + r)−1, cos2 θ

)
plane, for K > 0 and K < 0 respectively.6

It can be observed that if K > 1 there are two supercritical pitchfork bifurcation points for7

r = 1/ρ and r = ρ. So, for any r there is only one stable equilibrium angle in the interval
[
0, π2

]
,8

and its symmetric counterpart with respect to π/2 if r ∈
(
ρ−1, ρ

)
. Hence, changing r one can9

smoothly pass from a configuration with the cell axis aligned along the stretching direction to10

one perpendicular to the stretching direction. We observe however that the range of values tested11

in the experiments is (1 + r)−1 ∈
[
1
2 , 1
]
, because the substrate is not compressed along y more12

than it is stretched along x, which would correspond to values of r > 1. At the same time, it is13

not extended simultaneously along x and y, which would lead to negative values of r. This is the14

reason why, if 0 < K < 1, only the oblique equilibrium orientation is stable, while the parallel and15

perpendicular ones turn out to be always unstable in the experimental range of variation of r.16

We observe that, since for instance in Livne’s experiments they find K ≈ 1.26 [40], a constraint17

can be inferred among the three coefficients appearing in (29), or equivalently among the six18

parameters in (24). In particular, the fact that K > 1 assures that Km cannot be neglected,19

because otherwise K in (29) would always be smaller than 1. Starting from this observation and20

recalling that K̂‖ > K̂⊥, looking for the minimum number of coefficients necessary to satisfy the21

experimental values, one finds that, on the other hand, K̂⊥ could be neglected, so that K can be22

rewritten in terms of the ratio Km/K̂‖ as23

1

K
≈ 1− 2

Km

K̂‖
.

Actually, on the basis of the experimental slope, we can argue that, if K̂⊥ = 0 (i.e. K⊥ = K16 =24

0), then25

Km

K̂‖
=

1
2Ks +K‖⊥ + 2K14

K‖ + 4K14
≈ 0.103 ,

that entails K̂‖ >> Km, i.e., the coefficient related to the stiffness to stretching in the direction26

of cell orientation is higher than all the other parameters. We highlight again that, even though27

the contribution of Km is smaller than the one of K̂‖, the former parameter is fundamental to28

obtain a biologically relevant response.29

Looking now at the case K < −1, as in Fig. 2(c), which might for instance occur if Km30

is large with respect to K̂‖ and K̂⊥, then the pitchfork bifurcations become subcritical and31

one jumps from the parallel to the perpendicular equilibria, since the oblique one is always32

unstable. So, imagining to operate on Km, when 2Km passes from being smaller to being larger33

than K̂‖ + K̂⊥, corresponding respectively to ρ‖ < ρ⊥ and ρ‖ > ρ⊥, there is a switch from34

supercritical to subcritical bifurcations. In Fig. 2(d) we also plot the case −1 < K < 0, in35

which one has the same bistable behaviour for all the experimental values of r, while the oblique36

orientation loses its stability. This could be an explanation of why the oblique orientation might37

not be observed in the case K < 0, that is K̂‖ + K̂⊥ < 2Km. Differently from previous models,38

our bifurcation analysis includes this possibility, which however needs to be validated precisely39

through experimental data.40

Moreover, even though experiments are commonly performed in a range of biaxiality ratio41

r ∈ [0, 1], our model is able to foresee the behaviour of the cell even for values of r > 1, i.e.42

15



when the substrate is more compressed in the y-direction than it is stretched in the x-direction,1

a condition not tested yet experimentally.2

We finally observe that the presence of pitchfork bifurcations is not surprising, since they3

often arise in one-dimensional dynamical systems that present some symmetries: this is indeed4

our case, since we took an energy functional which is even and symmetric with respect to π/2 in5

order to match some biological considerations. As a matter of fact, the introduction of K‖s and6

K⊥s, discussed in Appendix A, leads to a symmetry breaking and therefore to the appearance7

of turning points.8

4 Simulations of the Viscoelastic Model9

After having discussed the equilibrium orientations in Section 3, here we focus on the dynamics10

of cell reorientation in response to the viscoelastic model presented in Section 2, performing some11

numerical simulations. More specifically, we consider the system of equations which describes12

the time evolution of the Cauchy stress tensor T and the reorientation dynamics of the angle13

θ. As regards the former, its evolution is governed by the viscoelastic constitutive equation (6)14

described in Section 2; concerning the angle, as in Eq. (2) we assume that changes in orientation15

are driven by a dissipative process in which the cell tries to find the direction which minimizes16

the virtual work done by the Cauchy stress. Consequently, the system of equations is17 
θ̇ = − 1

K̂‖λθ

∂T
∂θ

: E ,

Ṫ +
1

λ
T =

1

λ
C| 0Ė ,

(35a)

(35b)

where C| 0 is the functional that accounts for the exponentially weighted history of past orientations18

defined in (7), depending on the elasticity tensor CI 0. The components of CI 0 can be written in19

terms of θ as20

(CI 0)xxxx = K̂‖ cos4 θ + K̂⊥ sin4 θ + 2Km sin2 θ cos2 θ ,

(CI 0)yyyy = K̂‖ sin4 θ + K̂⊥ cos4 θ + 2Km sin2 θ cos2 θ ,

(CI 0)xxyy = Km −
1

2
Ks + (K̂‖ + K̂⊥ − 2Km) sin2 θ cos2 θ .

We consider a specimen stretched in the x-direction uniformly with a fixed biaxiality ratio r,21

such that the infinitesimal deformation tensor is given by (20) with22

ε(t) =
1

2
ε0(1− cosωt) ,

for different angular frequencies. Compared to experiments, in the simulations we do not assume23

that the oscillation period is smaller or greater than the characteristic relaxation time λ or24

reorientation time λθ, in order to put in evidence both the elastic and the viscous behaviour of25

the system.26

We now solve Eq. (35) for a range of values of r to check the theoretical predictions obtained
through the bifurcation analysis. In particular, a numerical algorithm has been implemented
using MATLAB®. As regards Eq. (35b), its discretization was performed through the explicit

16



(a) (b)

Figure 3: Evolution of θ according to (35) in the high frequency (a) and low frequency (b) cases,
for K = 1.26 and ε0 = 0.1, while the biaxiality ratio r is varied. As initial condition, we take in
both cases θ(0) = π/6. The squares on the right of each plot highlight the steady orientations
predicted by the bifurcation analysis. Moreover, all curves display an oscillatory behaviour, as
shown in the insets for the specific case r = 0.3.

Euler method. It is equivalent to two scalar equations for the components Txx, Tyy of the Cauchy
tensor T: the integrals in the r.h.s. of (35b) have been approximated observing that, for instance
in the case r = 0,

(C| k+1
0 )xxxx =

∫ tk+1

−∞
e−(tk+1−τ)/λ (CI 0)xxxx(θ(τ)) dτ

= e−(tk+1−tk)/λ (C| k0)xxxx +

∫ tk+1

tk

e−(tk+1−τ)/λ (CI 0)xxxx(θ(τ)) dτ. (36)

Then, with an analogous procedure, all the integral terms can be evaluated from the value1

at the previous time instant plus the discretization of the remaining integral in (36), which2

was performed through the trapezoidal rule. The generalization to the case r 6= 0 is then3

straightforward. Finally, concerning the virtual work term in Eq. (35a), the derivative of the4

stress with respect to θ was approximated using a centered finite difference. In all our simulations5

we take λ = λθ = 6.6 s and to have coherence with experimental data we consider a value of6

K = 1.26 [40]. Instead, we focus on the effect of variations of r, ε0 and ω to evaluate their impact7

on the reorientation dynamics of the cell.8

In Figure 3(a) we show the evolution of the orientation angle in the high frequency case,9

starting from an initial condition θ(0) = π/6, for different values of r. We see that the angle10

approaches the value obtained in Section 3.2 in the stationary case (identified by a coloured11

marker on the the right side of the box) and reported in the bifurcation diagrams in Fig. 2.12

More specifically, for low values of r the final orientation is almost orthogonal to the direction13

of stretching. Increasing the biaxiality ratio r makes the equilibrium angle decrease, reaching14

the expected value given by the bifurcation diagrams: in particular, we observe that the steady15

angle is π/4 when r = 1, as predicted by the theory and by the experiments. For the sake of16

completeness, we also showed a case in which r � 1, even if no experimental data are available17

17



in this case: in this situation one has θ → 0, coherently with the study carried out in Section 3.1

We also studied the behaviour of the angle reorientation for a different initial condition greater2

than π/2, that is θ(0) = 5π/6 (not shown in the Figures): as before, the evolution towards the3

steady angle is predicted by the bifurcation diagram for all values of r. In fact, such a choice4

for the initial condition makes the system go to the other mirror-image orientation, greater than5

π/2 and finally, for large values of r, to θ = π. We recall however that the last configuration is6

biologically equivalent to θ = 0 because of the discussed symmetries of the energy, implying that7

the cell is aligned with the x-axis.8

Conversely, in Figure 3(b), we report the plots of θ in the low frequency regime for the same9

initial condition, choosing ω = 0.08 rad/s which is slightly above the experimental reorienta-10

tion threshold of 0.06 rad/s suggested for experiments. The dynamics is coherent with model11

predictions: we have the same equilibria as in the high frequency case, even if the convergence12

towards the steady angle is slower due to the presence of viscous effects. As shown in the inset13

plots in Fig. 3(a) and Fig. 3(b), all curves display an oscillatory behaviour as expected, since we14

are imposing a periodic deformation to the specimen. Hence, the orientation angle progressively15

increases through small oscillations until it reaches the predicted orientation. In particular, such16

oscillations are smaller in amplitude and faster in the elastic case, while they have a greater17

amplitude and are slower in the viscous limit.18

To compare our results with reorientation frequencies and thresholds from Jungbauer et al.19

[30], we performed some simulations for their same experimental biaxiality ratio and amplitude,20

changing instead the value of ω. As shown in Fig. 4(a), angular frequencies below a minimum21

threshold (which can be quantified in about 0.01 Hz ≈ 0.06 rad/s, which is coherent with exper-22

iments on some cell types [28, 30]) do not induce a significant or significantly fast response. In23

this case, the reorientation is so slow that it cannot be seen on time scales comparable with the24

cell cycle, and in the experimental case the process is destroyed by random fluctuations. Instead,25

higher frequencies induce reorientation, with a characteristic time that, coherently with [30],26

decreases with the frequency. This is true until ω reaches a second threshold of about 2π rad/s27

(i.e. 1 Hz), after which a further increase in the frequency does not substantially accelerate the28

reorientation process towards the expected equilibrium angle. This is confirmed and summarized29

by the results in Fig. 4(b), where we report the average speed of reorientation vm, calculated30

over a suitable interval where each curve can be approximated by a line, as a function of the31

frequency of the imposed deformation. We find that the speed of reorientation is very low when32

ω < 0.01 rad/s, corresponding to evolution times of the order of days. Then, there is a sudden33

transition interval for ω ∈ [0.01, 1] rad/s with an inflection point close to ω ≈ 0.15 rad/s, i.e.34

when λω ≈ 1, related to the viscous-elastic transition in the material. Finally, for higher values35

of ω, the speed of reorientation saturates to values corresponding to experimental times of the36

order of an hour. To make a further comparison with experiments, we define the characteristic37

time of reorientation for our model as τ := (θeq− θ0)/vm, assuming that the evolution curves for38

θ as a function of time are approximated by a saturating exponential. Then, in Fig. 4(c) we plot39

this characteristic time together with data for rat embryonic fibroblasts (REF cells) from [30].40

As discussed before, such a time decreases with the frequency until a threshold, above which it41

remains almost constant, and the model predictions show a good agreement with experimental42

data.43

In Figure 5 we studied instead the influence of the stretch amplitude ε0, while the angular44

frequency is kept high in Fig. 5(a) and low in Fig. 5(b), fixing r = 1 and therefore θeq = π/4.45

As one could expect, the equilibrium orientation for a given initial condition θ(0) and biaxiality46

ratio r is not altered by variations of ε0 and remains equal to π/4 in this case. Changes in47

the amplitude only influence the speed of convergence towards the predicted equilibrium angle.48

Indeed, if we scale times with 1/ω, the stress tensor with K̂‖ε0, and the strain tensor with ε0,49
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(a) (b)

(c)

Figure 4: (a): Evolution of θ according to (35) for a fixed biaxiality ratio and different angular
frequencies. We observe that low frequencies (approximately below a minimum threshold of
0.06 rad/s, i.e., about 0.01 Hz, coherently with experimental results [28, 30]) do not induce a
significant reorientation response. For higher frequencies, the preferential orientation becomes
visible and the reorientation time decreases. (b): Average speed of reorientation vm, computed in
a suitable interval where the evolution curve is approximately linear, as a function of the imposed
angular frequency in logarithmic scale. Recalling that we used λ = λθ = 6.6 s, a transition occurs
when λω = 1, i.e., the inflection point in ω ≈ 0.15 rad/s. Then, there is a second threshold of
about 2π rad/s, above which a further increase does not induce a significantly faster response
[30]. (c): Plot of the model characteristic time τ := (θeq − θ0)/vm as a function of the angular
frequency in logarithmic scale, together with experimental results for rat embryonic fibroblasts
(REF cells) taken from [30].
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(a) (b)

Figure 5: Evolution of θ according to (35) in (a) the high frequency and (b) the low frequency
cases for different values of the stretch amplitude ε0 and fixed biaxiality ratio r = 1.

the system (35) rewrites in dimensionless terms formally substituting K̂‖λθ with Λ̃θ = λθω/ε
2
01

and λ with Λ̃ = λω. In formulas, defining t = t̃/ω, T = T̃K̂‖ε0, E = Ẽε0 and C| 0 = C̃| 0K̂‖λ yields2 
dθ

dt̃
= − 1

Λ̃θ

∂T̃
∂θ

: Ẽ ,

dT̃
dt̃

+
1

Λ̃
T̃ = C̃| 0

dẼ
dt̃

.

(37a)

(37b)

As already discussed in Sections 2.1 and 2.2, the former dimensionless group Λ̃θ is related to3

the time needed by the cell to re-orientate in terms of the oscillation frequency and amplitude,4

while the latter Λ̃ identifies the relative role of viscoelasticity. In particular, focusing on Λ̃θ, if the5

amplitude of oscillation increases (e.g., doubles) the evolution of the orientation angle θ remains6

the same provided that the reorganization time λθ is suitably increased (e.g., quadruples). On7

the other hand, if λθ is kept constant, as done in Fig. 5, cells re-orient faster, and the re-8

orientation time scales like the square of the oscillation amplitude. However, to simplify the direct9

comparison with experimental results, we decided to perform all simulations using dimensional10

quantities.11

Finally, in Figure 6 we report the evolution of the Cauchy stress components Txx and Tyy,12

both normalized with respect to K̃‖. In particular, Figs. 6(a) and 6(b) show the stresses in13

the high frequency case, for a fixed biaxiality ratio r = 0.3. It can be observed that, starting14

from a stress-free configuration, there is a first increase in both stress values up to a peak, after15

which relaxation begins and completes in about 100 seconds. Once the transient is passed, the16

stress components start to oscillate around zero, meaning that the system is behaving purely17

elastically. In the low frequency case, plotted in Fig. 6(c) and 6(d), the response of the system18

is much slower, since the viscous component emerges visibly. Concerning the stress magnitude19

when the equilibrium orientation is reached, as predicted by the model, we observe that the20

stress components in the low frequency case differ from the ones in the high frequency case by a21

factor λωlow ≈ 0.53.22

20



We have to stress that, in all simulations, we kept the characteristic times λ and λθ constant,1

to better identify the effects of the oscillation characteristics in terms of frequency and amplitude.2

However, the dynamics of adhesion to the substrate is more involved because the application of3

a stress on them has the consequence of both strengthening the bonds, due to an increased4

clustering of integrins, and prolonging their lifetime. In particular, two types of bonds are5

identified in the literature, catch and slip bonds [34, 37, 72, 75, 76]. Increasing the applied6

deformation has the effect of increasing the applied force acting on the bonds and this causes a7

decrease (resp., an increase) of the lifetime of slip (resp., catch) bonds. So, the dependence of8

the adhesion bond lifetime, and therefore of λ, on the deformation is not constant and might9

actually not even be monotone with a maximum corresponding to an applied force of the order of10

10 pN. However, as discussed in Sections 2.1 and 2.2, including such a strain-dependence lifetime11

would not change the equilibrium configuration, but only the temporal behaviour of the system.12

Conversely, a strengthening of the adhesion bond might change both, though we do not expect13

them to be relevant.14

5 Discussion15

The response of cells to mechanical cues is a relevant biological phenomenon which still needs in-16

vestigations and efforts to be enlightened. Starting from experimental observations showing that,17

when a monolayer is subject to a biaxial stretch, cells orient themselves in a well-defined con-18

figuration, in this paper we employed mechanical instruments to further explore this behaviour,19

focusing on linear elasticity and viscoelasticity. Previous works [40, 42] suggested that a linear20

elastic model is able to fit the experimental data for a wide range of strain energies, while the21

impact of nonlinearities seems slight.22

To account for viscous effects during the reorientation process, due for instance to formation23

and breaking of integrin bonds between the cell and the substrate, we developed a viscoelastic24

model which describes the system as an anisotropic continuum with preferential directions in-25

duced by the presence of stress fibers and lateral protein network. This allowed us to differentiate26

the behaviour depending on the period of the applied cyclic stretch: if the latter is much shorter27

than the cell characteristic response times λ and λθ, then the response is elastic with cells having28

not enough time to reorganize. On the other hand, if the imposed frequency is low, viscous-like29

behaviours emerge slowing down the reorientation, until the process becomes too slow to be rel-30

evant. We showed that our viscoelastic model is able to capture these differences, which can be31

recovered by taking the limit of the general constitutive equation in the high and low frequency32

cases.33

Then, we studied in detail the steady orientations with two main objectives: to generalize34

previous linear elastic models using the most general orthotropic model and to analyze the35

bifurcations that occur when the biaxiality ratio of the deformation is changed. In particular,36

we considered a general quadratic strain energy involving a priori six elastic parameters: K̂‖37

and K̂⊥, related to the stiffness along the cell major axis and along the orthogonal direction,38

respectively; Ks, modelling the resistance to shear; and K‖⊥, K‖s, K⊥s including coupled effects39

among the previous three. The bifurcation analysis is coherent with previous theoretical and40

experimental works [23, 40, 42], and a linear relation between the parameter 1
1+r and cos2 θ,41

where θ is the nontrivial equilibrium orientation, is recovered. The slope of the line is given by42

the combination of elastic coefficients43

K =
K̂‖ − K̂⊥

K̂‖ + K̂⊥ − 2Km

,
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(a) (b)

(c) (d)

Figure 6: Time evolution of the stress tensor components Txx and Tyy (normalized w.r.t. K̃‖),
for r = 0.3. In the top row the high frequency case is reported, while in the bottom row the
plots refer to the low frequency case. The time axis is reported in logarithmic scale to put in
evidence the temporal behaviour of stress amplitudes.
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which in some experimental results was reported to be about 1.26± 0.08 [40]. The value of the1

experimental slope allowed to conclude that the presence of a non negligible response to shear2

given by Km is important as well as the major role played by the response to stretch along the3

direction of cell orientation (given by K‖).4

Our description also allows a continuous variation of K, which can achieve positive or negative5

values depending on the parameters appearing in its definition: even if, to our knowledge, there6

are no experimental data available for situations like K < 0, our elastic model is in principle7

able to capture them. Moreover, differently from our previous work [42], we included in the8

energy possible isotropic-anisotropic couplings: as we have seen, their introduction does not9

qualitatively alter the results and the linear relation between 1/(1 + r) and cos2 θ, but only leads10

to a redefinition of some parameters.11

In detail, we observed two supercritical pitchfork bifurcations when K > 1: for low values of12

the biaxiality ratio r the orthogonal orientation is stable, while two specular equilibria become13

stable after the first bifurcation. Increasing r even more they finally disappear, leaving the14

orientation θ = 0 or θ = π as stable. Instead, if K < −1, the two bifurcations become subcritical.15

The presence of pitchfork bifurcations is coherent with the energy symmetries. In fact, in our16

framework the orientations θ,−θ, π − θ, π + θ are energetically equivalent, because the cell only17

chooses a direction without distinction between head and tail.18

Simulations in the case K > 0 confirmed the analytical predictions, showing an evolution19

towards a steady angle depending on the imposed biaxiality ratio and on the initial condition,20

but not on the frequency. Although experiments are still needed to deeply investigate such a21

behaviour of the cells, to our knowledge there is some agreement in the literature on the fact22

that the preferred orientation angle does not directly depend on the frequency of the cyclic defor-23

mation. Instead, the frequency seems to influence the amount of cells found oriented along the24

preferential direction and the speed of the cytoskeletal response [23, 30, 43, 62]. This latter effect25

is evident in our simulations where we have shown that, in the low frequency case, convergence26

is slowed down due to the presence of viscous effects, even if the stationary orientation is still27

predicted by the bifurcation diagrams. Moreover, in accordance with the results in [28, 30], there28

is a transition for λω ≈ 1, so that the time required to observe reorientation is of the order of29

days for small ω’s, saturating to one hour for larger frequencies.30

Hence, our model seems consistent with previous experimental data and theories describing31

the behaviour of an ensemble of cells on a stretched substrate, also discussing the case of isotropic-32

anisotropic couplings in the energy and recovering once more the established linear relation33

between the squared cosine of the angle and a parameter related to the deformation.34

However, there are at least three aspects that are not covered yet by the present modelling35

framework and will be the aim of future works. The first one concerns the influence of the36

compliance of the substratum, the second one is related to the dependence of the viscoelastic37

parameters describing the mechanical behaviour of adhesion molecules on the applied deformation38

or stress, and the third involves the response of cells cultured on monolayer undergoing a static39

step deformation. This last effect is still debated since some experimental assays showed that,40

differently from the cyclic case, cells stress fibers or focal adhesions may prefer the parallel41

orientation [11, 15, 17, 22] also in a pre-stretched condition [39], while other studies reported42

different results or even no reorientation at all [25, 38]. Further investigation is required in43

this regard, since experimental conditions are very different from one another. Introducing44

remodelling of cell cytoskeleton and stress fibers, following an active fiber reorientation approach45

[12, 13], may be a direction for future research and modelling, on which we are currently focusing.46

Moreover, in this work we considered a purely homogeneous deformation since we wanted47

to make analytical considerations and to carry out a detailed bifurcation analysis. However, to48

realistically reproduce the experimental settings, it would be more accurate to impose the strain49
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only at the boundary of the specimen: this requires a computational effort to solve the elastic1

problem, using for instance a finite element scheme. Finally, another possible perspective for2

future improvement would be to account for the mechano-chemical response of the cell at the3

microscopic scale, considering for instance active mechanotransduction in a multiscale frame-4

work. The inclusion of active effects like shape fluctuations, metabolism [20] and cell response5

to topographical cues in the substrate, even in absence of external mechanical stimuli [4], could6

be of help in understanding the complex interactions between the cell and its environment.7

A The Asymmetric Case8

In this Appendix, we turn our attention to a more general case for which K⊥s,K‖s 6= 0 in the9

anisotropic energy (22), to show that their introduction leads to a symmetry breaking bifurcation.10

If we do not neglect the contribution of these parameters, the overall strain energy as a function11

of θ becomes12

U(θ) =
1

2
ε2
{
K‖[ξ(θ)− r]2 +K⊥[1− ξ(θ)]2 +Ks ξ(θ)[r + 1− ξ(θ)]

+ 2K‖⊥[ξ(θ)− r][1− ξ(θ)]− 2K‖s[ξ(θ)− r](r + 1) sin θ cos θ

− 2K⊥s[1− ξ(θ)](r + 1) sin θ cos θ
}

+ 2ε2(1− r)
[
(K14 −K16)ξ(θ) + (K16 − rK14)

]
, (A.1)

while its first derivative is13

U ′(θ) = ε2
{[
K‖ [ξ(θ)− r] +K⊥ [ξ(θ)− 1] +

(
1

2
Ks +K‖⊥

)
[r + 1− 2ξ(θ)]

−
(
K‖s −K⊥s

)
(r + 1) sin θ cos θ + 2(K14 −K16)(1− r)

]
ξ′(θ)

−
[
K‖s[ξ(θ)− r] +K⊥s[1− ξ(θ)]

]
(r + 1)(cos2 θ − sin2 θ)

}
. (A.2)

Before going further, we observe that, in order to have coherence with the experimental14

condition U ′(π/4) = 0 for r = 1 (which was automatically granted in the case K‖s = K⊥s = 0),15

the following constraint is necessary:16

K‖s = K⊥s.

Hence, we have that the mixing contributions related to shear must be equal. Under this condi-17

tion, the energy derivative rewrites as18

U ′(θ) = ε2
{

[Aξ(θ)−B(r + 1) + C]ξ′(θ) +K‖s(r
2 − 1)(cos2 θ − sin2 θ)

}
, (A.3)

where A, B and C are defined as in (26). Then, differently from Eq. (25), we have an additional19

contribution related to K‖s.20

In this situation, to derive the equilibrium orientations, we try to write them expliciting r21

instead of cos2 θ when imposing that U ′(θ) = 0. Therefore, we have that the steady state angles22

satisfy23

2[A(r + 1) cos2 θ −B(r + 1) + C] sin θ cos θ + (1− r)K‖s(cos2 θ − sin2 θ) = 0 ,

24



that can be readily solved yielding1

r =
K‖s(cos2 θ − sin2 θ) + 2(A cos2 θ −B + C) sin θ cos θ

K‖s(cos2 θ − sin2 θ)− 2(A cos2 θ −B) sin θ cos θ
. (A.4)

Actually, as in the symmetric case K‖s = 0, a more compact form only depending on a single2

parameter can be achieved working in terms of 1
1+r . In fact, with this idea (A.4) rewrites as3

1

1 + r
=
C sin 2θ −A sin 2θ cos 2θ + 2K‖s cos 2θ

2(2K‖s cos 2θ + C sin 2θ)
=

1

2

[
1− 1

K
sin 2θ cos 2θ

sin 2θ + 2γ cos 2θ

]
, (A.5)

where K is defined in (29) and4

γ :=
K‖s

K̂‖ − K̂⊥
.

Then, the introduction of the parameter K‖s, related to the mixed contribution of stretch5

along the cell axis and shear, brings a new parameter γ into the equation for nontrivial equilibrium6

orientations. As expected, for γ = 0 we recover the symmetric situation described in Section 3.2.7

In order to make some theoretical considerations about stability and bifurcations, the first8

thing to notice is that if γ 6= 0 the graph in the (θ, r) plane given by (A.5) presents asymptotes9

when sin 2θ + 2γ cos 2θ = 0, namely if10

θ = − 1

2
arctan 2γ + k

π

2
, (A.6)

and it has stationary points when tan32θ = 2γ, i.e. whenever11

θ =
1

2
arctan 3

√
2γ + k

π

2
, (A.7)

achieving in them a value such that12

1

r + 1
=

1

2

1± 1

K
(

1 + 3
√

4γ2
)3/2

 .

Now we discuss the stability of the equilibrium orientations obtained by (A.5). In this case,13

recalling Eq. (27), the second derivative of the elastic energy can be written in general as14

U ′′(θ) = ε2
{
Aξ′(θ)2 + [Aξ(θ)−B(r + 1) + C]ξ′′(θ) + 4K‖s(1− r2) sin θ cos θ

}
.

Our goal is to study the sign of this derivative when evaluated in the equilibrium angles: in
particular, we can focus on the stability condition given by the inequality

A sin2 2θ(1 + r)−A(1 + r) cos2 θ cos 2θ +B(1 + r) cos 2θ − C cos 2θ + 2K‖s(1− r) sin 2θ > 0.

Substituting Eq. (A.5) and dividing by cos2 2θ leads to

1

K
tan2 2θ − 1

K
+

1

K
sin 2θ

sin 2θ + 2γ cos 2θ
(1− 2γ tan 2θ) > 0 (A.8)

which is equivalent to15

1

K
tan3 2θ − 2γ

tan 2θ + 2γ
> 0. (A.9)
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(a) (b)

Figure 7: (a) Bifurcation diagram in the general case Ks‖ 6= 0 for 1/K = 0.2, γ = 0.1.
Differently from the symmetric case, here we have two turning points in (θ∗1 , r

∗
1) and (θ∗2 , r

∗
2). (b)

The introduction of γ induces a symmetry breaking in the system, switching from pitchfork to
saddle-node bifurcations.

Therefore, if K > 0, the stable configurations are those with1

θ ∈
[

1

2
arctan 3

√
2γ,

π

2
− 1

2
arctan 2γ

]
∪
[
π

2
+

1

2
arctan 3

√
2γ, π − 1

2
arctan 2γ

]
. (A.10)

Instead, if K < 0, the angles corresponding to stable orientations for the cell are given by2

θ ∈
[
0,

1

2
arctan 3

√
2γ

]
∪
[
π

2
− 1

2
arctan 2γ,

π

2
+

1

2
arctan 3

√
2γ

]
∪
[
π − 1

2
arctan 2γ, π

]
. (A.11)

Then, putting together the information given by the second derivative and the equation of3

the bifurcation curves, we can draw the bifurcation diagram of the system, shown in Figure 7(a)4

for the case K > 0. In particular, we observe that for r < r∗2 there are two equilibria, one stable5

and one unstable; however, when r crosses the critical value r∗2 , two new equilibria appear, of6

which one is stable and another one is unstable. Finally, we have another visible bifurcation for7

r = r∗1 , when the first two equilibria collide and annihilate each other. In order to give an idea8

of some numerical values, we reported in the plot in Fig. 7(a) some notable values of θ: more9

specifically, concerning the peculiar case we considered for K and γ, i.e. γ = 0.1 and K = 5, for10

r < r∗2 we have a stable orientation which is less than π/2. Variations of γ and K in R+ do not11

alter the qualitative behaviour of the system, but only the shape of the bifurcation diagram (see12

green and red curve in Fig. 7(b)).13

The main difference from the symmetric case treated in Section 3.2 lies in the type of bi-14

furcations involved: here we have two saddle-node bifurcations. Then, the introduction of the15

mixing parameter K‖s provokes the disappearance of the pitchfork bifurcations, while two turn-16

ing points appear. The biggest consequence of this fact, which can be observed in Figure 7(b),17

is that a symmetry breaking happens, leading for γ 6= 0 to equilibrium orientations that are not18

symmetric. This is due to the fact that the introduction of the coefficient K‖s brings into the19

energy a term proportional to sin θ cos θ, which is neither even nor symmetric with respect to π/220

as in the previous case. Consequently, unlike the symmetric case, one has U(−θ) 6= U(θ) and21
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U(π− θ) 6= U(θ), but U(π− θ) = U(−θ). However, this situation is not biologically meaningful,1

because there is no reason why one of the two orientations corresponding to −θ or θ should be2

energetically preferable for the cell with respect to the other, unless one can envisage an internal3

(left-right) bias in the cell itself. Therefore, we can conclude that, from the biological point of4

view, in the problem at hand the assumption K‖s = 0 made in the paper is justified, since we5

expect to have symmetries in the system which would be broken if this coefficient is not null.6
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