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Edge-powered Assisted Driving
For Connected Cars

Francesco Malandrino, Senior Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,
and Gian Michele Dell’Aera
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Abstract—Assisted driving for connected cars is one of the main ap-
plications that 5G-and-beyond networks shall support. In this work, we
propose an assisted driving system leveraging the synergy between
connected vehicles and the edge of the network infrastructure, in order
to envision global traffic policies that can effectively drive local decisions.
Local decisions concern individual vehicles, e.g., which vehicle should
perform a lane-change manoeuvre and when; global decisions, instead,
involve whole traffic flows. Such decisions are made at different time
scales by different entities, which are integrated within an edge-based
architecture and can share information. In particular, we leverage a
queuing-based model and formulate an optimization problem to make
global decisions on traffic flows. To cope with the problem complexity,
we then develop an iterative, linear-time complexity algorithm called
Bottleneck Hunting (BH). We show the performance of our solution
using a realistic simulation framework, integrating a Python engine with
ns-3 and SUMO, and considering two relevant services, namely, lane
change assistance and navigation, in a real-world scenario. Results
demonstrate that our solution leads to a reduction of the vehicles’ travel
times by 66% in the case of lane change assistance and by 20% for
navigation, compared to traditional, local-coordination approaches.

Index Terms—Vehicular networks; road traffic management; queuing
theory.

1 INTRODUCTION

5G-and-beyond network systems are expected to support
critical mobile services requiring ultra-low latency and
ultra-high reliability. Among these, automotive services are
pivotal to the increase of road safety and traffic efficiency,
promising a substantial reduction in terms of car accidents
and road congestion, as well as a significant improvement
for the environment and in both people’s life quality [2] and
health.

In particular, both the number of accidents and traffic
congestion can be effectively decreased by enabling vehicles
to coordinate their movements with each other. Techniques
for vehicle coordination and their impact have been investi-
gated in various scenarios and targeting different use cases,
ranging from lane change and lane merge in highways [3]
to collision avoidance at intersections [4] and traffic light
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management [5]. More recently, the advent of connected
and automated vehicles, equipped with sensing, computing,
and communication capabilities, has spurred a dramatic
revival of interest in assisted driving. Examples confirming
this trend include the activity within research projects like
AutoNet2030 [6], 5GCAR [7], and 5G-TRANSFORMER [8],
as well as the one by standardization organizations focusing
on cooperative intelligent transportation services [9].

In spite of the above research efforts aimed at devel-
oping effective assisted driving systems, several challenges
still have to be solved. In particular, all existing solutions
(including the standardized ones) leverage local decisions
(i.e., made by each ego vehicle), based on the information
collected from neighboring vehicles. Although being locally
made, such decisions have an impact on the vehicle traffic
flow as a whole, hence, on the behavior of vehicles that may
be even very far away from the ego one.

Predicting and controlling the consequences of local
decisions is a daunting task. To face such a problem, we
envision a system architecture, first introduced in our con-
ference paper [1], that exploits the synergy between the
vehicular network and the edge of the network infrastruc-
ture. Such architecture comprises two logical layers, one
concerned with vehicular flows and in charge of defining
suitable strategies to optimize them, the other addressing
the movement of the individual vehicles on a shorter time
span and generating instructions for specific manoeuvres.
More in detail, we envision a system including:

• an edge server (e.g., located within the city metro node),
which, leveraging existing queuing-based models, com-
putes traffic flow policies, for each vehicle flow, aiming at
reducing the flow travel time;

• a set of servers in the radio access network, e.g., resid-
ing at cellular base stations or road-side units (RSUs),
which translate such policies into individual instructions
for the single vehicles. These servers, also referred to
as actualizers in the rest of the paper, are in charge of
delivering the individual instructions to the vehicles so
as to match the aforementioned flow policies on the
longer run;

• connected and automated vehicles, who receive the
above instructions and perform the suggested ma-
noeuvre by coordinating with their neighbors through
vehicle-to-vehicle (V2V) communications.
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Fig. 1. Lane change in a two-lane, one-way road: the south lane is
blocked and the two vehicles traveling on it, i.e., the blue and green ones,
must move to the north lane. As foreseen by [9], vehicles announce their
situation (position, speed, heading...) via CAM messages (solid lines),
received by both RSUs and nearby vehicles. Based on such information,
an edge server computes the optimal policy and sends it to a road-side
actualizer (highlighted in yellow). The latter translates it into individual
instructions, transmitted to each vehicle (dotted arrows).

An example of the above architecture referring to the lane
change use case is presented in Fig. 1. Here, a policy may
instruct 30% of the cars on the south lane to move left early
on, i.e., as early as where the green car is, and the others to
change lane later on, i.e., where the blue car is. To enact this
policy, the road-side actualizer instructs the approaching
cars accordingly, and the vehicles receiving the lane change
command interact with their neighbors, following, e.g., the
protocol in [6], and perform the manoeuvre. Notice how the
actualizer does not change the policies decided by the edge
server, but it enforces them by translating them into local,
vehicle-specific instructions. At the same time, policies do
not compel the actualizer to choose any particular action
for any particular vehicle; indeed, the edge server does not
have any visibility over individual vehicles – which makes
computing policies easier and faster.

The communication between the network infrastructure
(and the servers therein) and the vehicles, as well as V2V
communications, occur using standard protocols and mes-
sages (e.g., [9]). Nevertheless, since the individual instruc-
tions conveyed by the actualizer to the vehicles realize
the policies computed by the edge server, the system can
attain local objectives (e.g., avoiding car accidents) as well
as global ones (e.g., reducing traffic congestion).

The effectiveness of the above architecture and informa-
tion flow, however, depend upon the quality of the traffic
flow policies. Indeed, the task of computing optimal policies
at the edge server is still very challenging, due to the
following reasons:

(i) policies have to account for the different destinations
of the vehicles currently traveling over the same stretch
of road, and for how the behavior of such vehicles can
affect each other’s travel time;

(ii) to attain fair policies, it is essential to consider the
vehicles travel time distribution, rather than relaying
on the average travel time only;

(iii) in addition to being as effective as possible, policies
must be computed efficiently so as to provide real-time
driving assistance.

In this paper, we tackle the above issues by providing
the following main contributions:
• System architecture: we design a system architecture,

based on the edge computing paradigm [10], [11], [12],
[13], [14], integrating connected cars and the edge of the

network architecture, with the latter hosting a traffic
controller in charge of providing traffic flow policies
(Sec. 3);

• Analytical modeling and optimization: leveraging existing
works on queue-based models for vehicular traffic (see
Sec. 2 next), we present in Sec. 4 a model that can
represent arbitrary road topologies as well as any path
followed by the vehicles, and which allows for the
computation of the vehicles’ travel times distribution
(as opposed to a simple average), as detailed in Sec. 5.
Through this model, we derive the distribution of the
vehicles’ travel times, and formulate the problem of
optimizing such distribution (Sec. 6);

• Algorithm: we present and analyze an optimal algo-
rithm, inspired by gradient-descent and named Bottle-
neck Hunting (BH), that provides optimal traffic flow
policies in linear time (Sec. 7);

• Realistic simulation framework and performance evalua-
tion: we leverage a simulation framework including a
Python engine we developed, the ns-3 network sim-
ulator, and the SUMO mobility simulator. Through
such simulator, we capture the main aspects of real-
world assisted driving systems (Sec. 8) and assess the
performance of the BH algorithm in real-world use
cases, showing the gain we can obtain with respect to
traditional, distributed strategies (Sec. 9).

Finally, we conclude the paper in Sec. 10.

2 RELATED WORK

Queuing theory has widely been used for mesoscopic mod-
els of vehicular traffic, on both individual road stretches
and more complex road layouts. In such models, customers
in queues represent the vehicles traversing the road topol-
ogy [15], [16], [17], [18], while, in the case of straight
road stretches, queue service times model the vehicle travel
times.

Owing to the power and flexibility of the queuing ab-
straction, queues have also been consistently and effectively
used to represent congested traffic conditions [15] – indeed,
queuing theory can well address the causes and effects of
congestion. The pioneering work in [19] argues that the
arrival of vehicles at intersections, either individually or
in batches, can be represented as a Poisson process. The
study in [20] proposes to model urban topologies as a set of
elementary (namely, M/M/1 and M/D/1) queues, and the
later work [21] leverages empirical validation to argue for a
more general, M/G/1 model in non-congested scenarios.
In both cases, individual lanes are each associated with
a queue. The later work [17] finds that, under free-flow
conditions, the probability that any road segment attains
its full capacity is zero, therefore, it is appropriate to model
such segments through queues with an infinite number of
servers, namely, of type M/G/∞.

Vehicular mobility is modeled through M/M/1 queues
also in several recent works about edge and cloud comput-
ing in vehicular networks, including [22], [23], [24]. Simi-
larly, the work [16] leverages Poisson arrivals to characterize
the connectivity of VANETs in highway-like scenarios.

Other works, e.g., [25], focus on specific aspects of ve-
hicular traffic, such as modeling the delay of indisciplined
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traffic (where motorbikes and cars do not respect lanes)
at regulated intersections traffic [25], or on estimating the
error incurred by probe vehicles [26]. In both cases, M/M/1
models are found to accurately represent real-world condi-
tions. Similarly, [25] shows that indisciplined traffic can be
modeled via M/M/1 queues, and [27] uses them to study
congestion in vehicular networks. Consistently, the study
in [28], based on realistic simulations, finds M/M/1 to well
represent travel time on individual road segments. Note that
part of the popularity of Markovian service times is due to
their ability to capture the effect of heterogeneous traffic
(e.g., cars, trucks,...) [25], proceeding at different speeds.
Batch arrival and departure processes are the modeling tool
of choice when traffic signals are involved, e.g., [29], [30]. In
all cases, arrivals are assumed to be Markovian in nature,
while service times are either Markovian or deterministic.

Situations where vehicles from multiple flows have to
merge into one lane has been identified as a major cause of
congestion. Accordingly, several research efforts focus on
modeling the merging behavior of vehicles [31], as well
as on devising optimized merging strategies [32]. Among
merging situations, several works [33] focus on access
ramps to highways, which are especially critical because
of the different speeds of incoming vehicles. Other works,
e.g., [34], focus on communication aspects, especially the
channel conditions experienced by merging vehicles in ur-
ban scenarios. Recent efforts such as [3] deal with merging
strategies for autonomous vehicles, and the benefits coming
from cooperation between them.

Traffic accidents, along with their causes and conse-
quences, have long been studied in the literature. As an
example, [35] aims at characterizing the duration of acci-
dents and the factors that could mitigate their consequences,
e.g., better infrastructure maintenance. Closer to one of the
scenarios we consider, [36] considers the case of a multi-
lane road, where one of the lanes is blocked by an accident.
The authors of [36], however, model the whole road as a
single M/M/c queue, that is, with multiple servers (c > 1)
drawing from the same queue. Conversely, beside having
a different scope, we model a multiple-lane road stretch
through multiple one-server queues.

Focusing on the specific aspect of lane-change behavior,
[37] combines queuing theory, to describe the mobility of
vehicles, and game theory, to model the self-interested de-
cisions they make. With a different goal but using the same
tools, [38] leverages queuing theory to detect the users most
likely to attempt a lane change, before they do so.

The general problem of harmonizing and optimizing
multiple flows of vehicles through a road network has re-
ceived considerable attention from the research community.
In particular, [39] envisions switching between flow- and
phase-based control of traffic lights based on real-time traffic
conditions. [24], instead, accounts for the available radio
coverage while making flow-routing decisions, to ensure
that each vehicle gets the bandwidth it needs. Taking a
dual approach, [40] aims at identifying clusters of vehicles
traveling together and using them as “vehicular clouds” to
perform computation tasks. Early works focus on individ-
ual intersections and study how to model their behavior
through queuing-based models. For instance, such models
are leveraged in [5] to program an intelligent traffic light

reacting to traffic conditions.
Among recent solutions leveraging edge computing in

intelligent transportation systems (ITS) scenarios, many fo-
cus on providing safety-critical services like collision avoid-
ance via edge servers [13], [14], with special emphasis on
vulnerable users such as pedestrians and bicycle riders [13].
A more general approach is adopted in [11], [12], targeting
the problem of placing any ITS service leveraging both edge
and cloud resources.

Finally, a preliminary version of this work has been
presented in the conference paper [1]. With respect to [1],
this paper greatly expands the scope of the model (which
now includes batch arrivals), the characterization of the
problem (even when no closed-form solution exists), the
analysis of the algorithm (which we prove to have linear
complexity), as well as the results (which we expand from
one to three reference scenarios).

Novelty. In this paper, we leverage existing works on
queue models for vehicular networks and existing edge-
based architectures in order to provide high-quality as-
sistance to connected vehicles. Specifically, unlike existing
works, we drive local decisions through vehicle flow poli-
cies, which account for the global effects of local behaviors.
Thus, while other edge-based approaches foresee only one
decision-making entity, in our solution global and local
decisions are made by different entities, integrated into
an edge-based architecture and able to operate at different
time scales, while sharing information and policies. Further-
more, our decision-making scheme accounts for the whole
distribution of flow-wise trip-times, as opposed to simple
averages thereof. We prove that such a scheme is scalable
under a wide variety of modeling assumptions and scenar-
ios. Finally, our algorithm outperforms generic optimization
algorithms by exploiting problem-specific information to
further speed-up the decision process.

3 SYSTEM ARCHITECTURE

We now introduce the architecture we envision, highlighting
how it is consistent with existing standards on connected
vehicle communications. According to the ETSI 102.941
(2019) standard, connected vehicles periodically (e.g., every
100 ms) broadcast cooperative awareness messages (CAMs),
including their location, speed, and heading. Such informa-
tion is then used by other vehicles and/or the network in-
frastructure for several safety and convenience services, e.g.,
collision avoidance [41]. Upon detecting a situation war-
ranting action (e.g., two vehicles on a collision course), de-
centralized environmental notification messages (DENMs)
are sent to the affected vehicles, so that their actualizer is
triggered and/or their driver is warned. Both CAMs and
DENMs can carry additional information [9] for the support
of assisted driving services such as lane change/merge [9]
and navigation services (see ETSI 102.638).

None of the above is envisioned to change under our
proposed architecture; in particular, all services still leverage
the transmission of CAMs and DENMs. For concreteness,
we focus on the lane change assistance and navigation
services. In the first case, the edge server exploits the infor-
mation in the CAMs received by the radio access nodes (and
possibly notifications of lane blocks carried by DENMs) to
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CAM: position, speed…

DEMN: «switch lane»

CAM: position, speed…

DEMN: «yield»

REST: traffic statistics

REST: new policy

REST: traffic statistics

REST: new policy

Fig. 2. Lane-changing scenario: messages exchanged between vehi-
cles, RSUs (acting as actualizers), and edge servers. Orange lines
correspond to ETSI 102.941-standardized messages, green lines to
HTTP-based REST exchanges.

formulate an optimal policy. Such a policy is then sent to
the actualizers, which, being closer to the mobile users,
can account for the most recent CAMs and exploit them
to translate the policy into individual instructions for the
single vehicles (see Fig. 1). These instructions are notified to
vehicles through DENMs sent by the radio access nodes.
Upon receiving a DENM, a vehicle starts interacting via
V2V communications with its neighbors following, e.g., the
protocol defined in [6] and using CAMs and DENMs as
foreseen by [9].

The second service (navigation) operates on a longer
time and larger geographical scale: the edge server exploits
the CAMs and, in particular, the route destination field
therein, and computes the optimal vehicles’ route. This is
then notified by the radio access nodes using DENMs.

Fig. 2 exemplifies the messages exchanged between ve-
hicles, RSUs (acting as actualizers), and the edge server in
the lane-changing scenario. Specifically, the vehicles and the
RSU exchange messages standardized by ETSI 102.941, e.g.,
CAMs and DEMNs, represented by orange lines in Fig. 2.
CAMs convey information on (respectively) the vehicle’s
status, including its position, speed, heading, acceleration,
and intentions (e.g., turn signals); DEMN messages, instead,
convey indications on what vehicles should do, e.g., switch
lane.

RSUs and edge server, instead, communicate through
HTTP-based REST exchanges, corresponding to green lines
in the figure: RSUs periodically send reports on the traffic
they observe, and the edge server leverages such informa-
tion to periodically issue new general vehicle flow policies.
RSUs account for the currently-active policies when sending
out DEMN messages, e.g., to decide how many vehicles to
instruct to yield.

Notice that RSUs are not required to communicate di-
rectly; however, if such an option is available, it can be
exploited. Specifically, one of the RSU servers can also func-
tion as a policy server, and therefore communicate directly
with other RSUs to distribute policies. Indeed, policy maker
and actualizer are logical roles, which can be assigned to any
physical node, provided it has the required capabilities.

For all services, latency is a foremost concern; indeed,

carefully-crafted policies and individualized suggestions are
no use if they come too late. Edge-based solutions such as
ours have longer latency than purely V2V ones. However,
previous works on collision avoidance [13], [14] have shown
that such additional delay is negligible compared to the
overall reaction times, and more than compensated by the
additional information that can be leveraged. It is worth
noticing that collision-avoidance services have extremely
tight latency requirements, thus, the findings of [13], [14]
also apply to, e.g., lane-changing assistance.

Placing the server at the network edge yields the optimal
trade-off between the availability of global information and
the need for low latency. As discussed earlier, edge servers
have remarkably short latencies, compatible with critical
safety services. At the same time, they oversee fairly large
areas, e.g., a neighborhood or a small town; it follows that
the information they collect is sufficiently general to allow
high-quality, global decisions. If the service (e.g., navigation)
and the scenario (e.g., large urban areas) warrant it, multiple
edge servers can coordinate and synchronize via the Internet
cloud.

Throughout this paper, for simplicity, we refer to a single
edge server. However, it is important to highlight that, for
very complex and/or large scenarios, multiple edge servers
can coexist, each responsible for a subset of the topology.
This allows the edge servers to make decisions more effi-
ciently, while retaining their ability to account for their far-
reaching effects. Importantly, different services require edge
servers to supervise areas of different sizes: for a lane change
service, the area supervised by a single edge server can be
as small as a single stretch of road; for navigation services,
it can be as large as a neighborhood or small town. In the
latter case, however, decisions can be made less frequently,
hence, the load on the edge server remains manageable.

It is also important to highlight how, as also exemplified
in Fig. 2, actualizers and policy servers operate at different
time scales. Indeed, actualizers can immediately react to
messages coming from vehicles according to the current
policy, without the need for the policy server to intervene.
Through such a logical separation between policy servers
and actualizers, our solution is able to leverage global
knowledge when making local decisions.

4 MODEL DESIGN

In this section, we describe how our system model repre-
sents the road layout, the vehicle flows (Sec. 4.1), the routes
taken by vehicles in the same flow, and their travel times
(Sec. 4.2). With the aim to devise efficient policies at the
edge server, we represent traffic flows by queuing models,
so as to capture the flow dynamics depending on aggregate
quantities such as the road capacity. Importantly,
• based on the existing works and validation studies [20],

[21], [22], [23], [24], [16], we consider Markovian ar-
rivals, of either individual vehicles or batches thereof;

• we do not restrict ourselves to a specific service time
distribution or number of servers, supporting instead a
very wide range of queuing models;

• given the scope of our work, we focus on uncongested
scenarios where the number of vehicles traveling on
a road stretch is lower than its capacity, hence road
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Fig. 3. Toy scenario: flows of vehicular traffic go through a set of
interconnected queues, each representing a single-lane stretch of road.

stretches can be modeled with queues with infinite
length.

The decisions to be made correspond, intuitively, to the
policies formulated by the edge server in Fig. 1. Specifically,
they consist of the suggested travel speed and the probabil-
ities of taking a given lane/stretch of road. In the following,
we refer to a single lane on a stretch of road as road segment.

4.1 Road topologies as queue networks
Similar to existing works [11], [12], [16], [17], we model
the road topology under the control of the edge server as
a set of interconnected queues qi ∈ Q, as exemplified in
Fig. 3. Similarly to existing works (including experimental
validation [21], [17]), each queue represents a road segment,
characterized by, e.g., a certain speed limit and capacity.

Service rates, µi, are bounded by a maximum
value µmax

i , determined by the length of the road segment
modeled by queue qi, its speed limit, and the inter-vehicle
safety distance:

µi ≤ µmax
i ∀qi ∈ Q . (1)

Several traffic flows, k ∈ K, may travel across the road
topology or part of it, each flow being defined as a set
of vehicles having the same source and destination within
the road topology. Specifically, given a flow k entering and
leaving the road topology at queue qi and qo, respectively,
the parameter Λki denotes the vehicles arrival rate, while
parameter Mk

o denotes the rate at which they exit the
topology. For every flow k, there is exactly one queue i for
which Λki > 0 and one queue o for which Mk

o > 0 (see
Fig. 3); furthermore, these two quantities are the same, as all
vehicles of the flow begin their route at queue i and end it
at queue o. Note that Λki and Mk

o are known parameters
for the algorithms, which can be obtained by the edge
server leveraging the CAMs periodically transmitted by the
vehicles. Vehicles move from a generic queue i to queue j
according to probability αij .

Given the above model, our decision variables are the
service rates µi of queues qi ∈ Q, and the transition
probabilities αi,j (although some αij can be fixed, e.g., in
Fig. 3, α4,5 = 1). The total incoming flow for queue qi is
denoted with λi and depends on Λki , Mk

o , αi,j ; it is given
by:

λi =
∑
k∈K

Λki +
∑
h∈Q

αh,i

(
µh(1− π0

h)−
∑
k∈K

Mk
h

)
(2)

where π0
i denotes the probability that queue qi is empty.

Eq. (2) can be read as follows: the flow entering queue qi is
equal to the flow of vehicles that begin their journey therein,

plus a fraction αh,i of the vehicles that exit other queues qh,
but do not leave yet the road topology.

4.2 A path-based view

Modeling road topologies as queue networks [11], [12],
[16], [17] is a sensible methodology to estimate the travel
times of different vehicles or group thereof. However, it
is often cumbersome to make decisions based on queue
models, owing to the large number of variables therein (the
routing probabilities) and the complex way in which such
probabilities influence the distribution of the travel times of
vehicles of the same flow. To allow for quicker and higher-
quality decisions, we now leverage the notion of path, i.e.,
a sequence of queues with a given source and destination,
and per-flow path probabilities.

Vehicle with the same source and destination are said to
belong to a flow k ∈ K, with K identifying the set of flows.
Edge servers can obtain information on the vehicles’ desti-
nation from the CAMs they send, or through application-
layer communication. Indeed, it is fair to assume that vehi-
cles benefiting from a service, e.g., navigation, agree to dis-
close their destination, provided that proper anonymization
and privacy mechanisms [42] are in place.

Vehicles of the same flow may nonetheless follow dif-
ferent trajectories, hence, traverse different sequences of
queues. We define such sequences of queues as pathsw ∈ W .
Each path w is an array including the queues traversed by
vehicles taking it; given a queue qi ∈ Q, we write qi ∈ w if
path w includes qi. The probability that vehicles of flow k
take path w is denoted by pkw; each path w is used by
one flow k only, indicated as κ(w) ∈ K. Introducing paths
allows for a flexible relationship between flows and queues,
thus enhancing the realism of our model, while keeping its
computational complexity low. Indeed, the set W and the
κ(w) ∈ K values can be pre-computed, hence, they do not
impact the complexity of the decision-making algorithm.

q1

q2

q3

q4
𝛼(𝑞! ,𝑞")

𝛼(𝑞! ,𝑞#)

q1 q2 q4q3
𝑝yellow = 𝛼(𝑞!, 𝑞")

𝑝purple = 𝛼(𝑞!, 𝑞#)

Fig. 4. Original queue network (top) and path view (bottom).

Example 1 (Path-based view). Consider a single flow and
the topology in Fig. 4(top), where vehicles visit q1, then
either q2 or q3, and then q4. Since there are two routes
that the vehicles can follow, there are two paths in W ,
namely, wyellow = [q1, q2, q4] and wblue = [q1, q3, q4]. As
for the probabilities p1

w with which each path is taken,
they depend on the transition probability α1,2 and α1,3;
specifically, pyellow = α1,2 and ppurple = α1,3. The result-
ing parallel-path view is displayed in Fig. 4(bottom).
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Importantly, given the edge-based policy, vehicles are
assigned a path (according to the pkw probabilities) at the
beginning of their travel across the considered road topol-
ogy, before they enter the first queue. Thus, given the path
it takes, the queues traversed by a vehicle are unequivocally
determined.

The probabilities pkw that vehicles of flow k take path w
can be expressed as a function of the probabilities αi,j as:

pkw =

{∏|w|
n=2 αw[n−1],w[n] if κ(w) = k

0 otherwise,
(3)

where w[n] ∈ Q is the n-th queue included in path w.
Clearly, the pkw probabilities have to sum up to one:∑

w∈W
pkw = 1, ∀k ∈ K. (4)

We stress that, while each path is unequivocally associ-
ated with one flow, the opposite does not hold. With refer-
ence to Fig. 3, flow 1 is associated with one path [q1, q2, q5]
only, while flow 2 can use path [q2, q3, q5] or [q2, q4, q5]. As
for paths and queues, there is a many-to-many relationship
between them. In Fig. 3, queues q1 and q4 belong to one path
each, queues q2 and q3 to two paths each, and queue q5 to
all three paths.

When considering paths, the local arrival rate at each
queue qi in (2) depends on: the paths qi belongs to, the
probability that flows take those paths, and the arrival rate
of those flows. Specifically,

λi =
∑
k∈K

Λk
∑

w∈W : qi∈w
pkw. (5)

Notice how (5) expresses the same quantity as (2) earlier.
However, (5) leverages our path-based representation, while
(2) considers the elementary building blocks of the system,
namely, queues and the routing probabilities between them.

5 FLOW TRAVEL TIMES

In the following, we leverage the path-based view of the
system to characterize the travel time experienced by each
flow k. Let us first denote with fi(t) the probability den-
sity function (pdf) of the sojourn time at an individual
queue qi ∈ Q. Such pdf is a function of λi and µi, according
to an expression that depends on the statistics of the queue
arrival process and the service time. Then, recalling that
vehicles taking path w traverse all queues in w, the travel
time associated with path w is the sum of the sojourn times
at all queues therein. The pdf of such a time is the |w|-
way convolution of the individual pdfs associated with each
queue, i.e., fw(t) = Convqi∈wfi(t). By integrating fw(t), we
compute the cumulative density functions (CDFs) and take
their Laplace transform, thus obtaining:

Fw(s) =
1

s

∏
qi∈w

fi(s), (6)

where f(s) = L[f(t)](s) is the Laplace transform of f(t).
Anti-transforming (6), we can obtain the CDF of the

path-wise travel time: Fw(t) = L−1 [Fw(s)] (t). We recall
that Fw(t) is a function of the control variables µi and pkw
(i.e., αh,i), which appear in the pdf fi(t). As mentioned,

the actual form of fw(t) and Fw(t), as well as of the above
Laplace transforms, depends on the queue arrival process
and service time distribution. In many cases of interest,
Fw(s) can be expressed as a ratio between polynomials, and
anti-transformed into a summation of terms of type Atnetτ ,
as shown in Sec. 5.1.

Next, we move from paths to flows. Intuitively, the travel
time of flow k can be expressed as the sum of the travel
times of paths w’s that can be used by vehicles of flow k,
each weighted by probability pkw. We first exploit Fw(t) to
write the probability δw(t̂) that the travel time of a vehicle
taking path w exceeds a value t̂:

P(travel time on path w > t̂) = 1− Fw(t)|t=t̂ , δw(t̂). (7)

We then move to a flow-wise equivalent of δw(t̂), combining
the δw path-wise probabilities with the values pkw, express-
ing the probability that a vehicle of flow k takes path w, and
write:

P(travel time of flow k>ωk) =
∑
w∈W

pkwδw(ωk) , δk(ωk) .

(8)
In (8), ωk is the flow-wise target travel time, e.g., the ratio of
the distance between the flow source and destination to the
desired average speed between them.

It is worth stressing that, if closed-form expressions
of Fw(t) do not exist or are too complex to manage, the
steps above can still be performed numerically, obtaining
the same results. In that case, however, we do not resort
to Laplace transforms, and instead directly compute the
required convolutions and integrals.

5.1 M/M/1 queues and batch arrivals
For sake of concreteness and as a useful example, in the
following we show how the above expressions particularize
to the relevant cases [20], [21], [22], [23], [24], [16] where
the road segments are modeled as M/M/1 or MX/M/1
queues [28], [25], withX denoting the (discrete) distribution
of the vehicle batch size.

Let us start from the M/M/1 case and consider the per-
path travel times presented in Sec. 5. Given the expression
of the pdf of the sojourn time at an M/M/1 queue qi,
i.e., fi(t) = (µi − λi)e−(µi−λi)tu(t) [43], where u(t) is the
step function, we can write: fw(s) =

∏
qi∈w

µi−λi

s+µi−λi
. Thus,

the CDF is given by: Fw(s) = 1
s

∏
qi∈w

µi−λi

s+µi−λi
, which is

the ratio between two polynomials in s: a numerator of
degree 0 and a denominator of degree |w|+1. It has one pole
in s = 0 and additional |w| poles, one for each queue qi ∈ w,
at s = µi − λi. It is well known that this expression can be
decomposed into partial fractions [44]:

Fw(s) =
A0,w

s
+
∑
qi∈w

Ai,w
s+ µi − λi

(9)

where

Ai,w = −
∏

qj∈w : j 6=i

µj − λj
(µj − λj)− (µi − λi)

, (10)

and A0,w = 1. Anti-transforming (9), we can write the CDF
of the travel time on path w as:

Fw(t) = u(t)

(
1 +

∑
qi∈w

Ai,we−(µi−λi)t

)
. (11)
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Therefore, combining (7), (8), and (11), and exploiting (4),
δk(ωk) can be written as:

δk(ωk) = −
∑
w∈W

∑
q∈w

pkwAi,we−(µi−λi)ω
k

. (12)

In the MX/M/1 case, vehicles arrive in batches, with
size characterized by a given probability mass function
(pmf). Let the pmf be gn = P(batch size = n), 1 ≤ n ≤ G,
with G being the maximum batch size. The expected batch
size is ḡ =

∑G
n=1 ngn. Then the Laplace transform of the

path travel time is [45, Sec. 4.2.1]:

Fw(s) =
1

s

∏
qi∈w

(1− ρi)(1− s)
µi(1− s)− λis(1− Γ(s))

, (13)

where ρi = λiḡ
µi

is the queue utilization and Γ(s) =∑G
n=1 gns

n is the probability generation function of the
batch size pmf. It is important to highlight that (13) is a
ratio of polynomials in s: a numerator of degree |w| and
a denominator of degree 1 + |w|(G + 1). Hence, using the
same methodology as above, (13) can be decomposed into
partial fractions and anti-transformed, yielding an expres-
sion of δk(ωk) similar to (12).

6 PROBLEM FORMULATION

Our high-level goal is to keep the fraction of vehicles of
each flow k, whose travel time exceeds the target ωk, as low
as possible. To ensure fairness among vehicles of different
flows, we formulate such a goal as the following min-max
objective:

min
pwk ,µi

max
k∈K

∑
w∈W

pkwδw(ωk) . (14)

The optimization variables are the probabilities pwk
(hence the αi,j) and the service rates µi, which, as also ex-
emplified in Sec. 5.1, appear in the objective function in (14)
via the CDF in (6). Ingress and egress rates Λki and Mk

i are
input parameters, as are the maximum service rates µmax

i

and the target flow travel times ωk. The per-queue arrival
rates λi are auxiliary variables, whose dependency on the
decision variables is specified in (5). Furthermore, we need
to impose the constraints in (1) and (4).

Reconstructing the α-values. Given the optimal pkw val-
ues, the αi,j variables can be recovered by solving a system
of equations of the same type as (3), where the αi,j-values
are the unknown and the pkw-values are given. The system
can be linearized by taking the logarithm of all variables, i.e.,
re-writing (3) as: log pkw =

∑|w|
n=2 logαw[n−1],w[n], ∀w ∈ W .

The fact that the system has a unique solution is ensured
by the proposition below; the intuition behind it is that the
number of paths grows faster than the number of junctions,
hence, there are more equations than variables. It follows
that, if it exists, the solution is unique.
Proposition 1. In any topology, the number of paths is

strictly higher than the number of junctions.

Proof: Let us start with a single path, hence, zero
junctions. Then junctions are added one at a time, starting
from queues qi that are already part of at least one path; by
so doing, the number of junctions increases by one. Also, a
new path is created for every path that included qi, hence,
the number of paths grows by at least one.

6.1 Problem complexity and solution approaches

As the road topology may include several lanes and road
stretches, it is important to understand the complexity of
our problem, as well as the viable solution approaches that
can be pursued. Indeed, such a complexity has an impact on
the computational resources required at the edge to provide
timely policy updates.

We first look at the expression for Fw(t) in (14), which
can be fairly complex even for simple queuing systems, as
exemplified in Sec. 5.1 for theM/M/1 case. In particular, the
Ai,w coefficients multiplying the exponential terms can have
any sign. One may be tempted to conclude that nothing
can be said about the convexity of the problem; instead, it
is possible to prove that: (i) in the most general case, the
expression is monotonic, namely, non-decreasing; (ii) in a
wide set of relevant cases, it is convex.

Theorem 1. Optimizing (14) subject to constraints (1), (4),
and (5) requires solving a monotonic optimization prob-
lem.

Proof: The monotonicity of the objective function (14)
derives from the fact that the quantity δw(t̂) can be ob-
tained according to (7), by computing a CDF in a specific
value t̂. CDFs are non-decreasing functions and the pkw
coefficients are probabilities, hence, non negative. It follows
that the quantity within the summation of (14) is a conic
combination of non-decreasing expressions, which is itself
non-decreasing. Similarly, taking the (point-wise) maximum
over all flows k preserves monotonicity; therefore, (14) as
a whole is monotonic. As for the constraints, (4) and (5)
are linear, hence, they meet the requirement that equality
constraints of monotonic optimization problems are affine.

Monotonic optimization problems [46] can be solved by
mapping them into a set of convex sub-problems. Individual
sub-problems are then solved to optimality in polynomial
time, while the original (monotonic) problem can be solved
arbitrarily closed to the optimum, at the cost of increasing
the number of sub-problems.

Theorem 1 does not rely on any specific travel time
distribution, but only on it being characterized by a CDF.
Indeed, Theorem 1 still holds for service time distributions
that do not result in a closed-form expression of the sojourn
time CDF, as, e.g., in the case of M/D/1 queues. The wide
scope of Theorem 1 reflects the generality of our framework,
which does not depend on any restrictive modeling assumption
on the queue service time, but works unmodified under any
service time distribution.

We can prove an additional result showing that, un-
der mild conditions, solving the problem of optimizing
(14) subject to constraints (1), (4), and (5) can be reduced
to a convex problem. The key mathematical concept we
leverage is log-convexity. Simply put, a function is log-
convex if its logarithm is convex [47]. As an example,
the service time distribution of an M/M/1 queue, for
t ≥ 0, is fi(t) = (µi − λi)e

−(µi−λi)t and its logarithm
is log(µi−λi)+(λi−µi)t, which is linear in t, hence, convex;
it follows that fi(t) is log-convex. Note that log-convexity
is a more restrictive condition than convexity, hence, log-
convexity implies convexity.
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If all queues in the system have a log-convex sojourn
time pdf, then the following important result holds.
Theorem 2. If all queues in the system have log-convex

sojourn time pdfs, then the problem of optimizing (14)
subject to constraints (1), (4), and (5) reduces to a convex
optimization problem.

Proof: As shown in Sec. 5, computing the distribution
of per-path travel times involves convolutions and integra-
tions of the sojourn time pdfs of the individual queues. Both
these operations preserve the log-convexity property [47]; it
follows that, if the hypothesis holds, the per-path travel time
CDFs are log convex, hence, convex.

Now, the objective function (14) is computed as per (7),
by considering each CDF at a specific point t̂. Furthermore,
the coefficients pkw are probabilities, hence, non negative. It
follows that the quantity within the summation in (14) is
a conic combination of convex expressions, which is itself
convex. Similarly, taking the (point-wise) maximum over
all flows k preserves convexity; therefore, (14) as a whole
is convex. As for the constraints, (4) and (5) are linear,
hence, they meet the requirement that equality constraints
of convex optimization problems are affine.

The condition of Theorem 2 is met by a very large
number of relevant queuing systems, including the very
popular M/M/1 [20], [22], [23], [24] and MX/M/1 [19]
ones.

6.2 Discussion and useful insights
Theorem 1 and Theorem 2 imply that our problem can
be efficiently solved by commercial, off-the-shelf solvers
like CPLEX or Gurobi, especially when the conditions of
Theorem 2 hold and the problem is convex. However, nu-
merical solvers encounter significant numerical difficulties
when dealing with the objective (14). As demonstrated for
instance in Sec. 5.1 for theM/M/1 case, theAi,w coefficients
therein usually contain a ratio of products of µi − λi terms:
a small variation in any of the terms can change the sign
of the whole coefficient and/or significantly alter its (ab-
solute) value. The issue is compounded by the fact that
such values, which can be very large, are then multiplied
in (8) by probabilities pkw, which could be very small and/or
be varied by very small quantities. State-of-the-art interior-
points methods are engineered to deal with both challenges,
however, their convergence can be slowed down – or pre-
vented altogether – by such numerical difficulties.

Gradient-based methods like the BFGS algorithm [48]
may perform better, and more reliably (albeit more slowly)
converge. The basic intuition behind gradient-based meth-
ods is to start from a feasible solution, and then improve
it by performing, at every iteration, the change that results
in the largest improvement of the objective function. How-
ever, we can achieve faster convergence through an ad hoc
algorithm exploiting problem-specific knowledge.

To design an efficient solution, we look at the case of
M/M/1 queues with the aim to derive some insights of
general validity. In particular, an aspect worth investigating
is the intuitive notion that equilibrium across queues and
paths can lead to better performance. To show this and pick
a suitable metric to define such equilibrium conditions, we
make the observation below.

Theorem 3. Consider the quantity δk(ωk) in (11) for a fixed t,
and assume that µi − λi = d, ∀qi ∈ w. Then transferring
an amount ε > 0 of traffic from any queue l ∈ w to any
other queue m ∈ w always increases δw(ωk), hence the
value of the objective (14).

Proof: Let us consider a tagged path w and two
additional paths w′ and w′′. Without loss of generality, let
us move an amount of traffic, ε, from queue qh ∈ w, w′ to
queue ql ∈ w, and the same amount of traffic from qm ∈ w
to qr ∈ w, w′′. Now, note that when we had µl − λl =
µm−λm = d, the transform of the sojourn time CDF (9) had
a double pole in d and, according to the same partial fraction
decomposition rules used to compute the Ai coefficients in
(10), the path travel time distribution (see (11)) reduces to:
F old
w (t) = 1 − e−dt − dte−dt = 1 − e−dt(dt + 1). Moving
ε traffic from ql to a qm means replacing the two poles in d
with two single poles, one in d+ε and one in d−ε. (11) then
becomes: F new

w (t) = 1− e−dt[d+ε
2ε eεt − d−ε

2ε e−εt].
To prove the thesis, it must be F new

w (t) ≤ F old
w (t), i.e.,

F new
w (t) − F old

w (t) ≤ 0. Considering only the expressions
multiplied by −e−dt, this is equivalent to imposing:

d+ ε

2ε
eεt − d− ε

2ε
e−εt − dt− 1 ≥ 0. (15)

We remark that the first member of (15) tends to ∞
when t → ∞, and to 0 when t → 0. To assess the behavior
of (15) over the rest of its domain, we compute its derivative
over t, obtaining: d+ε

2 eεt + d−ε
2 e−εt − d, which must be

be greater than zero. The derivative can be re-written as:
d
2 (eεt + e−εt) + ε

2 (eεt − e−εt) − d. The second member is
clearly non negative, since eεt ≥ e−εt for any non-negative
values of t and ε. The quantity eεt + e−εt is equal or greater
than 2 – specifically, it has a minimum at 2 when t = 0 –,
hence, the first member of the derivative is always greater
or equal to d. In conclusion, the derivative of the quantity at
the first member of (15) is always non negative, hence, the
inequality (15) is valid, hence, moving ε traffic from a queue
to another yields a value of the CDF of the path travel time,
F new
w (t), that is lower than F old

w (t), for any t. Hence, the
travel time increases, which proves the thesis.

We can also prove the following corollary, which holds
in the case of multiple paths.

Corollary 1. Let k be a flow that can be routed
through |W| ≥ 2 paths, each containing the same num-
ber |w| of queues, and assume that, for each path w,
µi − λi = d for any qi ∈ w. Then the lowest value of the
objective function in (14) is attained when pkw = 1

|W| ,∀w.

Proof: The proof follows from the definition of δk(ωk)
given in (8), which is a weighted sum of terms Fw(ωk). Let
us consider w and w′ such that κ(w) = κ(w′) = k. Moving a
fraction δ of traffic from path w to path w′ means increasing
the weight corresponding to the w-term, and decreasing the
weight corresponding to the w′-term. At the same time,
considering that Fw(t) functions are CDFs and CDFs are
non-decreasing, it also means increasing the δk(w) term and
decreasing the δk(w′)-term, which results in a larger value
for δk(ωk), hence, for the objective function in (14).

In summary, we observed first that equilibrium condi-
tions are indeed associated with better performance. Second,
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the best metric to use when defining equilibrium is the dif-
ference between the service and arrival rate at each queue,
i.e., µi − λi. We leverage both insights while defining our
algorithm, as explained next.

7 THE BH ALGORITHM

We now propose an iterative algorithm to solve the above
optimization problem, and discuss its properties and nov-
elty. We underline that the algorithm works unmodified for
a very wide range of queuing models, with different arrival
processes, service time distributions, and number of servers.

7.1 Goal and approach
Theorem 1 and Theorem 2 imply that our problem can be
solved by performing one or more convex optimizations,
even when its objective does not have a closed-form expres-
sion. A prominent family of algorithms that solve convex
problems is represented by gradient-descent algorithms – from
the venerable Newton algorithm to more modern alterna-
tives such as BFGS [48] and stochastic gradient descent [49]
(SGD), the latter widely used in machine-learning applica-
tions.

Gradient-descent algorithms work iteratively, by chang-
ing at each iteration one variable in the current solution,
and effecting the change yielding the highest improvement
in the objective function. If, as in our case, the problem
is convex, any gradient-descent algorithm is guaranteed to
converge to the optimal solution.

However, general-purpose algorithms such as BFGS or
SGD are unaware of the underlying structure of the prob-
lem, and make their decisions in terms of individual vari-
ables, i.e., per-path probabilities. This may lead them to
make changes that, due to their impact on other paths and
flows, have to be undone at a later iteration; the final result
is that the optimal is reached in a longer time than needed.

To avoid this problem, we design an iterative algorithm
called bottleneck-hunting (BH). Our high-level design objec-
tives can be summarized as follows:
• follow the same philosophy as gradient-descent, i.e.,

iteratively improving a solution;
• make higher-level decisions, accounting for flows and

paths instead of individual optimization variables;
• avoid making decisions that need to be undone at later

stages.
The resulting algorithm is described in Sec. 7.2 and analyzed
in Sec. 7.3. It has the same worst-case performance and
convergence properties of gradient-based alternatives but,
thanks to its awareness of problem-specific information, it
exhibits faster average-case performance.

7.2 Algorithm description
As discussed above, the BH algorithm finds a solution to
the problem specified in Sec. 6 faster than general-purpose,
gradient-descent-based alternatives. Such a faster conver-
gence is achieved by leveraging problem-specific knowl-
edge and information in order to reduce the number of
solutions to try out, hence, of algorithm iterations. Specif-
ically, Theorem 3 and Corollary 1 show that, if a solution
where all M/M/1 queues of each path have the same load

Algorithm 1 The bottleneck-hunting (BH) algorithm
1: φ← φ0

2: while true do
3: CQ ← {qi ∈ Q : ∃w1, w2 ∈ W : qi ∈ w1 ∧ qi ∈ w2 ∧

(µi − λi)−minqj 6=qi∈w1
(µj − λj) ≤ φΛκ(w2)}

4: CP← {w ∈ W : w ∩ CQ 6≡ ∅}
5: FA← {k ∈ K : ∃w ∈ W \ CP : κ(w) = k}
6: if FA ≡ ∅ then
7: FA← K
8: k? ← arg maxk∈FA δ

k(ωk)
9: w? ← arg maxw∈W : κ(w)=k? δw(ωk

?

)
10: w′ ← arg minw∈W : κ(w)=k? maxqi∈w(µi − λi)
11: if does improve(k?, w?, w′, φ) then
12: pk

?

w? ← pk
?

w? − φ
13: pk

?

w′ ← pk
?

w′ + φ
14: else
15: φ← φ

2
16: if φ < φmin then
17: return

is feasible, then the solution is optimal. It follows that, in
those cases, it is never necessary to widen the gap between
the most- and least-loaded queues of any path. We take this
as a guideline to design the BH algorithm, which iteratively
improves a current solution similarly to a gradient-based
approach, but avoiding widening the aforementioned gap
whenever possible.

With reference to Alg. 1, at every iteration, BH moves
a fraction φ of flow k?’s traffic from path w? to path w′.
The fraction φ changes across iterations, and is initialized
(Line 1) to a value φ0. Then, at every iteration, BH identifies
(Line 3) a set CQ of critical queues, that is, queues that: (i)
belong to two paths w1 and w2; (ii) are not the most loaded
queues in w1; and, (iii) increasing their load by a fraction φ
of the traffic Λκ(w2) of flow κ(w2) renders such queues the
most loaded ones in w1. It follows that the algorithm will try
to avoid routing additional traffic on critical queues in CQ if
possible. Based on CQ, a set CP of critical paths, i.e., paths
containing at least one critical queue, is identified in Line 4.

Next, BH identifies the set FA of flows that can be acted
upon. Flows using at least one non-critical path are tried
first (Line 5); if no such flow exists (Line 6), then FA is
extended to include all flows inK (Line 7). The flow k? to act
upon is chosen in Line 8: considering the min-max nature of
objective (14), k? is the flow for which the summation in
(14) is largest. For the same reason, the path w? to remove
vehicles from is chosen as the most loaded one, hence, the
one associated with the largest term in (14). Similarly, the
path w′ to add traffic to is selected (Line 10) as the least-
loaded one among those used by k?; note that this implies
choosing a non-critical path if such paths exist.

In Line 11, BH calls the function does improve, which
recomputes (14) and checks whether it improves by moving
a fraction φ of flow k?’s vehicles from path w? to path w′.
Indeed, the objective may not improve if the current value
of φ is too high, i.e., moving a fraction of traffic φ increases
the traffic intensity on w′ too much. In this case, such action
should be performed at a later iteration, when φ will be
smaller (Line 15). If the objective improves, the pkw variables
are updated accordingly (Line 12–Line 13). The algorithm
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Fig. 5. Example of the evolution of the (µi−λi) quantity in a toy scenario,
for Newton’s algorithm (left) and BH (right).

terminates when φ drops below the minimum value φmin

(Line 16).

7.3 Analysis and discussion
We now analyze two main aspects of BH: (i) its computa-
tional complexity, and (ii) its optimality in relevant practical
cases. About the former, we prove that BH exhibits a re-
markably low, namely, linear complexity.
Proposition 2. The BH algorithm has linear worst-case

computational complexity.

Proof: At every iteration, Alg. 1 identifies the most
congested path w? of the most congested flow k?, and
moves a fraction φ away from it. This happens for at
most

⌈
1
φ

⌉
≤
⌈

1
φmin

⌉
times; after that, there would be no

more traffic routed on w?.
The whole process is repeated for at most

⌈
log2

φ0

φmin

⌉
different values of φ, giving a total complexity of:⌈

log2

φ0

φmin

⌉ ⌈
1

φmin

⌉
|K||W| = O(|K||W|) .

Furthermore, if the objective function is convex (i.e., if
Theorem 2 holds), then BH is guaranteed to converge to the
optimal solution:
Proposition 3. If the objective function (14) is convex, then

the BH algorithm converges to the optimum.

Proof: To begin with, we observe that the only case in
which BH and Newton’s algorithm may behave differently
is when the test in Line 6 returns false, i.e., when there is
at least one non-critical path. In this case, BH only increases
the traffic on non-critical paths, while Newton’s algorithm
could increase the traffic of any path. Increasing the traffic of
a non-critical path is never detrimental to the objective (14),
as traffic is moved from a more-loaded path (as per Line 9)
to a less-loaded one.

Repeating such a process will eventually make the
path w′ critical; the algorithm will then move on to other
non-critical paths and flows in FA, arriving to a situation
where all paths are critical. At this point, two cases are
possible: either the current solution is optimal, and no
changes will be made until φ drops below φmin, or further
improvements are possible, in which case BH will behave
like Newton’s algorithm for the remaining iterations, and
reach the optimal solution.

The intuition behind Proposition 3 is that BH does
not waste iterations making changes that would eventu-
ally have to be reversed. Even if the worst-case complexity
proven in Proposition 2 is the same as other algorithms,

the actual number of iterations needed to converge is much
smaller (see Sec. 9.4). The difference between BH and
gradient-based algorithms is exemplified in Fig. 5, in the
case of a path with three M/M/1 queues. Both Newton’s
algorithm (left) and BH (right) converge to the same opti-
mum solution; also, in both cases the lowest (µi − λi) value
increases from one iteration to the next. However, Newton’s
algorithm could occasionally decrease the value (µi−λi) for
some of the least busy queues, and then be forced to undo
those changes. BH, instead, never does so, and converges to
the optimum faster.

Notice that, Proposition 3 is only guaranteed to hold
under the same conditions as for Theorem 2, i.e., when the
sojourn time pdfs are log-convex. However, as highlighted
by our performance evaluation in Sec. 9, BH exhibits the
same desirable behavior under a much wider range of
conditions, including those when no closed-form expression
of sojourn time distributions exists, e.g., for M/D/1 queues.

Finally, we remark that BH exhibits fundamental dif-
ferences with respect to multi-path packet routing. First,
routing protocols (including state-of-the-art QUIC imple-
mentations [50]) make their decisions based on the average
latency of each route, as opposed to the full latency distribu-
tion. Second, routing protocols look at either end-to-end or
next-hop latencies, while BH accounts for individual road
segments and how each of them contributes to the travel
times.

8 VALIDATION METHODOLOGY

To assess its performance, we integrate BH within a com-
plete validation environment, as represented in Fig. 6. Poli-
cies summarized by the pkw and µi variables are defined by
BH, which is implemented within a Python engine. Such
decisions are then relayed to the ns-3 network simulator,
which is in charge of simulating: (i) the network traffic
generated by vehicles and by the infrastructure, and (ii)
the actualizers, which, based on the most recent CAMs,
implement the edge-defined policy. Specifically, for the nav-
igation service, vehicles of flow k are randomly assigned
a path w following the pkw probabilities and are instructed
accordingly through DENMs. For the lane-change service,
within every time window (e.g., 30 seconds), the vehicles
of each flow k having more free space in the destination
lane (detected as per [6]) are instructed through DENMs to
change lane, so as to honor probabilities pkw’s. In the case of
the lane-change service, upon receiving a DENM, vehicles
engage their neighbors in a communication following the
protocol in [6], to coordinate their manoeuvres and avoid
collisions. In both the lane-change and the navigation cases,
mobility is simulated via SUMO and vehicles traversing
stretch of road i are instructed to travel at speed µi. Based
on the SUMO simulation, the position of each vehicle is then
updated within ns-3.

The mobility information is relayed between ns-3 and
SUMO through the Python engine and the TraCI Python
library. The ns-3 simulator and the Python engine interact
through the zmq message-passing framework, using the
client libraries available for both Python and C++. The
communication between SUMO and the Python engine,
instead, takes place through the TraCI protocol.



11

ns-3
network simulator

SUMO
mobility simulator

Python engine

LENA LTE
module

WAVE
model

BH imple-
mentation

traci
library

zmq
library

zmq
library

TraCI
server

Fig. 6. Our validation framework, integrating the ns-3 network simulator,
a Python engine including the BH implementation, and the SUMO
mobility simulator.

In SUMO, flows include a mixture of different vehicle
types, namely cars (SUMO class passenger, 85% of all
vehicles), trucks (class truck, 10% of vehicles), and buses
(class coach, 5% of vehicles). Their target speed, accelera-
tion, and driving aggressiveness values are left to the SUMO
default, subject to a global speed limit of 50 km/h, as it is
common in urban areas. The simulation step size of SUMO,
which also determines the frequency of position updates in
ns-3, is set to 10 ms.

In ns-3, LTE (provided by the LENA module) is used
for the communication between vehicles and infrastruc-
ture, while WAVE (in the default ns-3 distribution) is used
for V2V communication, including that required for lane
change. CAMs and DENMs are encoded as foreseen by the
ETSI 302.637 standard for ITS. Upon receiving a DENM,
vehicles take action immediately, which corresponds to the
case of autonomous vehicles. Human reaction times, usually
quantified in 1 s [41], could be easily accounted for.

9 NUMERICAL RESULTS

We now demonstrate how our system model and the BH
algorithm can be exploited, with reference to our two
applications of assisted driving, namely, lane-change and
navigation. Such applications have different time and geo-
graphical scales, thus, the fact that BH is effective in both
cases demonstrates its flexibility and generality.

Below, we first use a small-scale, yet representative,
scenario, in order to easily visualize the parameters and
variables involved in our decisions and better understand
their mutual influence (Sec. 9.1). In such a scenario, we show
the excellent performance of BH and highlight the impact
of the path probabilities pkw on the system performance.
Then we move to larger, more complex scenarios (Sec. 9.2–
Sec. 9.3). In these cases, we use BH to obtain the global
policies and, as described in Sec. 8, evaluate their effect on
the travel times in real-world, practical scenarios. Finally,
we present some results on the speed of convergence of BH
(Sec. 9.4).

Benchmark solutions. We benchmark our BH scheme
against two alternative solutions. The first is the fully-
distributed solution where vehicles only communicate with
neighboring vehicles (as per [6]), exploiting only local in-
formation to make lane-change decisions. More specifically,
vehicles change lane if there are fewer neighbors (detected
through CAMs) than in the current one. The second is a
centralized solution based on the matching between flows
and paths [51]. Such a solution runs the matching algorithm
in [52] on a bipartite graph where:
• vertices represent the paths and flows;
• edges connect each flow with the paths it can take;
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Fig. 7. Small-scale scenario for lane change: value of the objective (14)
as a function of p2late, when road segments are modeled as M/M/1
(purple) or M/D/1 (gray) queues.

• conflict edges [52] join the paths sharing one or more
queues.

The algorithm in [52] yields a near-optimal solution, match-
ing each flow with the paths resulting in the shortest travel
time, and accounting for the fact that paths may share one
or more queues, thereby leading to higher congestion.

9.1 Lane-change, small-scale scenario

We begin by considering a lane-change service in the small-
scale scenario described in Fig. 1 and modeled in Fig. 3.
Therein, there are two incoming flows, namely, flows 1
and 2: the former is associated with one path only, the
latter with two paths. These two paths are called early
and late, referring to the fact that vehicles turn north
(respectively) after the first road segment (i.e., q2), or after
the second one (i.e., q4). We set the normalized1 incoming
rate to Λk = 1 for both flows, and the maximum normalized
service rate to µmax

i = 3 for all road segments, except for q4

that, owing to the fact that vehicles therein need to slow
down, has a maximum normalized service rate µmax

4 = 1.5.
Also, we set ωk to 5 time units for both flows. In such a
scenario, the best values of µi coincide with µmax

i for all
road segments, thus the decisions to make are summarized
by the variable p2

late (indeed, flow 1 only has one path and
p2

early = 1− p2
late).

The first, high-level question we seek to answer concerns
the relationship between the variable p2

late and the value of
the objective function (14). Fig. 7 shows that it is advan-
tageous to split the vehicles of flow 2 more or less evenly
between its two possible paths.

The third prominent message conveyed by Fig. 7 is about
the flexibility of our approach: the purple curve is obtained
by modeling road segments as M/M/1 queues, thus using
the closed-form expressions derived in Sec. 5.1, while the
gray curve is obtained by using M/D/1 queues. Since there
is no closed-form expression of the sojourn time distribution in
M/D/1 queues, we implemented the approximate formula
presented in [53], and solved numerically integrals and
convolutions. In spite of the very significant differences with
respect to the M/M/1 case, our approach and BH work
with no changes in both cases: our solution strategy does
not depend on any specific service time distribution, and

1. Rates are normalized to the arrival rate of flow 1.
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Fig. 8. Small-scale scenario, lane-change, M/D/1 queues: CDF of the per-path travel time when p2late = 0.1 (left), p2late takes its optimal value, as
identified by both brute force and BH (center), and p2late = 0.9 (right).
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Fig. 9. Medium-scale scenario for lane change: real-world topology (top)
and queue representation (bottom).

does not require such a distribution to have a closed-form
expression.

Still for the M/D/1 case, Fig. 8 shows the distribution
of the per-path travel times, along with a graphical inter-
pretation of the ωk, δw(ωk), and δk(ωk) quantities. Each
curve corresponds to a path, and its color represents the
flow each path belongs to (namely, blue: flow 1, red: flow
2). Firstly, we observe that, as the intuition would suggest, a
higher value of p2

late, i.e., sending more vehicles to path late
of flow 2, results in longer travel times for that path, and
shorter ones for path early. Secondly, the black vertical line
in all plots corresponds to the value of the target travel time
ωk; ideally, one would like all CDFs to be at the left of such
a line. The intersections between the CDFs and the vertical
line represent the probability that vehicles belonging to a
flow take a path whose travel time does not exceed ωk, i.e.,
(1−δw(ωk)). Instead, the circles noted on the plots represent
the flow-wise performance δk(ωk): as specified in (8), such a
quantity is defined as a weighted sum of the δw(ωk) values,
thus, δ2(ω2) is close to δearly(ω2) when most vehicles take
path early (left plot), and close to δlate(ω

2) in the opposite
case (right plot).

The lowest circle, and the numerical values reported in
the plots, correspond to the largest value of δk(ωk), i.e., the
value of the objective function in (14): intuitively, reducing
the value of the objective function in (14) corresponds to
pushing up such a circle as high as possible. Note that the
flow with the highest δk(ωk) changes for different values

of p2
late: it is flow 1 in the left plot, and flow 2 in the right

one. In the center plot, corresponding to the best solution
as identified by both brute force and BH, all paths exhibit
roughly the same travel time distribution. This is consistent
with the intuition we gather from Theorem 3 and leverage
on the design of the BH algorithm: similar path travel times
result in better performance. Importantly, the hypothesis of
Theorem 3 does not hold in this scenario – and, indeed,
path travel times are not exactly the same – nonetheless, the
intuition we gather from it is sill valid.

9.2 Lane-change, medium-scale scenario
We now move to a medium-scale, lane-change scenario,
with three vehicular flows, numbered from 1 to 3, traveling
across a three-lane road, as depicted in Fig. 9. Traffic flows
originate at the beginning of one of the three lanes and can
terminate at the end of any lane, not necessarily the one they
started at. Since, in our model, flows must have a unique
destination, we introduce a further, fictitious queue qΩ, and
make all flows terminate there, as depicted in Fig. 9(bottom).
While all other queues are modelled as M/M/1, qΩ is an
M/D/∞ queue where the sojourn time coincides with the
deterministic service time and can easily be discounted from
the per-path and per-flow travel times.

In this scenario, we consider the lane-change service
and translate the BH policies into instructions to vehicles,
following the methodology described in Sec. 8. Note that
the challenge here is not due to an obstacle on the road
(which is not present any longer), but to the significant
difference among the incoming flows, namely, Λ1 = 10,
Λ2 = 1, Λ3 = 5. The maximum service rate of all queues
is µmax = 15, while the target travel time is set to ωk = 1 for
all flows. Note that rate values are normalized to Λ2, while
time values are normalized to 1/Λ2.

Fig. 10(left) presents the CDF of the vehicle travel time
for each flow when decisions are made by BH (solid lines),
or by the distributed decision scheme [6] (dotted lines),
or the bipartite-matching strategy. BH yields much shorter
travel times; furthermore, the difference between the flows,
which is evident when decisions are made in a distributed
manner, almost disappears. The bipartite-matching strategy
yields better performance than the distributed one – which,
intuitively, is due to the fact that such a strategy uses global
information. However, it is unable to match BH due to its
inability to break flows across multiple paths, like BH does.

An explanation of the difference between BH and the
distributed solution is presented in Fig. 10(center). Each
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Fig. 11. Large-scale scenario for navigation: the real-world topology we
consider, along with the origin (squares) and destinations (circles) of the
flows.

marker in the plot corresponds to one of the |W| = 35 ex-
isting paths, and its position along the x- and y-axes is
given, respectively, by the average travel time over the path
and the number of vehicles using it; crosses correspond
to distributed decisions, circles to BH. We can observe
that, when decisions are made in a distributed fashion, the
usage and path travel time change considerably, and the
corresponding markers are spread throughout the plot. On
the contrary, with BH, the paths have travel times that are
not only shorter, but also very similar to each other – hence,
the corresponding markers are clustered together, and often
overlapping. This is a consequence of how BH chooses the
flows and paths to act upon (Line 8 and Line 9 in Alg. 1),
which in turn reflects the min-max nature of objective (14):
traffic is always moved from more-crowded paths to less-
crowded ones.

Fig. 10(right) summarizes how each queue is used by
every flow. By comparing hatched bars (distributed deci-
sions) to solid bars (BH), we observe how BH moves a more
significant fraction of flow 1’s traffic away from the north-
ernmost lane towards the center (and, also, southern) ones.
Counterintuitively enough, the traffic of flow 3 is scarcely
moved to the center lane (see q2x), which is taken by vehicles
of flow 1; rather, a significant portion of flow 2 is moved to

the southern lane to make room for flow 1 in the center lane.
Such behaviors are unlikely to emerge as a combination of
distributed decisions; instead, our comprehensive approach
and the BH algorithm are able to identify and enforce them.

Fig. 10(right) also explains why, when distributed de-
cisions are made, the travel times of the lower-rate traffic
flows (2 and 3) are quite long and similar to those of flow 1
(see Fig. 10(left)). The reason is that such flows are routed
through the center lane, which is also used by vehicles of
flow 1, thereby increasing the congestion and travel times
of all flows. It also explains how it is possible for BH to
reduce the travel times for all flows, contrary to the intuition
that removing congestion from one flow unavoidably means
increasing it for some other. This is connected with the well-
known notion that, in queuing systems, the total traffic is
conserved but the sum of sojourn times is not, since sojourn
times increase much faster than linearly (hyperbolically, in
M/M/1 queues) with queue utilization.

9.3 Navigation service, large-scale scenario

Here we still evaluate the BH performance under practical
conditions, but we move to a large-scale scenario where
a total of |K| = 5 flows travel across a road topology
including |Q| = 49 road segments modelled as M/M/1
queues, yielding |W| = 15 paths. Both the road topology
and the intensity of traffic flows are extrapolated from the
real-world mobility trace in [54] (see Fig. 11), obtaining
a many-to-many-to-many correspondence between flows,
paths and queues.

In such a scenario, we provide a navigation service,
aiming at guiding all vehicles from the origin of their trip to
their destination, within their target time ωk. In particular,
we set the following normalized ωk-values: ω1 = 2, ω2 = 4,
ω3 = 6, ω4 = 2, ω5 = 4. The source and destination
of flows, as well as their intensity (i.e., the number of
vehicles belonging to each of them) come from the real-
world trace [54]. Notice how flows are fairly diverse in
length and parts of the city to traverse: some, like flow 1
and flow 4, only concern suburban areas of the city; others,
like flow 3, need to cross the city center. Similarly, some
flows (e.g., flow 1 and flow 2) are more likely than others to
use the same road segments.

Fig. 12(left) summarizes the CDF of the travel times
for each flow: solid lines correspond to decisions made
with BH, while dashed lines correspond to distributed
decisions made by vehicles based on shortest-path routing.
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Interestingly, decisions made by BH result in substantially
shorter travel times for the busiest flows, namely, flow 3
(yellow lines), flow 5 (gray lines), and flow 2 (red lines).
Flow 1 (blue lines) is virtually unchanged, while the least
congested flow, flow 4 (green lines), experiences slightly
longer travel times. As discussed earlier, BH reduces the
travel times of congested flows, without increasing – or, as
in this case, increasing to a very limited extent – the others.
The matching-based solution yields trip time similar to BH
(as both solutions employ global information) but slightly
longer (as BH is able to accurately split flows across paths).

Fig. 12(center) provides more details on how such an
improvement is achieved. The performance of flows 3 and
5 is improved mostly by avoiding the most crowded paths
(rightmost yellow markers), and routing instead more vehi-
cles on less-crowded ones (leftmost markers). This comes at
the cost of increasing the load on some of the queues shared
with flow 4 (green markers): the circle representing its only
path is indeed further right than the corresponding cross.
The markers of flow 1 overlap, which is consistent with the
fact that, as shown in Fig. 12(left), the flow performance
does not change.

Fig. 12(right) focuses on the busiest flow (flow 3), and the
queues serving the highest number of vehicles thereof. For
each queue, yellow bars represent the number of vehicles of
flow 3 traversing it, and black ones the number of vehicles
of all other flows. From the figure, it is possible to observe
two of the main ways in which BH improves flow 3’s
performance. The first is clearly exemplified by queue q64:
if a queue is heavily used by flow 3, then vehicles of other
flows are directed elsewhere, thereby lowering the travel
times. In other words, BH improves the travel time of the
less fortunate flows (as per (14)), by preventing multiple
flows from crowding the same road segments.

The second can be observed in queues q10 and q01: as
far as possible, BH ensures that all queues have the same
load. This is again consistent with the insight provided by
Theorem 3, that similar loads are associated with shorter
travel times.

Summary. As reported in Tab. 1 and Tab. 2, the BH
algorithm can consistently outperform its alternatives, in
terms of vehicle trip times and queue occupancy. As shown
in Tab. 1, the average trip time drops by 66% in the lane-
changing application (medium scenario), and by 20% in the
navigation one (large scenario).

This highlights the validity of the BH approach, which
can split flow across paths (unlike the bipartite-matching

one), while at the same time accounting for global informa-
tion and the potentially far-reaching consequences of local
decisions (unlike the distributed approach).

9.4 Convergence speed
Last, we focus on the convergence of BH and compare it
against the iterative algorithm BFGS [48], as implemented in
the scipy library. Tab. 3 reports the convergence speed (ex-
pressed in number of objective function evaluations) of the
two algorithms. BH consistently requires fewer iterations
than BFGS to converge, which confirms our intuition that
leveraging problem-specific knowledge and insights results
in faster convergence. It is also interesting to notice how
convergence in the medium-scale scenario takes longer than
in the large-scale one, owing to the higher number of paths
(hence, of decisions to make) therein.

TABLE 1
Average trip time (across all vehicles) in the medium and large

scenarios, in time units

Scenario BH bipartite distributed
Medium 4.01 4.71 11.9
Large 30.1 34.3 37.6

TABLE 2
Average number of vehicles at each queue in the medium and large

scenarios

Scenario BH bipartite distributed
Medium 0.42 0.51 1.27
Large 0.37 0.42 0.45

10 CONCLUSIONS

We addressed the problem of providing connected vehicles
and their drivers with effective assistance services. We pro-
posed an edge-based system including two logical entities,

TABLE 3
Convergence speed of BH and BFGS

Metric Scenario BH BFGS
Convergence speed
[no. of objective
evaluations]

Small 210 613
Medium 843 1039
Large 512 797
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namely, policy maker and actualizer. The former leverages
global information, in order to make effective vehicle flow
policies, while the latter translates such policies into instruc-
tions that the single vehicles should enact in the short time
span. We modeled the system under study by leveraging
a queue-based representation of the road topology and
vehicles’ behavior, which allows for formulating an opti-
mization problem that minimizes the vehicles’ travel time.
Then, motivated by the problem complexity and the need to
address large-scale scenarios, we presented a swift iterative
algorithm providing optimal policies in linear time. We
assessed the performance of the proposed approach through
a full-fledged, realistic simulation framework, showing the
benefits of our solution in terms of vehicles’ travel times
with respect to traditional distributed approaches.
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ramp merging system for congested traffic situations,” IEEE Trans.
on ITS, 2010.

[34] T. Abbas, L. Bernado, A. Thiel, C. Mecklenbrauker, and F. Tufves-
son, “Radio channel properties for vehicular communication:
Merging lanes versus urban intersections,” IEEE Veh. Tech. Mag.,
2013.

[35] A. T. Hojati, L. Ferreira, S. Washington, and P. Charles, “Hazard
based models for freeway traffic incident duration,” Accident Anal-
ysis & Prevention, 2013.

[36] M. Baykal-Gürsoy, W. Xiao, and K. Ozbay, “Modeling traffic flow
interrupted by incidents,” European Journal of Operational Research,
2009.

[37] Z. Duan, “Emergency modeling in transportation via queuing and
game theory,” Ph.D. dissertation, Rutgers University-Graduate
School-New Brunswick, 2013.

[38] L. Bi, C. Wang, X. Yang, M. Wang, and Y. Liu, “Detecting driver
normal and emergency lane-changing intentions with queuing
network-based driver models,” International Journal of Human-
Computer Interaction, 2015.

[39] S. Lee, M. Younis, A. Murali, and M. Lee, “Dynamic local vehicular
flow optimization using real-time traffic conditions at multiple
road intersections,” IEEE Access, 2019.

[40] M. Azizian, S. Cherkaoui, and A. Hafid, “An optimized flow
allocation in vehicular cloud,” IEEE Access, 2016.

[41] M. Malinverno, G. Avino, C. Casetti, C. F. Chiasserini, F. Ma-
landrino, and S. Scarpina, “Edge-based collision avoidance for
vehicles and vulnerable users: an architecture based on MEC,”
IEEE Vehicular Technology Magazine, 2020.

[42] H. Zhu, R. Lu, X. Shen, and X. Lin, “Security in service-oriented
vehicular networks,” IEEE Wireless Communications, 2009.

[43] E. G. Coffman, Jr., R. R. Muntz, and H. Trotter, “Waiting time
distributions for processor-sharing systems,” Journal of the ACM,
1970.

[44] H. Kung and D. Tong, “Fast algorithms for partial fraction decom-
position,” SIAM Journal on Computing, 1977.

[45] J. Medhi, Stochastic models in queueing theory. Elsevier, 2002.
[46] H. Tuy, “Monotonic optimization: Problems and solution ap-

proaches,” SIAM Journal on Optimization, 2000.
[47] J. F. C. Kingman, “A convexity property of positive matrices,” The

Quarterly Journal of Mathematics, 1961.



16

[48] R. Fletcher, “A new approach to variable metric algorithms,”
Computer Journal, 1970.

[49] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks:
Tricks of the trade. Springer, 2012.

[50] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design and
evaluation,” in ACM CoNEXT, 2017.

[51] A. A. Bertossi, P. Carraresi, and G. Gallo, “On some matching
problems arising in vehicle scheduling models,” Wiley Networks,
1987.

[52] C. Chen, L. Zheng, V. Srinivasan, A. Thomo, K. Wu, and A. Sukow,
“Conflict-aware weighted bipartite b-matching and its application
to e-commerce,” IEEE Transactions on Knowledge and Data Engineer-
ing, 2016.

[53] V. Iversen and L. Staalhagen, “Waiting time distribution in M/D/1
queueing systems,” IEEE Electronics Letters, 2000.

[54] C. Sommer, D. Eckhoff, and F. Dressler, “IVC in cities: signal
attenuation by buildings and how parked cars can improve the
situation,” IEEE Trans. on Mobile Computing, 2014.


