
08 November 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automated assessment of glomerulosclerosis and tubular atrophy using deep learning / Salvi, Massimo; Mogetta,
Alessandro; Gambella, Alessandro; Molinaro, Luca; Barreca, Antonella; Papotti, Mauro; Molinari, Filippo. - In:
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS. - ISSN 0895-6111. - 90:(2021), p. 101930.
[10.1016/j.compmedimag.2021.101930]

Original

Automated assessment of glomerulosclerosis and tubular atrophy using deep learning

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.compmedimag.2021.101930

Terms of use:
openAccess

Publisher copyright

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.compmedimag.2021.101930

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2898590 since: 2021-05-07T10:31:19Z

Elsevier



1 

Automated assessment of glomerulosclerosis and 

tubular atrophy using deep learning 

 

Massimo Salvi1, Alessandro Mogetta1, Alessandro Gambella2, Luca Molinaro3, Antonella 

Barreca3, Mauro Papotti4, and Filippo Molinari1 

 

1 Politecnico di Torino, PoliToBIOMed Lab, Biolab, Department of Electronics and Telecommunications, 

Corso Duca degli Abruzzi 24, Turin, Italy, 10129 

2 Pathology Unit, Department of Medical Sciences, University of Turin, Via Santena 7, Turin, Italy, 10126 

3 A.O.U. Città della Salute e della Scienza Hospital, Division of Pathology, Corso Bramante 88, Turin, 

Italy, 10126 
 

4 University of Turin, Division of Pathology, Department of Oncology, Via Santena 7, Turin, Italy, 10126 

 

 

 

 

 

 

CORRESPONDENCE TO: 

Ing. Massimo Salvi, PhD 

Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy 

Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY 

Phone: +39 011 090 4207 

Fax: +39 011 090 4217 

E-mail: massimo.salvi@polito.it 

 

 

CONFLICTS OF INTEREST 

The authors declare no conflict of interest. 

 



2 

ABSTRACT 

In kidney transplantations, pathologists evaluate the architecture of both glomeruli, interstitium 

and tubules to assess the nephron status. An accurate assessment of glomerulosclerosis and tubular 

atrophy is crucial for determining kidney acceptance, which is currently based on the pathologists’ 

histological evaluations on renal biopsies in addition to clinical data.  

In this work, we present an automated algorithm, called RENTAG (Robust EvaluatioN of 

Tubular Atrophy & Glomerulosclerosis), for the segmentation and classification of glomerular and 

tubular structures in histopathological images. The proposed novel strategy combines the accuracy 

of a level-set with the semantic segmentation of convolutional neural networks to detect the 

glomeruli and tubules contours. In the TEST set, our method exhibited excellent performance in 

both glomeruli (dice score: 0.9529) and tubule (dice score: 0.9174) detection and outperformed all 

the compared methods. 

To the best of our knowledge, the RENTAG algorithm is the first fully automated method 

capable of quantifying glomerulosclerosis and tubular atrophy in digital histological images. The 

developed software can be employed for the analysis of pre-transplantation biopsies to support the 

pathologists' diagnostic activity. 

 

Keywords: glomeruli segmentation; tubular atrophy; digital pathology; kidney histology; deep 

learning. 
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1. INTRODUCTION 

Kidney transplantation proved to be the best treatment for patients with chronic end-stage renal 

diseases, showing a lower long-term mortality rate than dialysis. However, several factors – 

including the shortage of organ donors, and the increasing requests, especially of high-risk 

recipients - have increased the need for adequate stratifying criteria of recipients (Wolfe et al., 

1999). In this critical setting, starting from the early 2000s, the United Network for Organ Sharing 

(UNOS) implemented the number of donor's kidneys with extended criteria donors (ECDs) (Port 

et al., 2002), (Metzger et al., 2003). ECDs represent sub-optimal cadaveric donors with reduced 

functionality compared to standard criteria donors (SCDs) (Remuzzi and Perico, 1998), but they 

are still eligible for organ donation in a carefully selected cohort of patients. ECDs hold 

approximately 1/3 of the nephrons of an SCDs and therefore are more prone to present post-

transplant functional issues (Rosengard et al., 2002). Then, it is crucial to establish whatever ECDs 

can support the long-term recipient's metabolic demands. To this purpose, a preimplantation 

biopsy is compelling to establish the nephron deterioration and the overall residual functionality 

and decide if the marginal kidneys are suitable for transplantation and eventually if a dual renal 

transplant is required (Mazzucco et al., 2010), (Hassan and Halawa, 2015).  

Biopsies are analyzed in the Pathology laboratory, where several procedures for biopsy 

preparation (e.g., frozen section, Serra fixation) and staining (e.g., trichrome, hematoxylin and 

eosin, PAS) are available, based on laboratory experience. One of the most widespread and useful 

staining for nephron evaluation is the PAS (i.e., Periodic Acid- Schiff reactive) because it 

highlights the polysaccharides and the glomerular basement membranes. 

The pathologist analysis assessed the nephron status using a damage grading system of several 

functional structures. To standardize this evaluation, a specific score system, called "Karpinski 

score", has been proposed by an international group of pathologists (Karpinski et al., 1999). The 

score evaluates histologic injuries of crucial structure for kidney function in a two-step procedure. 

First, the pathologist assesses the percentages of sclerotic glomeruli, the tubular atrophy, the 

interstitial fibrosis, and the arterial and arteriolar narrowing. Then, each variable’s evaluation is 

summarized the evaluation in a four-grade score, ranging from grade 0 (the absence of injury) to 

grade 3 (marked injuries). Thanks to this score, pathologists provide an easy and readable picture 

of kidney functionality, allowing the multidisciplinary transplant team to define the best 
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management for these kidneys. Indeed, based on Karpinski scores, the equip decides if the kidneys 

are functionally adequate for a single transplant procedure, or if a double-transplant is required. 

This paper is focused on the automated detection and classification of the glomerular and 

tubular structures and injuries within the renal tissue. Glomeruli are composed of networks of 

capillaries to filter waste substances from the bloodstream. Then, renal tubules reabsorbed water 

and the useful molecules accidentally filtered by glomeruli and convey and expel the wasted ones 

through urine. Glomerulosclerosis is referred to as nonspecific histological damage partially or 

entirely affecting the glomerulus, resulting in its very last form in the glomeruli capillary collapse 

(Jefferson and Shankland, 2014). To quantify glomerulosclerosis, pathologists assessed the 

percentage of sclerotic glomeruli among all the glomerular structures identified in each renal 

biopsy (Bueno et al., 2020). Regarding tubules, their pattern of injury is called tubular atrophy, 

and consist of the thickening of their walls and the reduction of their lumens. Tubular atrophy is a 

threatening condition that can lead to tissue necrosis and is evaluated by pathologists defining the 

percentage of atrophic tubules compared to all the tubules within the biopsy.  

Because of the large number of structures to be manually detected, counted, and analyzed, 

kidney biopsies evaluations are generally time-consuming for pathologists, with a potential but 

relevant intra- and inter-observer variability (Bukowy et al., 2018). 

Current research is focused on developing fully automated methods for quantitative 

histological analysis to create accurate tools with high reproducibility (Janowczyk and 

Madabhushi, 2016), (Salvi et al., 2020a), (Sharma et al., 2017). These approaches can provide a 

precise measure for analysis and reduce inter- and intra-observer variability in the measurement 

of cellular structures, increasing the reproducibility of the results (Litjens et al., 2016), (Belhomme 

et al., 2015), (Jha and Dutta, 2019). Automated glomerular detection is crucial in developing rapid 

and robust diagnostic tools to quantify glomerulosclerosis in whole-slide images (WSI) 

(Gadermayr et al., 2019). Segmentation and classification of glomerular structures is a demanding 

task and presents three main difficulties. Firstly, glomeruli show variable shapes, dimensions, and 

internal architecture, especially in pathological conditions, which makes their full detection 

challenging within a WSI.  Secondly, WSI's large size requires an efficient and rapid method to 

detect all the glomerular structures inside the image. Finally, since multiple microscope slides may 

present differences in staining of the renal tissue, the algorithm of glomerular segmentation and 

classification should be robust against staining variations of the WSIs. 
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Similarly, tubules segmentation is a challenging task because of tubules variability in shape, 

dimension, and orientation. Normal and abnormal renal tubules are very close to each other, and 

the main difference between healthy and pathological structures is the increased thickness of the 

basal membrane and the shrinkage of the epithelial layer. Furthermore, a WSI may contain a 

considerable number of tubules, and the correct detection of all these structures is essential for a 

quantitative assessment of the degree of tubular atrophy.  

In this paper, a novel method for the assessment of glomerulosclerosis and tubular atrophy is 

presented. This proposed algorithm combines deep learning with cellular structures detection to 

obtain an accurate segmentation and injuries classification of kidney glomeruli and tubules. Our 

approach is able to accurately detect the contours of kidney structures even in the presence of 

severe atrophy. Our algorithm is validated on 830 PAS stained images and outperforms all the 

state-of-art methods (Gallego et al., 2018), (Kannan et al., 2019), (Kawazoe et al., 2018), (Bueno 

et al., 2020), (Altini et al., 2020). Implementing this algorithm in pathology departments' daily 

clinical practice could represent a breakthrough in pre-transplant kidney assessment. The 

algorithm will standardize the Karpinski score evaluation, improving and accelerating its 

assessment to develop overall clinical management of patients awaiting a kidney transplant. 

Furthermore, the algorithm could also assist pathologists with little experience approaching this 

field. The rest of the manuscript is organized as follows: Section 2 presents an overview of the 

current approach for glomeruli segmentation and classification; Section 3 provides an exhaustive 

description of the proposed algorithm; Section 4 and 5 report and discuss the experimental results. 

2. RELATED WORKS 

Recently, several automated methods were proposed for quantitative assessment of kidney 

histological slides (Gallego et al., 2018), (Kawazoe et al., 2018), (Kannan et al., 2019), (Bueno et 

al., 2020), (Altini et al., 2020). Different approaches have been used to detect glomerular structures 

automatically, but there is still a lack of studies about the detection of tubular structures. Existing 

evidence suggests using Machine Learning for glomeruli detection, classification, or segmentation 

and specifically “deep learning” algorithms such as Convolutional Neural Networks (CNNs).  

Gallego et al. (Gallego et al., 2018) employed a pre-trained AlexNet to detect normal and 

sclerotic glomeruli. The network was trained using cropped images containing Glomerulus and 

Non-glomerulus regions as inputs, and corresponding labels as outputs. Glomeruli detection and 
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classification are then obtained, passing a sliding window operator over WSIs and applying the 

CNN prediction to the image block under analysis. Although this approach allows a correct 

detection of the glomerular regions, it is computational time consuming and provides a suboptimal 

classification result which can lead to an incorrect evaluation of the degree of glomerulosclerosis. 

Kannan et al. (Kannan et al., 2019) implemented an Inception architecture trained on patches 

extracted from trichrome stained images and labeled into three categories (no glomerulus, healthy 

glomerulus, and sclerotic glomerulus). By applying the CNN across an entire image, a heatmap 

was generated that indicated the probability of each pixel being a glomerulus (probability map). 

Then, a threshold was applied to the heatmap to detect healthy and sclerotic glomeruli. Being a 

patch-based classification approach, this method is time-consuming, and it also provides sub-

optimal segmentation results. 

Kawazoe at al. (Kawazoe et al., 2018) proposed a different approach based on the use of Faster 

R-CNN for glomeruli detection in WSI. This method took a cropped image obtained from a WSI 

using a sliding window and localized each glomerulus by drawing the corresponding bounding 

box. This approach was able to detect both healthy and sclerotic glomeruli but, being based on an 

object detector tool, it provided an over-segmentation of the glomeruli, which may cause incorrect 

detection of structures close to each other. Bueno et al. (Bueno et al., 2020) proposed a semantic 

segmentation of glomerular structures using an encoder-decoder network based on the VGG16 

model. Pixel level segmentation is performed considering a two-class problem (non-glomerular 

vs. glomerular structures), and the segmentation results are then classified by an AlexNet to divide 

the glomeruli into normal and sclerotic. Using a two-step approach (segmentation followed by 

classification), all the errors of the segmentation network directly affect the classification one, 

which may cause the propagation of the misclassification error. Finally, Altini et al. (Altini et al., 

2020) proposed an approach based on DeepLab semantic segmentation network to obtain a pixel-

wise classification of healthy and sclerotic glomeruli. The network was trained giving as input the 

image and the corresponding encoded mask labeled into 3 classes (healthy glomeruli, sclerotic 

glomeruli, background). The segmentation outputs were then post-processed using morphological 

operators followed by clustering to divide touching objects. This strategy provides a correct 

segmentation of healthy glomerular structures while the global performance deteriorates during 

the detection of sclerotic glomeruli (where the segmentation task is more challenging). To the best 
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of our knowledge, no automated solution was proposed so far for quantifying tubular atrophy in 

renal histological images.   

3. MATERIALS AND METHODS 

In this paper, an automated method called RENTAG (Robust EvaluatioN of Tubular Atrophy 

& Glomerulosclerosis) is presented. The RENTAG algorithm is a deep learning-based method for 

the segmentation and classification of glomeruli and tubule in PAS stained images. The flowchart 

of the proposed method is shown in Figure 1. The algorithm consists of three modules: PAS 

normalization, glomerulosclerosis assessment, and tubular atrophy quantification. In the following 

sections, a detailed description of the algorithm is provided. 

 

Figure 1. Flowchart of the RENTAG algorithm for glomeruli & tubule segmentation and classification. Starting from 

the RGB image, a PAS normalization method is employed. Glomeruli are detected using a deep-learning network and 

ad-hoc post-processing. Kidney tubules are segmented and classified using two different deep networks (TSC and 

TCC). 

3.1 Human kidney histology 

The WSIs of kidney biopsy specimens of 83 patients (median age 67 years, range 38-89 years) 

were used for this work. In particular, 61 WSIs were used for glomerulosclerosis assessment while 

22 WSIs were employed for tubular atrophy quantification. According to the Pathology Laboratory 
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Protocol for kidney transplant biopsies, the tissues were collected by core needle biopsy, Serra-

fixed, rapidly processed using the microwave-enhanced routinely tissue processor or the dedicated 

microwave tissue processor LOGOS J (Milestone, Bergamo, Italy), and paraffin-embedded, 

serially sectioned to 5 μm, mounted onto adhesive slides, and stained with PAS. All biopsy samples 

were collected at the Division of Pathology, AOU Città della Salute e della Scienza Hospital, 

Turin, Italy and were anonymized by a pathology staff member not involved in the study, before 

any further analysis was started. Digital images were obtained with a Hamamatsu NanoZoomer 

S210 Digital slide scanner providing a magnification of x100 (conversion factor: 0.934 μm/pixel). 

Ten images with a fixed dimension of 512x512 pixels were extracted from each patient (n=83), 

for a total of 830 images. After consensus, manual annotations of glomeruli and tubule contours 

were generated by two of us (LM and AG), for a total of 11673 shapes. Table 1 shows the overall 

dataset composition. 

Table 1 Dataset composition. 

Dataset Subset #Patients #Images 
#Annotated 

shapes 

Glomeruli  
TRAIN 50 500 473 

TEST 11 110 114 

Tubule 
TRAIN 20 200 10218 

TEST 2 20 868 

 

3.2 PAS normalization 

The first preprocessing step of the proposed pipeline is PAS normalization. Starting from the 

original RGB image of the specimen, the RENTAG algorithm performs the same stain 

normalization method that we developed in our previous work (Salvi et al., 2020b). Our color 

normalization strategy is based on stain separation. The contribution of the individual dye is 

isolated to alter the original image according to the color distribution of the reference image. As a 

result, all normalized images have their intensity distribution mapped to match the color 

distribution of the reference image (Figure 2). PAS normalization is a crucial step as the 

appearance of histological stains often suffers from large variability due to the chemical reaction 

of the dye used during staining and the operator's ability. In this context, the standardization of the 

color appearance plays a crucial role in the development of deep learning solutions for quantitative 

analysis of histopathological images (Chen et al., 2020), (Salvi et al., 2020a), (Anghel et al., 2019).  
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Figure 2. Stain normalization process of the proposed algorithm. (a) original source image, (b) reference image, (c) 

normalized source image. 

 

3.3 Glomerulosclerosis assessment  

3.3.1 CNN semantic segmentation  

A deep CNN is employed to detect all the glomerular structures using Keras framework. In 

particular, a UNET network’s architecture with ResNet34 backbone is adopted to perform 

semantic segmentation (Figure 3). This network is composed of an encoder and a decoder 

structure. The encoder network, based on the ResNet34 architecture, downsamples the spatial 

resolution of the input image to obtain a low-resolution feature mapping. The decoder network is 

obtained by mirroring the encoding part using transposed convolutions. The aim is to semantically 

project the discriminating characteristics (lower resolution) learned by the encoder on the pixel 

space (higher resolution) to obtain a dense classification (He et al., 2016). This results in a full-

resolution segmentation map where each pixel is labeled in the most likely class using a softmax 

layer.  

Our deep convolutional network is based on residual blocks, which consists of a sequence of 

layers with skip connections between input and output of each block (He et al., 2016). The input 

layer is changed to fit the size of the input images (512x512x3). Each block of the encoding stage 

is composed of a Convolutional layer and a Batch Normalization layer. The decoding stage is 

obtained through a transposed convolution followed by a Convolution layer and a Batch 

Normalization layer. At the end of each stage, we used the Rectified Linear Activation Function 

(ReLU) between the input and the output.  
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Figure 3. Architecture of the deep network employed to perform glomeruli segmentation. A UNET with ResNet34 

backbone was implemented using Keras framework. 

 

The entire network is trained on a three-class problem, giving the 512x512 RGB images as 

input and the corresponding labeled mask as the target. To detect glomerular structures, pixels in 

the image are labeled into three different classes depending on whether they belong to healthy 

glomeruli, sclerotic glomeruli or other parts of the tissue. To solve the problem of class imbalance, 

our network’s loss function is class-weighted by taking into account how frequently a class occurs 

in the training set. This means that the least represented classes (healthy and sclerotic glomeruli) 

will have a greater contribution than the more represented one (background) during the weight 

update. The class weight is calculated as follows: 

𝑓𝑐𝑙𝑎𝑠𝑠𝑋 =
1

𝑁
 ∑

𝑝𝑖𝑥𝑒𝑙𝑐𝑙𝑎𝑠𝑠𝑋

𝑎𝑟𝑒𝑎(𝐼)

𝑁

𝑖=1

            𝑋 =  1,2,3 (1) 

 

𝑐𝑙𝑎𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑋 =  
𝑚𝑒𝑑𝑖𝑎𝑛(𝑓𝑐𝑙𝑎𝑠𝑠1, 𝑓𝑐𝑙𝑎𝑠𝑠2, 𝑓𝑐𝑙𝑎𝑠𝑠3)

𝑓𝑐𝑙𝑎𝑠𝑠𝑋
 (2) 

where I represents the current image, N is the total number of images, and 𝑓𝑐𝑙𝑎𝑠𝑠𝑋 is the class 

frequency of the generic class X. 

The encoding part of our network is pre-trained on the 2012 ILSVRC imageNet Dataset 

(Krizhevsky et al., 2012). During the training process, only the decoder weights are updated, while 

the encoder weights are set to non-trainable. This strategy allows transferring the knowledge 

acquired from a previous task (ImageNet) to solve a new problem (glomeruli segmentation). This 

approach is useful both to overcome the problem of small datasets and to reduce the training time. 
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Moreover, since histopathological images do not have a canonical orientation, on-the-fly data 

augmentation (flipping, rotating, scaling) is applied to increase the robustness of our network and 

avoid overfitting (Tellez et al., 2019), (Yan et al., 2020). During deep network training, 10% of 

the training images were selected as the validation set. The UNET is trained with a mini-batch size 

of 32 and an initial learning rate of 10-3. Categorical cross-entropy and the Adam optimizer are 

employed as a loss and optimization function, respectively. Finally, the maximum number of 

epochs is set to 30, with a validation patience of 10 epochs for early stopping of the training 

process. The total training time was 14 hours on a dedicated workstation equipped with a GeForce 

1080Ti, 64 GB of RAM, and a 3.8 GHz ten-core CPU. 

In order to retain the boundary information during the test phase, we synthesize a mirror border 

of 256 pixels in each direction as shown in Figure 4. The resulting image, called extended image, 

has a dimension of 1024x1024 pixels. A sliding window operator with a size of 512x512 is then 

passed over the extended image with an overlap of 50% (256 pixels) between consecutive 

windows. The deep network is applied to each 512x512 window, and only the center of each 

prediction is kept for the creation of the initial softmax. This operation yields a probability map, 

in which each pixel is assigned a probability of being a healthy glomerulus or a sclerotic one. The 

resulting softmax is further center cropped to obtain the final softmax with the same size as the 

input image. The final softmax is treated as an RGB image, where the first layer contains the 

softmax of sclerotic glomeruli (red) while the second layer (green) includes the softmax of healthy 

glomeruli.  
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Figure 4. Procedure for the creation of the final CNN softmax. The original image is mirrored around the boundaries 

to obtain the extended image. Then, a sliding window approach is employed to classify each patch, and only the center 

of each prediction is kept to build the final softmax. 

 

 

3.3.2 Post-processing  

Once the probability map has been obtained from the deep network (Figure 5a), the RENTAG 

algorithm applies a fixed threshold of 0.35 to obtain a raw segmentation of the glomeruli contours. 

We choose a threshold value lower than 0.5 to increase the sensitivity of the proposed approach. 

Then, a morphological opening with a disk of 5-pixel radius (equal to 4.67 m) is carried out to 

obtain smoother contours. Finally, all the detected shapes with an area less than 700 m2 are 

deleted as they are too small to be potentially considered as glomeruli (Figure 5b).  

The RENTAG algorithm also detects the basic cellular component within the image: lumen 

and nuclei. The normalized PAS image is converted to grayscale, Wiener filtered, and thresholded 

using a fixed value of 245/255 (equal to 96% of the image maximum) to segment all the white 

regions. All detected lumen regions are erased to process only PAS stained structures. In order to 

detect nuclear structures, stain separation (Salvi et al., 2020b) is employed to enhance all the 
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nuclear components. Then, an object-based thresholding is applied to segment the cell nuclei. For 

each possible threshold point 𝑇 ∈ [0 − 255], the following energy function is computed:  

𝐸(𝑇) = 𝑝0
2 ∗ 𝑣𝑎𝑟0 ∗ 𝑙𝑜𝑔(𝑣𝑎𝑟0) + 𝑝1

2 ∗ 𝑣𝑎𝑟1 ∗ 𝑙𝑜𝑔(𝑣𝑎𝑟1) (3) 

where p0 represents the probability of having gray values equal or lower than T, p1 is defined 

as 1 – 𝑝0, while var0 and var1 are the variances of the probability functions of the two classes p0 

and p1. The optimal thresholding point is then found by minimizing the energy function E in Eq. 

(3). The result of lumen and nuclei segmentation is shown in Figure 5c. All the detected structures 

not containing cell nuclei are deleted from the processing.  

The RENTAG algorithm employs the energy model of Chan-Vese (Chan and Vese, 2001) to 

better delineate the glomeruli boundaries. As can be seen in Figure 5a-b, the UNET softmax has a 

higher contrast between glomeruli and background compared to the original RGB image. For this 

reason, the active contour model is applied directly to the UNET softmax using the raw glomeruli 

mask (Figure 5b) as initial contour of the curve. After the level-set, our method applies a structural 

cleaning step on all the detected regions: all the shapes that do not contain nuclei and/or with an 

eccentricity lower than 75% are deleted as they represent tissue artifacts. Since the Bowman’s 

space is absent in the presence of glomerulosclerosis, all the detected sclerotic glomeruli with a 

lumen area (white region) higher than 10% are deleted. The final result of the RENTAG algorithm 

is shown in Figure 5d.  
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Figure 5. Glomeruli detection and classification. (a) Softmax obtained using the deep networks (red: sclerotic 

glomeruli, green: healthy glomeruli), (b) Raw glomeruli detection, (c) Cellular structure detection (cyan: lumen, 

yellow: nuclei), (d) Final segmentation result of the proposed method.  

 

3.4 Tubular atrophy quantification 

3.4.1 CNN semantic segmentation   

The RENTAG algorithm adopts the same network architecture described in Section 3.3.1 to 

detect tubular structures (Figure 6a). In particular, two different UNET networks are employed to 

perform tubule segmentation. Both networks are trained using Adam optimization algorithm 

(Kingma and Ba, 2014) and categorical cross-entropy as loss function. The first CNN, named TSC 

(tubule segmentation channel), is designed to distinguish foreground pixels (tubule) from 

background pixels. To train the network, the image pixels are manually labeled into three different 

classes: interior of the tubule, edge of the tubule or background. The same strategy illustrated in 

Figure 4 is adopted to build the network softmax (Figure 6b). The second CNN, called TCC (tubule 

classification channel), is designed to semantically segment and classify kidney tubules. In this 

case, the image pixels are labeled into three different classes depending on whether they belong to 

a normal tubule, an atrophic tubule or other parts of the tissue (Figure 6c).  
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3.4.2 Post-processing  

The RENTAG algorithm applies a fixed thresholding of 0.35 on the TSC softmax (Figure 6b) 

to obtain a raw segmentation of the inner and border regions of kidney tubules. To refine the 

segmentation, a custom active contour model (Salvi et al., 2020c) is applied to TSC softmax using 

the two obtained masks as initial conditions: 

𝐹 = 𝛼 ⋅ |𝛤| + 𝛽 ∫ (𝑥𝑑𝑦 − 𝑦𝑑𝑥)
𝛤

+ 𝜆1

⋅ ∫ |𝐼(𝑥, 𝑦) − 𝜇𝑖𝑛|2 + 𝜆2 ⋅ ∫ |𝐼(𝑥, 𝑦) − 𝜇𝑜𝑢𝑡|2

𝛺𝑜𝑢𝑡𝛺𝑖𝑛

 

(4) 

where 𝛤 denotes the curve; 𝜇𝑖𝑛 and 𝜇𝑜𝑢𝑡 are the mean intensity of the pixels inside and outside 

the curve; 𝛺𝑖𝑛 and 𝛺𝑜𝑢𝑡 represent the regions inside and outside the curve. Then, the border region 

mask is subtracted to the inner region mask to obtain a first separation of kidney tubules. Finally, 

the tubule mask is dilated using a disk element with a radius equal to the thickness of the border 

mask to retrieve the boundary information (Figure 6d). 

As can be seen from Figure 6d, most of the tubules in the center of the image are lost as they 

are too small to be detected by the TSC network. To overcome this limitation, the TCC network is 

also employed to obtain the final segmentation of the tubules. Fixed thresholding (0.35) is applied 

to the TCC softmax to obtain a rough contour of normal and atrophic tubules. Then, our strategy 

applies a cross-check: if a tubule has been segmented by the TCC network and is not present in 

the tubule mask (Figure 6d), the shape is added to the final tubule mask. This procedure is repeated 

for all regions detected by the TCC network. The final segmentation mask is shown in Figure 6e. 

The reason for choosing both edge and object detection is to define the spatial limit of each tubule 

based on the information on the contour (TSC network) and location (TCC network) of each object. 

In fact, the TSC network allows to separate tubules very close to each other (contour information) 

while the TCC network is able to segment very small tubules (region information). Finally, a label 

(i.e., atrophic or normal) is assigned to each tubule based on the mean value of the TCC softmax 

(Figure 6f).  
 



16 

 

Figure 6.  Tubule segmentation and classification. (a) Original image, (b) softmax of the tubule segmentation network 

(red: interior of the tubule, green: edge of the tubule), (c) softmax of the tubule classification network (red: atrophic 

tubule, green: normal tubule), (d) raw tubule detection, (e) final tubule segmentation, (f) kidney tubule classification. 

3.5 Performance metrics 

Automatic masks are compared with manual ones to evaluate the performance of our strategy 

in the segmentation of glomeruli and tubules. Several pixel-based metrics as precision, recall, and 

dice coefficient (DSC) are calculated. Precision is a common metric to assess the false detection 

of ghost shapes, recall assesses the missed detection of ground truth objects, and DSC measures 

the spatial overlap between two binary shapes (Zou et al., 2004). 

Since the pathologist counts the number of healthy and sclerotic glomeruli to evaluate 

glomerulosclerosis, two additional object-based metrics are implemented: sensitivity and PPV. 

These indicators allow you to evaluate how many glomeruli are missing (sensitivity) and how 

many are false positives (PPV): 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 
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In the presence of tubular atrophy, the pathologist estimates the percentage of atrophic tubules 

respect to all tubules within the biopsy. To assess the performance of the proposed strategy for 

tubular atrophy, two absolute errors (AE) are evaluated: AENUMBER e AEAREA which are defined 

as follows:  

𝐴𝐸𝑁𝑈𝑀𝐵𝐸𝑅 = |(
𝑁𝑈𝑀𝐴𝑇𝑅𝑂

𝑁𝑈𝑀𝑇𝑂𝑇𝐴𝐿
)

𝑀𝐴𝑁𝑈𝐴𝐿

− (
𝑁𝑈𝑀𝐴𝑇𝑅𝑂

𝑁𝑈𝑀𝑇𝑂𝑇𝐴𝐿
)

𝑅𝐸𝑁𝑇𝐴𝐺

| (7) 

 

𝐴𝐸𝐴𝑅𝐸𝐴 = |(
𝐴𝑅𝐸𝐴𝐴𝑇𝑅𝑂

𝐴𝑅𝐸𝐴𝑇𝑂𝑇𝐴𝐿
)

𝑀𝐴𝑁𝑈𝐴𝐿

− (
𝐴𝑅𝐸𝐴𝐴𝑇𝑅𝑂

𝐴𝑅𝐸𝐴𝑇𝑂𝑇𝐴𝐿
)

𝑅𝐸𝑁𝑇𝐴𝐺

| (8) 

where NUMATRO represents the number of atrophic tubules, NUMTOTAL is the total number of 

tubules within the image, AREAATRO denotes the area of atrophic tubules while AREATOTAL is the 

area of all kidney tubules within the image.  

4. RESULTS 

The results provided by the RENTAG method on the detection of glomeruli are compared both 

with manual annotations and with previously published works (Gallego et al., 2018), (Kawazoe et 

al., 2018), (Kannan et al., 2019), (Bueno et al., 2020), (Altini et al., 2020). Since the source codes 

of these works are not publicly available, we have reproduced the pipeline described in each 

‘Materials and Methods’ section for all the compared methods (see Supplementary Material). 

Specifically, a quantitative comparison is carried out by evaluating both pixel-based metrics 

(precision, recall and DSC) and object-based metrics (sensitivity and PPV). To demonstrate the 

superiority of our strategy, we also evaluate the results obtained using the three-class UNET 

without the stain normalization (CNN no pre-processing) and the three-class UNET without the 

proposed post-processing (CNN no post-processing). The processing is performed on a 

workstation with a 4.1 GHz octa-core CPU with 32 Gb of RAM. Table 2 and Table 3 show the 

results obtained in segmenting glomerular structures. 
 

Table 2 Comparison between the proposed algorithm and current state-of-art methods in the glomeruli segmentation 

(pixel-based metrics). 

Method Subset 
Computational 

Time (sec) 
Precision Recall DSC 

Gallego et al. 
TRAIN 24.12  1.63  0.8205  0.2008 0.6939  0.2017 0.7284  0.1824 

TEST 23.92  1.54 0.8257  0.1698 0.7096  0.1912 0.7404  0.1587 
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Kawazoe et al. 
TRAIN 0.58  0.12 0.6878  0.1006 0.9066  0.0809 0.7744  0.0697 

TEST 0.54  0.09 0.7114  0.1054 0.8916  0.0869 0.7831  0.0685 

Kannan et al.  
TRAIN 17.18    0.8898  0.1303 0.7149  0.1995 0.7711  0.1254 

TEST 17.83  1.08 0.8904  0.1278 0.6919  0.1823 0.7545  0.1403 

Bueno et al. 
TRAIN 1.15  0.17 0.9749  0.0259 0.9321  0.0925 0.9498  0.0667 

TEST 1.24  0.13 0.9674  0.0366 0.9396  0.0486 0.9522  0.0307 

Altini et al. 
TRAIN 1.18  0.12 0.8786  0.0825  0.9940  0.0236 0.9302  0.0533 

TEST 1.21  0.09 0.8936  0.0671 0.9368  0.0793 0.9118  0.0575 

CNN no pre-

processing1 

TRAIN 2.24  0.15 0.9873  0.0266 0.8799  0.1235 0.9246  0.0876 

TEST 2.26  0.11 0.9851  0.0188 0.8758  0.1060 0.9233  0.0675 

CNN no post-

processing2 

TRAIN 4.54  0.68 0.9736  0.0331 0.9435  0.0735 0.9563  0.0515 

TEST 4.35  0.72 0.9672  0.0400 0.9296  0.0927 0.9445  0.0689 

RENTAG 

algorithm 

TRAIN 6.15  1.03 0.9600  0.0417 0.9634  0.0728 0.9592  0.0545 

TEST 5.89  1.86 0.9562  0.0454 0.9535  0.0649 0.9529  0.0433 
1 CNN with the same architecture shown in Figure 3 but trained on original images. 2 CNN trained on 

normalized images but without our post-processing (section 3.3.2). 

 

Table 3 Comparison between the proposed algorithm and current state-of-art methods in the glomeruli segmentation 

(object-based metrics). 

Method Subset SensitivityHEALTHY SensitivitySCLEROTIC PPVHEALTHY PPVSCLEROTIC 

Gallego et al. 
TRAIN 97.24% 84.74% 98.72% 86.30% 

TEST 94.11% 15.38% 60.00% 50.00% 

Kawazoe et al. 
TRAIN 93.28% 79.66% 99.20% 87.03% 

TEST 92.07% 69.23% 96.87% 90.00% 

Kannan et al. 
TRAIN 87.21% 61.01% 96.93% 62.06% 

TEST 91.17% 84.61% 96.87% 61.11% 

Bueno et al. 
TRAIN 97.24% 84.74% 98.72% 86.20% 

TEST 97.02% 100% 98.98% 86.66% 

Altini et al. 
TRAIN 99.25% 100% 99.00% 100% 

TEST 95.04% 84.61% 100% 73.73% 

CNN no pre-

processing1 

TRAIN 95.53% 88.13% 100% 69.33% 

TEST 91.17% 92.30% 100% 50.00% 

CNN no post-

processing2 

TRAIN 98.49% 100% 100% 76.62% 

TEST 96.07% 100% 100% 86.66% 

RENTAG 

algorithm 

TRAIN 99.49% 98.30% 99.74% 96.66% 

TEST 97.02% 100% 100% 92.85% 
1 CNN with the same architecture shown in Figure 3 but trained on original images. 2 CNN trained on 

normalized images but without our post-processing (section 3.3.2). 

 

For all the pixel-based metrics (precision, recall and DSC), our method outperforms the state-

of-art techniques in both TRAIN and TEST set.  The RENTAG algorithm also gets the best object-
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based metrics (sensitivity and PPV) for healthy and sclerotic glomeruli. In the TEST set, our 

strategy does not miss any sclerotic glomerulus (sensitivitySCLEROTIC = 100%) and does not 

mistakenly segment any healthy glomerulus (PPVHEALHTY = 100%). More interestingly, the 

proposed post-processing allows to increase the PPV of sclerotic glomeruli up to 20% (CNN no 

post-processing vs. RENTAG) with only 1.61 s of additional processing. Overall, the high average 

metrics coupled with a low standard deviation demonstrate the robustness of the proposed 

algorithm. Figure 7 shows a visual comparison between the RENTAG algorithm and previously 

published works. Our approach is able to correctly segment the glomeruli found on the edges of 

the image (Figure 7 – Sample #1). The combination of semantic segmentation and active contours 

allows to obtain a more accurate glomerular profile respect to other methods (Figure 7 – Sample 

#2 and #3). 

 

Figure 7. Visual performance between RENTAG algorithm and two of the best published deep learning methods for 

glomeruli detection (red: atrophic tubule, green: normal tubule). Three different samples are illustrated in rows while 

segmentation results are shown in columns. The original image along with manual annotations is displayed in the first 
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column. Compared methods are shown in the second and third column, while the results of our strategy is presented 

in the last column.  

 

To evaluate the performance of the RENTAG algorithm in tubule segmentation, the same 

pixel-based metrics adopted for glomerulosclerosis are used (precision, recall, DSC). In particular, 

we compared the performance of the individual networks (TSC: Tubule Segmentation Channel, 

TCC: Tubule Classification Channel) and the result provided by the combination of the two 

networks (RENTAG algorithm). Table 4 summarize the performance of our strategy for both 

TRAIN and TEST set. As can be seen, the RENTAG algorithm outperforms the individual 

networks. This result demonstrate that this joint effort (TSC+TCC network) performs better than 

the single approach. Our method exhibits excellent performance in tubule segmentation, obtaining 

a precision higher than 95%. In addition, the DSC is stable for both sets (91.82% on TRAIN and 

91.74% on TEST), thus demonstrating the solidity of our algorithm. Moreover, the absolute error 

in the evaluation of tubular atrophy (AENUMBER and AEAREA) is negligible for each image of the 

dataset (Table 5). 

Table 4 Performance of the RENTAG algorithm in kidney tubule segmentation.  

Method Subset 
Computational 

Time (sec) 
Precision Recall DSC 

TSC 

network 

TRAIN 8.18  3.82 0.9157  0.0230 0.8211  0.0429 0.8653  0.0280 

TEST 8.41  3.97 0.9145  0.0180 0.8162  0.0171 0.8584  0.0125 

TCC 

network 

TRAIN 9.38  3.86 0.9178  0.0298 0.8143  0.0334 0.8629  0.0263 

TEST 9.54  3.92 0.9104  0.0283 0.8206  0.0189 0.8624  0.0199 

RENTAG 

algorithm 

TRAIN 15.32  2.49 0.9504  0.0258 0.8889  0.0367 0.9182  0.0260 

TEST 14.63  2.70 0.9455  0.0272 0.8915  0.0212 0.9174  0.0165 

 

Table 5 Absolute errors in the assessment of tubular atrophy for both TRAIN and TEST set. 

Method Subset AENUMBER AEAREA 

RENTAG 

algorithm 

TRAIN 1.95%  2.53% 1.56%  2.63% 

TEST 2.43%  3.13% 1.96%  2.54% 
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The segmentation result is illustrated in Figure 8, where images with different tubules 

morphology and spatial density are presented as explanatory examples. Our algorithm is able to 

correctly locate and classify each tubule within the image.  

 

Figure 8. Tubule segmentation and classification for different samples with variation of stain intensity, density and 

tubules morphology (red: atrophic tubule, green: normal tubule). 

 

Since the pathologist assesses the glomerulosclerosis and tubular atrophy on whole-slide 

images (WSIs), we extend our approach on entire biopsies using a sliding-windows approach. An 

expert pathologist takes at least 15 minutes to assess the degree of glomerulosclerosis and tubular 

atrophy while our algorithm is able to process the entire biopsy in less than 3 minutes. Figure 9 

shows the application of the RENTAG algorithm on a WSI. The use of automated algorithms can 

provide a more consistent and accurate case assessment, ensuring quality controls and reducing 

the need for a large number of pathologists. 
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Figure 9. Result of RENTAG processing on a whole-slide image. Glomerulosclerosis evaluation: healthy and sclerotic 

glomeruli are highlighted in green and red respectively. During the assessment of tubular atrophy, atrophic tubules 

are shown in red while normal tubules are represented in green.  

 

5. DISCUSSION AND CONCLUSIONS 

Pathologists have to categorize and summarize their findings in a schematic but complete 

“language.” Therefore, grading and scoring systems have always been welcome and thoroughly 

developed to standardize the reports and propose a clinically applicable code. However, inter- and 

intra-pathologist evaluation dissimilarity cause significant limitations, even in the most severe 

score system. Transplant pathology makes no exception. During this relatively recent pathology 

field development, the need for a worldwide common way of defining transplant-related pathology 

findings becomes urgent and crucial. In kidney transplantation, this need led to the Karpinski score, 

a four-grade morphology-based score to evaluate and simultaneously synthesize the injuries 

revealed during pre-transplantation biopsies analysis. Since time is crucial in transplant 
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applications, quick and accurate diagnoses are required from pathologists. However, this 

procedure is not free from limitations, also because of reproducibility and timing feasibility. 

In this study, we present a fully automated method for quantitative assessment of 

glomerulosclerosis and tubular atrophy in kidney histopathological images. Detection of kidney 

structures is a real challenge due to the variability of shape and size, especially in pathological 

conditions. Thanks to the stain normalization step, our strategy is capable of automatically 

detecting glomeruli and tubules in images with different staining intensity. The proposed method 

is developed and validated on 830 PAS stained images of kidney tissue and results are compared 

with manual annotations of an expert pathologist. During glomerulosclerosis assessment, the 

RENTAG algorithm achieves the highest precision, recall, and DSC compared to five published 

methods in both TRAIN and TEST set. More importantly, our approach outperforms the compared 

algorithms for all the object-based metrics (Table 3). Our method also achieves satisfactory 

performance in tubule segmentation and classification, obtaining a DSC over 91%. As can be seen 

from Figure 8, the RENTAG algorithm maintains high performance even in the presence of 

different tubular morphology and density, thus demonstrating the robustness of the proposed 

approach. 

These high performances are mainly due to the combination of semantic segmentation with an 

ad-hoc post-processing. By detecting cell nuclei and lumen regions, the RENTAG algorithm is 

able to delete almost all the false-positive shapes segmented by the CNN. Level set and 

morphological cleaning are then employed to refine the segmentation result. To quantify tubular 

atrophy, a novel approach that combines two different deep networks (TSC and TCC) is employed. 

The joint effort of both networks allows to generate an instance segmentation of each tubule. As 

far as we know, no automated solution has been proposed so far for segmentation and classification 

of renal tubules. Using the strategy shown in Figure 4, the RENTAG algorithm is also able to 

preserve the boundary information during the inference phase. This particular strategy allows to 

accurately segment objects on the edges of the image. The main limitation of the RENTAG 

algorithm refers to the tubule segmentation. As can be observed from Table 4 and Figure 8, our 

method slightly underestimates the tubule boundaries (recall equal to 0.88). In addition, images 

need to be acquired at 10x or greater magnification. Using a lower resolution, the cellular structures 

segmentation may fail due to poor quality images.  
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In this study, we demonstrated that the analysis of preimplantation biopsies with a fully 

automated algorithm could practically support the pathologists’ assessment of the Karpinski score. 

In the near future, kidney transplantation would probably be enriched with an increasing number 

of ECDs kidneys, posing more significant challenges to the pathology diagnostics activity. In this 

setting, the introduction of a fully automated deep learning-based algorithm in the daily routine 

could represent a crucial turning point for diagnostics improvement in pre-transplant kidney 

panorama. In the future, we will integrate the assessment of arteriolar narrowing and interstitial 

fibrosis (Salvi et al., 2020b) within the RENTAG algorithm in order to create the first automated 

Karpinski scoring system. 
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