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Abstract: Starting from the data extracted from a long-term monitoring system installed on a steel bridge, it 

has been possible to outline the undamaged behaviour of the structure. The structure under monitoring is a 

steel suspended arch bridge of long span that has been instrumented with several types of sensors, e.g. triaxial 

accelerometers, load cells and environmental sensors. The records of the measurements during the first period 

of structural life and the lack of construction problems ensure the good respect of the structural nominal 

conditions. 

The accelerometric data stored during this period have been used to extrapolate the dynamic 

characteristics of the bridge: natural frequencies, damping ratios and modal shapes. The use of a specific 

stochastic subspace technique (SSI-UPCX), allowed to obtain not only the modal parameters but also their 

uncertainty. In this way, the range of variation of modal parameters, e.g. affected by environmental factors, 

has been calculated and a minimum and maximum threshold for each parameter has been determined. 

Consequently, the assessment and control of structural health is updated and linked to these ranges of 

variation. 

In addition, a promising modern approach to tackle the problem is the use of machine learning 

techniques within the broad field of AI. After the selection/reduction of the parameters that better represent 

the data, signal detection has been used and the obtained outcomes compared. In the light of both the above 

approaches, albeit in a different way, it is possible to create a model of the normal operating condition of the 

structure and consider the deviations from the pattern as an anomaly.  

The work represents a first step and a benchmark for the wider damage and ageing identification problem to 

figure out which method is the most appropriate and effective for this specific case of structural assessment, 

in terms of effort and accuracy. 

Keywords: Structural health monitoring; Modal parameters; Machine learning; Damage detection. 

1. Introduction

One of the most crucial problems in the civil engineering field is the identification of structural damage. 

Accurate results, reduction of false and missing alarms, and detection time (DT) are fundamental aspects of 

this problem. They have a great weight both on economic and on safety point of view.  

Similar to the human body, that during the individual life can be subjected to diseases, the facilities are 

complex systems that during their useful life are liable to degradation. In both cases, to tackle in a successful 

way the problem, an interdisciplinary approach is required.  

In the infrastructural field, this issue is particular evident for large scale structure subjected to increased 

loads and different environmental conditions, as the bridges. The presence of some phenomena, e.g. ageing, 

fatigue and corrosion, implies a change of material properties, structural characteristics, boundary conditions, 
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and element connectivity. This entails the need of checking the structure and developing strategies to optimize 

the maintenance operations by allocating correctly the available resources. Indeed, early warnings of 

anomalies are essential for facilitating effective remedying actions. Strategies within this aim belong to 

structural health monitoring (SHM) field and foster a correct development of prognostics and health 

management (PHM).  

SHM includes three fundamental approaches. The first consists in continuous monitoring, that allows for 

verifying alteration of the global structural response. The second includes non- destructive periodic testing 

(NDT), like acoustic emission, ultrasonic, magnetic fields, and radiography that enable a structural local 

analysis. The last is realized by spot tests. The common target of the three approaches is to highlight early-

stage damage and to reduce its spread to avoid the achievement of a critical damage level leading to failure. 

Operational modal analysis techniques are one of the most used techniques to address this problem. They 

belong to the vibration-based methods and allow the extraction of modal structural parameters (natural 

frequencies, damping ratios and mode shapes) in an inexpensive way and without interfering with the service 

structural operations. Changes in modal parameters are attributed to damage structural state. For example, a 

formation of a crack would imply a geometry change with consequent stiffness shifting that could be easily 

grasped by frequency change. Scour of a bridge pier and loosing of a bolted connection are other types of 

damage that can be captured by modal parameters alterations. 

It is worth pointing out that the data processed to extract the features characterizing the structure, are 

often related to its normal behaviour, namely to the undamaged structural state. Indeed, the cases in which 

experimental data are available in damaged cases are very rare (Farrar and Worden, 2012; Diez at al., 2016). 

On the other hand, the data produced through models (e.g. F.E.M. model), due to high complexity of the 

systems, to intrinsic inaccuracy of a model, and to the difficulty in defining effective damage cases, are not 

always reliable for representing the effective structural status. For these reasons, damage diagnosis is often 

relied on a developed normal condition model. 

Unsupervised learning techniques allow to distinguish the damaged from the undamaged structural status 

avoiding the major problem encountered by machine learning techniques in the field of the SHM, consisting 

in the need of damaged data as supervisor in learning process. These data, in general, are missing or difficult 

to gather. These techniques are often defined, in the machine learning area, with the term novelty detection 

and their success is linked to the representativeness of training dataset (Michau at al., 2019) corresponding 

to the normal structural conditions. In fact, a deficiency of representativeness will imply a missing distinction 

between faults and operating conditions (Michau at al., 2018) producing false alarm when new operating 

conditions, that has not been observed in training period, will classify as faults (Wang at al., 2019). Some 

approaches are developed to face the low representativeness of many training data sets, due for example to 

the short observation periods. They are based on the concept of transferring information between systems 

(units of a fleet) with similar characteristics but that have been under different conditions (Michau and Fink, 

2019; Michau at al., 2018). On the other hand, promising approaches have been elaborated in learning the 

relevant features (Michau at al., 2020). This aspect is essential in the applications where the features 

dimensionality, i.e. the number of parameters monitored and used for damage detection, is very high. 

Once used the reference dataset (healthy dataset) to train the chosen learning algorithm, without knowledge 

about the damaged system conditions (Michau at al., 2020), and designed the decision boundary, an health 

indicator (HI) is frequently used for the damage detection. It consists in the distance between the testing data 

and the reference data. 

One of the criteria to differentiate the novelty detection techniques is the shape of the features distribution 

in the nominal condition (Farrar and Worden, 2012). For Gaussian distributed normal condition, techniques 
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that involve the discordance calculation between the test data and the normal condition with subsequent 

comparison between the calculated value and an alarm threshold are often used. In the multivariate case the 

discordance is calculated by means of Mahalanobis squared-distance and the threshold with the Monte Carlo 

method. For non-Gaussian normal condition, auto-associative neural network (AANN) can be a valid method 

to address the problem. Research in this field has produced a lot of improvement. Among these, (Hu at al., 

2017) proposed a new approach defined by the terms “Auto-Associative Extreme Learning Machines”. This 

last looks promising due to its marked learning ability and its low computational cost.  

Further approaches involve the use of clustering techniques as the k-means algorithm (Mehdinia at a., 

2017; Bounzenad at al., 2019). They, by means of the creation of clusters based on the similarities between 

the features (Tryon, 1939), are able to distinguish the healthy from the damaged structural states. The distance 

between the feature vector of each data and the cluster centroid of nominal condition highlights the variation 

of the structural behaviour in case a damage event occurs. Larger is this distance, more the damage is 

extended. 

This paper presents an AI application in which the k-means algorithm, within the proposed damage 

identification flowchart, is used for a steel arch highway bridge. 

 

2. Structure under monitoring and sensor network 

 

The structure under monitoring is a highway steel arch bridge in the northern of Italy. Its span is 250 meters. 

Vertical steel cables have variable number of strands and link the arch to the inferior way. The arch has a 

trapezoidal section, while the inferior way is composed by a chain hexagonal beam and transverse cantilevers, 

located along the bridge axis every 8 meters. A view of the bridge is reported in Figure 1 and more details 

are reported in (Chiaia at al., 2020a). 

 

 

 
Figure 1. View of the suspended arch steel viaduct 

 

The bridge is equipped with a customised monitoring network system that, for its capacity in real-time 

structural assessment, has been defined as “Active Monitoring System”. In a previous paper (Chiaia at al., 

2020b) an in-depth illustration of the system has been presented. 
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Different types of sensors form the monitoring network. There are high-resolution servoinclinometers, steel 

surface temperature probes, air temperature and humidity sensors, triaxial accelerometers, differential wind 

pressure transducers, strain gauges at runway cantilevers, load cells at each suspension cable. 

 

 

3. Feature extraction: Operational Modal Analysis 

 

The signals must be first preprocessed in order to extract their characterizing features.  

To this end, accelerometric signals, covering unevenly a period of about one and a half years, have been 

analysed. As frequently happens in civil structures, output-only techniques exploiting the environmental 

excitation have been used to avoid the interruption of the infrastructure service. By means the algorithm DD-

SSI-UPCX (Data Driven Stochastic Subspace Identification Extended Unweighted Principal Component), 

present in the ARTeMIS software (Andersen, 2010), an operational modal analysis has been done to extract 

the features of interest: natural frequencies, damping ratios, and modal shapes. This particular algorithm 

utilizes a parametric model to fit the raw data. The fundamental assumptions of the SSI methods are infinite 

amount of data, linear system, and white noise excitation. The algorithm has good performance also in 

presence of not very large datasets. The validation of the identified structural modes is done by means of the 

Stabilisation diagram that through more or less restrictive stabilization criteria is able to avoid different types 

of errors.  

The pick of this specific algorithm is supported by several reasons. Among them there are: its capacity to 

correctly analyse flexible structures (i.e. with low vibration frequencies), its robustness, its calculation speed, 

and its ability to provide also the uncertainties for modal parameters. This last characteristic allows to 

comprehend how reliable the obtained results are or not. As known from the literature (Rainieri and 

Fabbrocino, 2014), the uncertainties related to damping ratios estimation are greater than those related to the 

natural frequencies. Consequently, for identifying damage, the natural frequencies will be the utilized 

characteristics.  

 

4. Detection of anomalous behavior 

 

4.1 TRADITIONAL APPROACH: THRESHOLDS FOR SCATTERING RANGE  

 

Having available the structural response in time in terms of modal parameters, it has been possible to define 

a range that encompasses the environmental variability. The first six natural frequencies have been reported 

in Figure 2. In Table I on page 5, the range of variability of each of them has been defined.  

The values, maximum and minimum for each range, represent nominal conditions boundaries. 

A departure from these values represents an anomalous behaviour.  

The simplicity of this approach hides an important limit. In presence of very small damages, namely in 

the early stage of the development of an anomalous phenomenon, the extracted features could appear within 

the nominal defined range due to factors that are different by damage effects (Li at al., 2010). Among them, 

there are environmental factors (temperature, solar radiation, wind velocity, and humidity), operational 

factors (intensity of traffic flow and potential traffic jam), and errors due to poor data set and limits of 

processing techniques. Indeed, the probability density function of the damaged and undamaged state could 

be overlapped. For the investigated bridge, the variation due to EOVs (environmental and/or operational 

variations) turns out smaller than that shown for other highway bridges case studies (Ko and Ni, 2005) but 
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still not negligible. To improve the effectiveness of this approach, techniques of elimination/mitigation of 

EOVs, like regression modelling and machine learning approaches, should be implemented but it is 

demonstrated that successful results can be obtained only with a robust data normalization. This last is feasible 

merely in presence of a large volume (Magalhães at al. ,2012) and a high accuracy of experimental data, 

which are missing in this case study, so it is not possible to reach valid results following these procedures.   

The followed strategy to attenuate the variability of the features has been to widen the observation window 

of the signals to extract the modal parameters. In detail, the observation window considered includes 31 

signals. In this way, a more accurate estimate of modal parameters is possible, and many highly uncertain 

values located near the boundary of the range are deleted. Moreover, very long records already include a 

temperature variability that allows to smooth the structural behaviour in the examined temperature range.  

 

 
Figure 2. Natural frequency for definition of nominal condition 

 
Table I. Nominal conditions: range of frequency scattering  
 

VIBRATION 

MODE 

MODE1: 

BENDING 

OUT OF 

PLANE  

MODE2: 

DOUBLE 

VERTICAL 

INFLECTION 

MODE3: 

SINGLE 

VERTICAL 

INFLECTION 

MODE4: OUT 

OF PLANE 

DOUBLE 

INFLECTION  

MODE5: 

TORSIONAL  

MODE6: 

TRIPLE 

VERTICAL 

INFLECTION 

FREQUENCY  F1 F2 F3 F4 F5 F6 

F_MIN [HZ] 0.373 0.532 0.856 1.044 1.091 1.383 

F_MAX [HZ] 0.3772 0.540 0.866 1.065 1.105 1.400 

VAR REL [%] 1.069 1.398 1.167 1.979 1.239 1.238 

 

The percentage of signals not leading to an alarm, for very small damage (weak signals), can be extremely 

high. As will be shown in the following, more than half of the damaged signals will not exceed the nominal 

condition boundaries. This means that 50% of the damaged signals would not be considered as such and the 

process of damage identification would be significantly less sensitive. Analysing signals, belonging to 

undamaged and damaged structural states, the percentages of false and missing alarm has been calculated.  

The False (FA) and Missing Alarm (MA) have been expressed, respectively, as: 
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Where 𝑵𝒅 and 𝑵𝒖𝒅 are the number of data identified as damaged and undamaged, respectively. On the other 

hand, 𝑵𝒕𝒆𝒔𝒕_𝒖𝒅 and 𝑵𝒕𝒆𝒔𝒕_𝒅 are the number of tested undamaged and damaged data. Three potential damaged 

states have been simulated imposing variations in the acceleration signals.  

Many of the most dangerous phenomena for the structural integrity like cracks, foundation settlements, 

malfunction of a bearing devices, and losses of connections imply change in structural stiffness. A variation 

in this structural characteristic, occurring locally or in a widespread way, causes a change in the signal 

frequency. In particular, a stiffness reduction occurs with an ensuing increase of the signal period. Thus, to 

simulate damaged signals, a delay in the structural response (stretching of time axis) has been imposed. 

Analyses carried out on other real bridges (Dilena and Morassi, 2011; Chang, 2016; Magalhães at al., 2012), 

both with real and simulated damages, have been taken into account to establish the magnitude order of a 

realistic frequency shift produced by a potential structural damage. Notches, specifically, that can simulate 

slight damage stemmed from impacts of objects, corrosion or overload, lead to a natural frequency shift of 

the order on average of 0.1-0.5%. 

 Initially, the analysed response in natural frequency is that related to the Mode1, Mode2, Mode3 and 

Mode6, see Table II. These four modes have been considered the most relevant for implementing damage 

identification strategies. 

 
Table II. Errors for each natural frequency. 

DAMAGE 

LEVELS 

DEGREE OF 

SEVERITY 

SIGNAL 

VARIATION 

FREQUENCY F1 F2 F3 F6 

FA[%] 0.0 12.5 0.0 0.0 

LD7 LOW ~0.33% MA[%] 75.0 97.9 62.5 70.8 

LD8 MEDIUM-LOW ~0.66% MA[%] 41.6 75.0 27.1 39.6 

LD9 MEDIUM ~1.0% MA[%] 2.1 35.4 2.1 8.3 

 

A combination criterion, based on the alarm trigger when one of the features is outside the limits of the ranges 

defined in Table I on page 5, has been used to improve the effectiveness in damage detection.  

As can be noted from Table II, the contribution of the frequency of second mode is the worst both in term of 

false and missing alarm. The second mode gives a contribution to decrease the missing alarm if a combination 

of the four frequencies is considered, see Table III. 

 
Table III. Errors for combination F1-F2-F3-F6. 

Combination F1-F2-F3-F6 MA [%] FA [%] TE [%] 

LD7 56.3 12.5 69.0 

LD8 14.6 12.5 27.1 

LD9 0.0 12.5 12.5 

 

In Table IV, the results in terms of missing, false, and total errors have been reported for a combination of 

F1, F3, and F6. In this case the total errors decrease, due to the lack of false alarms. Nevertheless, the missing 

error, in particular way for LD8, increases of about thirty per cent. 

𝑭𝑨 =
𝑵𝒅

𝑵𝒕𝒆𝒔𝒕_𝒖𝒅
∙ 𝟏𝟎𝟎 

𝑴𝑨 =
𝑵𝒖𝒅

𝑵𝒕𝒆𝒔𝒕_𝒅
∙ 𝟏𝟎𝟎 
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Table IV. Errors for combination F1-F3-F6. 

Combination F1-F3-F6 MA [%] FA [%] TE [%] 

LD7 58.3 0.0 58.3 

LD8 18.8 0.0 18.8 

LD9 0.0 0.0 0.0 

 

For the smallest damage level (LD7), a large part of the monitored frequencies slips back into the nominal 

condition range. Of course, as can be deduced from the comparison between Table II, III, and IV, the missing 

alarm percentages decrease if the alarm is emitted when only one of the features is out of the limit values. 

The reduction of missing alarm percentages is more marked for the damage level LD8. 

Concluding, for this structure and for the specific type of damage, the classical approach is able to identify 

discreetly anomalies produced by a damage level equal and greater than LD8, namely a medium-low damage. 

 

4.2 UNSUPERVISED MACHINE LEARNING: CLUSTERING TECHNIQUE 

 

The traditional approach results deficient for very low damage levels. Nevertheless, it is a complement tool 

to visual inspection and non-destructive test because it can assess the structural condition even when the 

damage location is not known a priori and the deteriorated part is not accessible. A specific clustering 

technique has been used to meet the need to improve the potential structural damages identification. A cluster 

analysis is applicable when the data have not assigned labels and it consists in researching groups of data, 

namely clusters, such that the data in a group will be similar (or related) to one another and different from (or 

unrelated to) the data in other groups. There are three fundamental types of clustering algorithms: K-means 

and its variants, hierarchical clustering, and density-based clustering. For the problem at hand, K-means 

algorithm has been chosen and exploited. 

 

4.2.1. Selection of the features 

Damage-sensitive features are essential to reach a good damage identification. Thus, it appears reasonable to 

exclude the features that are more sensible to the environmental/operational factors. The contribution of the 

second, the fourth, and the fifth natural frequency has been considered not relevant for damage identification 

purpose, as mentioned in subsection 4.1. due to different reasons: the fourth frequency, as underlined by the 

value in Table I on page 5, has a high relative variation already in the nominal conditions; the fourth and the 

fifth modes are much closed space modes and therefore are easily confused; finally, Table II on page 6 shows 

that the second frequency is the least damage-sensitive. 

 

4.2.2. K-means algorithm: theoretical aspects and SHM perspective 

The flowchart, displayed in Figure 3, describes the steps of the clustering process, that allows to attribute a 

structural “health/damaged” state to the signals, based on the k-means algorithm. 

K-means can be classified as an unsupervised learning algorithm and is a partitional clustering approach. 

It allows data, represented by a vector of features, to be divided into non-overlapping subsets (clusters). This 

algorithm makes it possible to visualise similar data in clusters based on a specific metric.  Its aim is to create 

groups of data in the light of the feature vector distances. High homogeneity among the data belonging to the 

same group and low homogeneity among those belonging to different groups are the criteria to build clusters. 

Once defined the number of clusters, k centers must be found so to minimize the intra-cluster distance. This 

algorithm requires considerable calculation effort (Bouzehand, 2019). Several iterative processes have been 
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proposed to converge rapidly to an optimum. One of them (Lloyd, 1982) is composed by three fundamental 

following steps: 

 

1.  Choice of k point centers, namely k centroids. 

 

2. Assign each data/signal, characterize by its features vector, to the closest cluster centroid. 

 

3. Calculate the new k point centers.  

 

The last two steps are repeated as long as convergence is achieved. At each iteration, the k-means algorithm 

minimizes the intra-cluster distance (Bouzenad at al., 2019). To assess the performance of this algorithm, a 

matching matrix can be used.  There are three factors that can negatively affect the performance. Indeed, K-

means performs not well when clusters are of differing sizes, densities, and non-globular shapes. Often, to 

get over these limitations many clusters are used. Another drawback of this approach is that a different choice 

of initial centers can imply various created clusters. To overcome this problem, it is good practice to repeat 

the algorithm several times. Major details related to the k-means theory can be found in (MacKay and Ma 

Kay, 2003). 

From SHM point of view, the classical k-means approach allows to analyse collected data/signals and to 

distinguish between two clusters. One will correspond to healthy and one to damaged state (in the hypothesis 

of a single damage source). This can provide a “photograph” of the structural state but prevents from tracking 

structural changing in time and possible evolution of damage from its early stages before damage reaches a 

critical size (Bouzenad at al., 2019). To intercept initial damage signs, the outlined process in the flowchart 

in Figure 3 can be considered. The starting point is the creation of an undamaged state, with the Td training 

data, represented by one cluster (k=1). The centroid (C) and the maximum distance (Dmax) from it are the 

benchmarks characterizing this nominal state. Then, new signals are analysed one at a time. For each new 

signal, the counter c is updated and a distance (d) between the new signal and the nominal centroid is 

calculated. If this quantity is greater than Dmax, the counter (count) is incremented, by revealing an anomaly. 

When this value (count) is equal to a persistence number (N), the number of cluster k is imposed equal to 2. 

The features of the undamaged pattern and the persistence number are used to reduce false alarms. Indeed, if 

the k-means algorithm with a number of cluster greater than 1 were used every time that a new signal was 

recorded or when a very small number of signals presented d > Dmax, the number of false alarms would be 

very high, and the data would most likely appear separated in two groups that would not linked to 

healthy/damaged state rather to warm/cool state. To track the evolution of the damage level, a check of the 

optimal number of clusters is done when critical time units are reached. The number of signals contained in 

a critical time unit is defined by Ccritical. The critical time unit is therefore a control unit that, through a 

discretized calculation of the kopt, allows a speeding up of the analysis process. On the other hand, it 

corresponds to a time in which initially at most one level damage can be developed. Indeed, in this process, 

the hypothesis made at the beginning is that in a first critical time unit, the level of potential damage is one 

and there is no check of the ability of the algorithm to build a model of the underlying structure in the data 

with a different value of k that results optimal for the problem at hand. The concept that maximum one level 

of damage can be present in the first critical unit and that then a verification is required (e.g. for c=2*Ccritical, 

c=3*Ccritical etc) is due to the fact that for the first critical units the appraisal of some factors like materials 

properties, environmental impact and load turns out simpler and the hypothesis made results realistic. In 

conclusion in the developed process, the value of k is equal to: 
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− 1 if count < N 

− 2 if (count >= N and Kopt <2) 

− Kopt calculated for n*Ccritical if (count >= N, n*Ccritical < c < n+1 Ccritical, and Kopt >2), with n 

natural number starting from 2 

 

4.2.3. Application aspects 

The algorithm implementation has been realised in Matlab. The choice of the k initial cluster centroids, 

corresponding to the point 1 of the list on page 8, is done by means of k-means++ algorithm, that optimizes 

the running time and the final solution (Arthur and Vassilvitskii, 2007). The points 2 and 3 of the just 

mentioned list correspond to so-called batch updates phase aims at minimizing the sum of point-to-centroid 

distances. This phase could not converge to the correct solution and it is sometimes followed by so-called 

online updates phase. For the problem at hand, the batch updates phase turns out sufficient and thus it is the 

only performed phase. Thereby, the process is very fast. Having the possibility to choose among several 

distance metric, it should be noted that Squared Euclidean distance has been used. Besides, as maximum 

number of iterations to reach the convergence has  been used the default value in Matlab (100). As regard the 

empty clusters, they have been removed but the algorithm has been set to keep track of their presence. As 

underlined in the previous subsubsection, it is good practice to repeat the algorithm several times with 

different initial centers so to maximize the inter-cluster distance. In this case, the argument 'Replicates' has 

been set equal to 10. Another important aspect that must not be forgotten, is the data normalization (Mohamad 

and Usman, 2013). This is an important pre-processing task, that scaling data in a specific range is able to 

ensure the same weight to every attribute. For this specific problem, a Min-Max normalization has been 

applied. In addition to the aspects just analysed, k-means clustering is also very sensitive to outliers because 

their presence can skew the right positions of the k point centers (Alamdari at al., 2017). In the present case, 

the removal of the outliers does not lead to benefits.  

 

4.2.4.1. Learning of undamaged pattern. The number of clusters is imposed equal to 1 in the nominal 

condition. The localization of the normalized centroid and the maximum normalized distance (Dmax) are 

reported in Table V. 

 
Table V. Normalised centroid and maximum distance from it for nominal conditions 

M1 M3 M6 Dmax 

0.518 0.420 0.470 0.588 

 

4.2.4.2. Damaged pattern. The number of cluster k is updated to the value of two when a number N of signals 

has a distance from the normal condition centroid higher than the defined threshold (Dmax). 

Furthermore, some criteria may be considered to evaluate if there are structural changes, which in case of 

early-stage damage recognition can indicate grow of negative phenomena in time. They allow to evaluate the 

optimal number of clusters (Kopt), verifying thus the existence of a potential development of the damage. If 

it is growing, an increase in the damage level can be deduced. Among the criteria that can be found in the 

literature there are the Calinski-Harabasz clustering criterion (Calinski and Harabasz, 1974), the Silhouette 

index (Rousseeuw, 1987; Kaufman and Rousseeuw, 1990), the Davies-Bouldin criterion (Davies, 1979) and 

the gap statistic criterion (Tibshirani at al., 2001). The Calinski-Harabasz relies upon the sums of squared 

Euclidean distance between the feature vectors and the centroids of the predicted clusters and the optimal 

value of k corresponds to its maximum value. The Silhouette index evaluates the difference between inter-

cluster distances and intra-clusters distance and the optimum value of k must maximize this index.  The 
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Davies-Bouldin criterion utilizes the intra and the inter-clusters distance as well and, for this criterion, the 

optimal value of k corresponds to its minimum. Finally, the gap criterion calculates the logarithmic mean of 

the pairwise distance. In this case the optimum value of k is correlated to the maximization of this criterion. 

In this way, there will not be the need to choose thresholds that will define damage levels. The algorithm, on 

the basis of available data, will point out by means of calculated Kopt, a potential worsening of the situation. 

 

 
Figure 3. Proposed flowchart for damage identification based on k-means algorithm. 

4.2.4.3. Evaluation of the accuracy: the matching matrix. The matching matrix has been used to assess the 

accuracy of the clustering process and to understand if there are improvements with respect to the traditional 

approach. The comparison between real and predicted clustered signals gives an idea about the capacity of 

the algorithm in correctly identifying the structural condition. The rows and the column of the matching 

matrix correspond to the real and to the predicted classes of the signal, respectively.  

A combination of test undamaged dataset (Test_UD) and datasets corresponding to the different levels of 

damage, described in subsection 4.1, are used. The total error (TE) has been defined as: 

𝑇𝐸 [%] = 𝑀𝐴[%] + 𝐹𝐴[%] 
Where MA and FA correspond to missing and false alarms defined in the aforementioned subsection. 

 

For all the three cases, the number of signals is less than the hypothesized Critical threshold, so the number 

of used clusters is equal to 2. The following figures 4, 5, and 6 display the division of the data (signals) for 

each analysed Dataset. Cluster 1 includes the signals belonging to the undamaged condition while Cluster 2 

contains the ones of the damaged condition.  Of course, both are associated with a centroid. 

359



 AI based bridge health assessment 

REC 2021  

 

− Dataset 1: Test_UD and LD7 

 
Table VI. Matching matrix Datasets 1 

Real                                             Predicted Healthy Damaged TE 

Healthy 68.8% 31.2% (FA) 60.3% 

Damage 29.1% (MA) 70.1% 

 

As can be seen in Table VI, the total error is similar (variation of about 3%) to the one obtained by the 

traditional approach. The error induced by missed alarm is reduced by half at the expense of the error of false 

alarm. Thus, although the error level is still high, the clustering technique results on the safe side. 

 

 
Figure 4. Clustered data (Dataset 1) 

 

− Dataset 2: Test_UD and LD8 

 
Table VII.  Matching matrix Datasets 2 

Real                                             Predicted Healthy Damaged TE 

Healthy 77.1% 22.9% (FA) 27.0% 

Damage 4.1% (MA) 95.9% 

 

From the comparison between Table VI and Table VII, it is clear that the total error is drastically decreased 

in the passage from Dataset 1 to Dataset 2. Compared to the traditional approach, the total error is increased 

(about 50%) but it is worth to stress that the error due to missed alarm has decreased more than four times. 

In this case, this approach results more expensive than the traditional approach, due to the fact that about 1/5 

of the undamaged signals have been indicated as damaged. On the other hand, the drastic reduction of missing 

alarm makes this technique on the safe side. 
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Figure 5 Clustered data (Dataset 2) 

 

− Dataset 3: Test_UD and LD9 

 
Table VIII. Matching matrix Datasets 3 

Real                                               Predicted Healthy Damaged TE  

Healthy 100.0% 0.0% (FA) 2.1% 

Damage 2.1% (MA) 97.9% 

 

In this case, the cluster approach shows a very good performance but slightly lower than that of the traditional 

approach. 

 

 
 
Figure 6 Clustered data (Dataset 3) 

Better results in terms of missing alarms have been achieved for all the three damage levels if as number of 

clusters the maximum   value, among the optimal value calculated by means of the three criteria, is used. The 

smallest damage level LD7 shows the most marked absolute improvement.  Indeed, for LD7 the percentage 

of errors for missing alarms goes down to the value of 6.25%. There is a reduction of about four times 

compared to the previous case. The obtained total error is less than the previous, showing a value of 52.05%. 

Of course, the error for false alarms increases. However, this growth is much lower compared to the decrease 

of the missing alarms errors. From these considerations it can be deduced that, if the structure has been just 

built and so the first hypothesized damage level is very small (LD7 - LD8), the calculation and the use of 

kopt would be appropriate also if there are a number of signals less than 2*Ccritical. It could be greater than 

2 dues to the presence of environmental effects.  
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Indeed, a very strong similarity could be present between the undamaged states measured at high temperatures 

and damaged states measured at low temperatures. On the other hand, in cases in which a greater level of 

damage is immediately present (LD9) the use of the maximum value of k implies worst performance of the 

algorithm due to the fact that a small gain in terms of missing alarms and a huge increase of false alarms 

occurs. Concluding, the k-means algorithm shows promising results in particular for very small damage 

levels. Its utilization implies a marked decrease of the error due to missing alarm. It produces acceptable 

outcomes from the safety point of view already for the damage level LD7. It avoids several missing alarms, 

paying the price of increasing the false alarms. For the early-stage damage levels it is preferable to the 

traditional approach as it ensures higher safety. 

 

4.2.4.4. Recognition of increasing damage. When the critical unit of time is reached, the optimal value of k 

is calculated. A higher value of k, in the succession of control units, could point out an increase in the level 

of structural damage. By utilizing the three criteria for the calculation of the optimal value of k, in the analysis 

of the data covering all the three damage levels (LD7-LD8-LD9), it is possible to verify the capacity of 

recognition of an increasing damage. The results for the first three time units are displayed in Figure 7, 8 and 

9, respectively. A change in the optimum value of k is displayed for all the three units by the Gap criterion 

and for the last two units by the Calinski-Harabasz criterion. 

 

 
Figure 7. First unit                                             Figure 8. Second unit                                         Figure 9. Third unit                 

 

 

 

5. Conclusions 

 

This paper has illustrated two different approaches to address the bridge health assessment. Both the methods 

start from the elaboration of the acceleration data by means of the SSI-UPCX method that provides not only 

modal parameters but also their uncertainty. This additional information allows an increased awareness of the 

reliability of the modal parameters. The natural frequencies, due to their very low uncertainty, have been 

selected for the damage identification goal. The analysis aims to compare the performance of the two 

approaches using a test sample incorporating variability induced by environmental effects. 
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The main findings, observations, and conclusions stemmed from this survey are summarised as follows: 

• The traditional approach shows relevant errors for very small damage levels. Such errors are solely 

due to the worst part of the total error, namely the missing alarms. 

• For the small damage levels analysed, the clustering technique has a better performance. It greatly 

reduces the error due to missing alarms but increases the one due to false alarms. From the engineers’ 

point of view, this swap turns out undoubtedly positive. It is safer to correct a false positive by means 

of inspections than not to grasp the presence of damage.  

• For very small damage level, an increased computational effort in the calculation of the optimum 

value of numbers of clusters in the application of the k-means algorithm produces a further 

improvement as regards missing alarm errors. Thus, this clustering approach is preferable if a high 

level of safety must be ensured. Another positive aspect of this method is the possibility to observe 

the evolution of the optimal number of clusters for assessing the increase of damage. Indeed, it is 

possible to deduce a changing in the data and a potential growth of damage severity from a growing 

value of optimal k over time. 

• A greater uniformity, completeness, and quality of data would imply an improvement of the already 

promising performance of the clustering algorithm.  The role of the persistence number (N) and the 

optimal number of clusters (Kopt) is decisive in mitigating the expected increase in error, in terms of 

FA and MA, in critical scenarios for the k-means algorithm (clusters with sizes and densities 

markedly different). 

• In the application of the clustering algorithm, the uncertainty in the choice of the optimum value of 

clusters due to the not-perfect correspondence among all the values indicated by various criterions is 

an aspect that must be improved. Certainly this, and the consequent not-perfect correspondence 

between each optimal value and the real number of data groups, suggest the research of more 

performant features as a perspective of this work. More effective features would imply a betterment 

for both the investigated approaches. In particular, with higher quality of the signals, the Spectral 

Moments (SMs) could be exploited as damage features. In (Alamdari at al., 2017) the high ability of 

these features, covering the whole frequency range, in detecting subtle differences between normal 

and distorted signals have been evidenced. Moreover, the use of indicators for modal shapes like 

MAC and COMAC, could be accounted due to the fact that they are the less sensitive to other factors. 

Then again, the combination of several parameters could lead to better damage-sensitive features. 
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