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Abstract 

 

Batch freeze-drying of pharmaceutical products in vials may result in a high degree of intra-batch 

variability due to several reasons, e.g. non uniform heating rate in the drying chamber. Therefore, 

product quality in the final product has to be checked in a statistically significant number of samples, 

in particular in the stage of process development. Here, Fourier-Transform Near-Infrared 

Spectroscopy is proposed as a fast, non-destructive technique for an off-line Statistical Quality 

Control application. At first, results obtained in a batch where product features are satisfactory are 

used to identify a target quality threshold. Then, a statistical controller is developed in such a way 

that in a production run it is possible to quickly check if product quality exceeds the desired threshold 

or not. Two approaches based on multivariate analysis are presented: one employs the Hotelling T2 

and Mahalanobis statistics to calculate control charts, the other is an application of Partial Least 

Squares for discriminant analysis (PLS-DA). Control charts and PLS-DA were trained with samples 

obtained in a run where sucrose solution was processed and validated in other runs where the final 

product was known to have the desired qualitative characteristics or not. Overall, out-of-specification 

samples can be predicted by control charts and PLS-DA with 99% and 98% accuracy respectively. 

PLS-DA was shown to be able to better identify samples correctly processed, while the control charts 

where more accurate to identify vials where something went wrong. Focusing on residual moisture 

of the final product, all samples where it was higher than the target value were always correctly 

identified. 
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List of abbreviations 

 

 

CL  Control Limit 

CQA  Critical Quality Attributes 

KF  Karl Fischer 

LV  Latent Variable 

NIR  Near-Infrared 

NIRS  Near-Infrared Spectroscopy 

PAT  Process Analytical Technology 

PC  Principal Component 

PCA  Principal Component Analysis 

PLS  Partial Least Squares 

PLS-DA Partial Least Squares Discriminant Analysis 

SNV  Standard Normal Variate 

SPE  Squared Prediction Error 

SQC  Statistical Quality Control 

T2  Hotelling T2 

 

 

List of symbols 

 

A  number of latent variables 

b  mean value of the SPE distribution 

B  regression matrix of PLS 

E  matrix of residuals (M x J) 

ej   residual of the j-th observation 

Fα(A, M-A) F-distribution  

J  number of wavelength 

M  number of samples 
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P  loading matrix (J x A) 

Q2  model predictivity parameter 

r  correlation coefficient 

R2  fraction of the total sum of squares explained 

T  score matrix (M x A) 

ta  a-th score 

W*  fictious loading matrix (J x A) 

X  spectral data matrix (M x J) 

Y  quality attributes matrix (M x 1) 

 

Greeks 

α  confidence interval 

λa   variance of the a-th latent variable 

υ  variance of the SPE distribution 

χ2
α  χ2-distribution 
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1. Introduction 

 

Freeze-drying is a low-temperature and low-pressure drying process, aimed at drying a product 

with minimal thermal stress [1]. It should be the preferable drying technique in the 

manufacturing of pharmaceutical products, especially for formulations that are not stable in 

liquid phase and contain active compounds sensitive to heat, e.g. biotech drug products [2,3]. 

Water removal allows long-term stability, and freeze drying additionally guarantees sterile 

conditions, that are essential in a pharmaceutical factory. 

A freeze-drying cycle is essentially made up of three steps. Firstly, the (bio)pharmaceutical 

solution is frozen, to convert the liquid solvent into ice. Following, the sublimation of ice 

crystals occurs at very low temperature and pressure conditions (primary drying) and the 

product turns into a solid cake. Finally, during the secondary drying, the temperature is 

increased, while low pressure is maintained, to allow the desorption of bound water [3]. 

Because of the potential effect on the patients, the pharmaceutical field is strictly regulated by 

authorities, and final products have to meet stringent specifications [4]. The focus is on the 

critical quality attributes (CQAs) of the product, including, for example, the residual moisture 

(RM), the recovery of the biological activity of the active ingredient, the potency and purity of 

the product [5]. CQAs are usually evaluated off-line, in the final product, by means of 

destructive and time-consuming laboratory analysis, e.g. Karl Fischer (KF) titration and 

chromatographic assays. As a consequence, very few samples are analyzed, giving a measure 

that could be poorly representative of the entire batch. In fact, the intra-batch variability of the 

samples from a batch is an intrinsic feature of the process [6]. Pressure gradients between 

shelves [7], non-uniformity of the shelf surface temperature [8], and different radiative heat to 

the edge vials [9] are some of the phenomena responsible of the intra-batch heterogeneity. 

Besides, the non-uniform nucleation temperature affects the size of the ice crystals and, at the 

end, the structure of the dried product.  Their effect is obviously more remarkable in large scale 

equipment of manufacturing lines [7]. 

In this framework, Fourier-Transform Near-infrared Spectroscopy (NIR Spectroscopy or 

NIRS) can be regarded as a powerful analytical technology as it is non-destructive and non-

invasive and requires a short analysis time [10]. NIR Spectroscopy is a method that uses the 

near-infrared region of the electromagnetic spectrum (in the range 14300-4000 cm-1), by 

measuring the absorbance of the system related to the vibrational transitions in molecules [4]. 

Details about NIR theory can be found in many literature reviews [11-14].  

NIR radiation can be adsorbed only by vibrations that result in changes in dipole moment, hence 
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by molecules having atomic groups with permanent or induced dipoles. Molecules with O-H, 

N-H, C-H, S-H groups are thus strong NIR absorbers [4] and this peculiarity makes NIRS a 

proper technique for detecting molecules like water, sugars and proteins, i.e. the molecules of 

main interest in a freeze-dried drug product. 

Actually, if NIRS is compared to other spectroscopic techniques that have been applied to 

freeze-dried products, e.g. Raman spectroscopy, it comes out that NIRS is particularly suitable 

for detecting the residual moisture [4,15]. This is one of the most crucial CQAs, since water 

strongly affects the stability of the product over its shelf-life [16]. Moreover, NIRS was proved 

to be able to investigate proteins features in freeze-dried products [17-20], thus making NIRS 

a suitable tool for investigating the end-of-batch quality of biotech drug products. 

Freeze-dried samples can be analyzed in the sealed vials, as no sample pretreatment is required, 

and the cake can be scanned through the glass vial [21-23]. Also, samples can be evaluated in 

the immediate vicinity of the manufacturing line [4], making any shipments to laboratories for 

analysis unnecessary. Consequently, more samples can be tested, giving more representative 

information about the batch. 

Several applications of NIRS were proposed in literature for the freeze-drying of 

pharmaceutical products, both off-line and in-line. In-line applications were mainly aimed at 

implementing NIRS as a Process Analytical Technology (PAT) tool, monitoring the product 

modifications while being freeze-dried [4,15,24]. The off-line applications could be of two 

types: 

- quantitative, i.e. NIRS was used for measuring a specific physical or chemical property 

of the sample, e.g. the residual moisture [21-27]; 

- qualitative, i.e. NIRS was employed to describe a product by comparing some of its 

characteristics with those of a reference sample. 

The quantitative methods require an extensive experimental campaign for calibrating a model 

relating the spectrum measured to the property of interest. 

The qualitative applications are based on the capacity of NIRS to gather in a spectrum several 

characteristics of a product. This can be exploited to compare samples to a reference one and 

assess the overall equivalence between them.  

In the pharmaceutical field NIRS was implemented, for example, for the quality control of 

incoming raw materials, of blend uniformity, in the evaluation of hydrate forms formation, and 

of interactions between excipients [20,28-32].  

Conversely to the NIRS-based quantitative models, the qualitative NIRS applications for 

freeze-dried product have been poorly investigated, mainly to prove the ability of NIRS-based 
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methods to discriminate between different products and different conformational structures of 

some components.  For example, Bai et al. demonstrated that a native protein structure could 

be distinguished from the structure denatured by the freeze-drying process [17]; Zhou et al. 

were able to distinguish the surface water from bound water in the crystal lattice of a freeze-

dried drug product [33]; Hansen et al. proved the applicability of NIRS to classify different 

freeze-dried viral vaccines [34]; in a later work of Hansen et al. NIRS was used for evaluating 

the interactions of the excipient with the virus in some vaccines during a stability study [35]; 

Li et al. [23] and Azheruddin et al. [36] used NIR spectra to evaluate cake structure and collapse. 

At this point it has to be underlined that a qualitative approach has remarkable advantages over 

the quantitative methods: 

- the calibration is much faster and less demanding, since it is just required the availability 

of some samples in compliance with the reference; 

- lab analysis is performed only on very few samples, thus jeopardizing the statistical 

relevance of the obtained results.  

Usually, a Quality-by-Design approach is adopted through the development of the design space 

[37], to assure a good quality of freeze-dried products at the end of the cycle. The design space 

encompasses the combinations of process variables and parameters proved to give a product in 

compliance with the quality targets [38], and the final product is considered in compliance with 

the specifications if the cycle has been run within the design space limits. However, it may 

happen that a cycle runs outside the design space for a certain time because of unexpected faults, 

and this raise uncertainty about the product final quality. In this case statistical control can be 

helpful to  be performed off-line, using Statistical Quality Control (SQC) [39]. SQC is a quality 

control procedure where samples are compared with a reference to check if they are compliant 

or not with the target.  

In this paper an at-line application of NIRS is presented, intended to SQC. Two multivariate 

methods were developed, based on the statistical comparison with a reference dataset, namely 

a multivariate control charts approach, built from a Principal Component Analysis (PCA), and 

a Partial Least Squares Discriminant Analysis (PLS-DA). According to these qualitative 

analysis at the end of the cycle, a freeze-dried product may be accepted as in compliance with 

the reference.  Conversely, it may be rejected if out-of-specification. It has to be remarked that 

this approach is fairly different from the more traditional one using NIRS to evaluate the 

residual moisture in the final product and, thus, taking a decision about acceptance or rejection 

of the product by comparing the measured value with the target one. In fact, the final output of 

the system proposed and investigated in this paper will be an acceptance or rejection statement 
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for each vial, and not the residual moisture of the sample. The advantage of this approach is 

that it is not required to carry out any preliminary calibration (e.g. using the time-consuming 

and destructive KF titration) of the model that allows getting the residual moisture from the 

NIR spectrum. Moreover, the reference model may be obtained from the spectra collected in 

one of the validation runs carried out in the production freeze-dryer, without running any 

additional tests. Finally, the actual NIR spectrum of the processed sample is globally compared 

to the reference ones and, thus, all the reasons that may result in a different spectrum (e.g. cake 

collapse, erroneous formulation, …) may be accounted for. 

 

 

2. Materials and Methods 

 

2.1 Experimental procedures 

 

2.1.1 Case study 

To develop and test the algorithms proposed in this study, three types of samples were needed:  

#1: reference samples, for building the control charts and training the PLS-DA; 

#2: samples of the same product of group #1, correctly processed as the reference 

samples; 

#3: samples where the product has not been correctly processed or contains some 

excipients not included in the formulation of the reference samples. Thus, these samples 

should be rejected. 

Groups #2 and #3 of samples are needed for validation purposes. Part of the samples of group 

#3 is also needed for PLS-DA development, as it will be shown in the following. 

The product tested is a sucrose 6%w (Merck Life Science, Darmstadt, Germany) aqueous 

solution, processed into 2R glass vial (Nuova Ompi, Piombino Dese, Italy), with a filling 

volume of 1 mL. For samples preparation ultra-pure water by a Millipore water system (IQ 

7000, Merck Millipore, Burlington, USA) was used.  

The product was freeze-dried in a pilot-scale freeze-drier (Lyofast Mini 1.1, IMA Life, 

Bologna, Italy) at Guidonia Montecelio (Italy) site of Merck Serono SpA. A single freeze-

drying cycle was run, and the operating conditions of the cycle were the following: 

- freezing at -45°C for 6 h, with an annealing step at -15°C for 2 h (cooling/heating rate 

set at 2°C/min); 

- primary drying at -25°C and 5 Pa for about 34 h (heating rate set at 2°C/min); 
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- secondary dying at 35°C and 5 Pa for 15 h (heating rate set at 1°C/min). 

Care was paid to check that ice sublimation was completed before rising shelf temperature from 

the value used in the primary drying to those of the secondary drying stage. Pressure difference 

between Pirani and Baratron gauges was used to this purpose, and only when the difference in 

the pressure values was lower than the accuracy of the tools, ice sublimation was considered to 

be completed, 

About 900 vials were processed, arranged in metal frames with a honeycomb layout, in direct 

contact with the freeze-dryer shelves. At the end of the process, samples were automatically 

crimped at the end of the unloading line, to prevent any contaminations from the environment. 

Two groups of 270 vials each (#1 and #2) were set up by selecting samples randomly among 

those produced. The first set (#1) was adopted as the reference, the second one (#2) was used 

for the validation step. As both datasets were obtained from the same batch, it is expected that 

all samples of dataset #2 are correctly evaluated as meeting the quality specification of the 

product. In order to accept #1 as reference, the CQA target was a residual moisture lower than 

1%. Therefore, KF titrations were performed on 25 vials of group #1. Since this analysis is 

usually performed on a limited number of samples, e.g. few units, the number of vials analyzed 

in this study was thought to be higher and more representative. Even though #2 was produced 

in the same batch of #1 and the same range of residual moisture values was expected, also 25 

samples of #2 were analyzed by KF titrations, as a further evidence of #2 being in compliance 

with #1. The coulometric titrator employed was a CX30 Mettler Toledo (Columbus, USA), the 

reactants purchased by Sigma-Aldrich (Saint Louis, USA), and the Standard Operating 

Procedure of the company was followed to perform the analysis. As expected, the samples of 

#1 and #2 had similar residual moisture values, as shown in Table A1 in the Supplementary 

Material, ranging between 0.51%  and 0.98%, lower than the maximum acceptable. As a further 

check, mainly related to the limited number of samples whose residual moisture was measured 

through KF titration, assuming some sort of normally distributed residual moisture, the obtained 

values were fitted with a normal distribution. The mean value (± the standard deviation) 

calculated are respectively 0.72% (± 0.09%) for group #1, and 0.73% (± 0.10%) for group #2. 

It appears that, for the batch size considered, no samples have a residual moisture higher than 

1%, as expected, both in group #1 and #2, thus proving the suitability of batch #1 as reference 

batch, and of dataset #2 as a batch that the control system has to accept as the product meets 

the target quality. 

A second freeze-drying cycle was performed in a lab scale freeze-dryer (Lyostar3, SP 

Scientific, Warminster, USA), in order to produce samples of the group #3, in all cases out-of-
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specification. Three groups of samples were produced, as detailed in the following: 

(a) 100 vials of sucrose 6%w, which is the same formulation as in case #1. However, at 

the end of the freeze-drying cycle, these samples were humidified manually, as 

explained below, so that the only difference with the #1 was the higher residual 

moisture; 

(b) 50 vials of trehalose 6%w, having the same solid fraction as formulation #1, but a 

different excipient, though amorphous as sucrose; 

(c) 50 vials of a mixture of sucrose 6%w and arginine 2%w, hence with the same amount 

of sucrose as formulation #1, but with the addition of an amino-acid. 

The above sample sets (a), (b), and (c) were used to set up, respectively, the #3a, #3b, #3c 

sample sets. 

To prepare these solutions, sucrose and L-Arginine Monohydrochloride were supplied by 

Merck Life Science (Darmstadt, Germany), trehalose dihydrate by Sigma-Aldrich (Saint Louis, 

USA), and ultra-pure water by a Millipore water system (IQ 7000, Merck Millipore, Burlington, 

USA ). Similarly to the #1 and #2 samples, also samples of these groups were freeze-dried in 

2R vials, filled with 1 mL of solution. All samples were freeze-dried according to the same 

protocol as for the #1 and #2 samples: the goal of this test was to check if the system was able 

to properly identify out-of-specification vials and, thus, it was not necessary to carry out any 

process transfer operation from the first to the second freeze-dryer (i.e. to modify the shelf 

temperature/chamber pressure aiming to get the same product dynamics) as, in all cases, the 

product was not meeting target quality for several reasons. 

For the humidification of the samples of group (a), given the weight of the dried cake and 

assuming an initial residual moisture equal to 0.5%, the amount of water necessary to get a final 

residual in the range 1.5% - 5.0% was calculated. Then, vials were unsealed, the calculated 

amount of water dropped on the internal face of the stoppers, laying on a flat surface, and the 

vials closed upside-down on the stoppers, i.e. with the bottom facing upside. This allowed the 

diffusion of water, avoiding the drops to get in direct contact with the cake, which would cause 

a partial collapse of the cake structure. Vials were left in the upside-down position for more 

than 24 h, to allow a complete diffusion of water. The time after humidification was proved in 

a previous study [55] with similar samples of freeze-dried sucrose to be long enough to allow 

an homogeneous distribution of water in the cake. Then vials were crimped and stored at room 

temperature with the vials not-humidified. The samples of group (a), after humidification, were 

selected as sample set #3a, made of 95 samples. To assess the effect of the humidification, 10 

samples of #3a were analyzed by KF titrations, resulting in a range of residual moisture between 
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1.55% - 5.46%, as shown in Table A2 in the Supplementary Material. This means that the gap 

between the sets of samples considered acceptable and the set of samples non-compliant was 

about 0.57% in terms of residual moisture. 

The #3b and #3c sample sets were made by selecting 35 and 25 samples respectively from the 

products of group (b) and (c). Additionally, also 5 samples of #3b and 5 of #3c underwent to 

KF titration, in order to verify that their residual mositure contents were comparable with the 

residual moisture of #1: results are shown in Table A2. 

Since the KF titrations proved that #1, #3b, and #3c had similar residual moisture, the 

discrimination performed by the models presented for groups #3b and #3c was not affected by 

the residual moisture content. They were used to evaluate the ability of the algorithms to 

distinguish different amorphous excipients and to detect the presence of an amino-acid. On the 

other hand, #3a was meant to be different from #1 just because of the higher residual moisture, 

being essential proving that the models can distinguish samples with higher residual moisture.  

 

2.1.2 Spectra acquisition 

All the samples of the sets presented above (#1, #2, #3a, #3b, #3c) were analyzed by NIRS, in 

order to obtain the spectral datasets. A Fourier Transform NIR spectrometer (Antaris MX FT-

NIR, Thermo Fischer Scientific, Waltham, USA) was used to this purpose: the instrument was 

equipped with a halogen NIR source and an InGaAs detector. Spectra were recorded in diffuse 

reflectance mode, with 32 scans, a resolution of 8 cm-1, and a gain of 1, in the wavelength range 

10000 - 4000 cm-1. 

For each sample, the spectrum was obtained as the average between two spectra, to reduce the 

noise and get a better-defined spectral path. The probe of the spectrometer was installed on the 

visual inspection station, just beside the unloading line (Figure A1 in the Supplementary 

Material), and samples were scanned through the side wall of the vials, i.e. the NIR beam spot 

pointed on the side of the freeze-dried cakes. A previous study [55] proved that comparable 

results could be obtained by processing spectra collected from the side wall or through the 

bottom of the vial. Thanks to spectral pretreatment techniques, which are described in the 

following, the effects due to the curvature of the glass are strongly minimized, thus legitimizing 

the use of spectra collected both through the side or the bottom of the vial. The setup adopted 

was suitable for: 

(i) setting an at-line procedure that would speed up the analysis of the batch; 

(ii) gathering in a single station two quality control analysis; 

(iii) managing the acquisition time of the spectra, in order not to slow down the unloading 
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of the freeze-drying chamber, that would occur if vials were scanned directly on the 

unloading line. 

 

2.2 Multivariate analysis 

 

Each NIR spectrum is made of hundreds of values (one for each wavelength) and in case of off-

line applications, as the one here presented, and several samples are analyzed. Also, one or 

more spectra are collected for each sample, aiming at repeating the analysis to get signals of 

better quality [40], or to acquire information from different spots of the sample [30,41]. 

Therefore, the amount of data obtained for a NIRS application is huge and chemometric 

analysis is needed to extract relevant information [4]. Among the chemometric methods 

multivariate analysis is widely applied. This is a statistical procedure for analyzing data when 

many (correlated)-variables are involved at a time, and several measurements are available for 

each sample [20]. Among the multivariate analysis techniques Principal Component Analysis 

(PCA) and Partial Least Squares (PLS) are widely used. 

PCA and PLS are based, respectively, on principal components (PCs) or latent variables (LVs), 

which are not directly observed, but inferred from the variables that can be observed and 

measured. PCA is a linear algebra tool, which reduces a complex dataset, in this case the 

spectral dataset (X), to a simple structure in the space described by the PCs. In this space 

extracting relevant information is easier [42]. PLS is a linear regression method that models the 

relationship between the matrix of spectral data (X) and the matrix of attributes (Y). The main 

difference between two methods is that PCA describes the variability among the dataset, i.e. 

the variance, while PLS is focused on the covariance, that is the joint variability of the dataset 

and its attributes [43]. An extensive description of these techniques can be found in dedicated 

works [43-46]. 

 

2.2.1 Principal Component Analysis and multivariate control charts 

PCA is based on the linear decomposition of the M x J data matrix X in the reference system 

made of A latent variables, in the form: 

X =  T P′ + E (1) 

In this case, the dimension of the data matrix X corresponds to the number of samples (M) and 

to the number of signals (J) collected for each spectrum, i.e. to the J wavelengths scanned for 

each spectrum. P is the A x J loading matrix, and the loadings are the vectors constituting the 
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new reference system, along the direction where the variance is maximum [47]. The size of the 

loading matrix, i.e. the number of PCs, is a crucial point: the higher the number of PCs used, 

the more variance among X is explained, but overfitting must be avoided. T is the M x A matrix 

of the scores, that are the projections of the original observations in the new basis, i.e. they 

represent the spectra in the new reference system. The distances between the observations and 

their projection in the new reference system are the residuals, collected in the residuals matrix 

(E). The residuals are minimized by the decomposition to get a better representation of the 

observations in the new reference system [48]. 

PCA can be used for a discriminant analysis by means of two multivariate control charts. These 

are built accordingly to two statistics, the Hotelling T2 (T2) and the Squared Prediction Error 

(SPE), obtained by calculating for each observation i: 

T2𝑖 = ∑
ta

2

λa

A

a=1

 (2) 

SPE𝑗 = ∑ ej
2

J

𝑗=1

 (3) 

where ta is the a-th score, λa the variance corresponding to the a-th PC and ej is the residual of 

the j-th observation [39]. The T2 is related to the Mahalanobis distance of the i-observation 

from the origin of the new reference system, weighted by the corresponding variance λa. Thus, 

an observation with an anomalous value of T2 does follow the variance structure of the model, 

but it lies outside the distribution where most of the observations are, i.e. it has an extreme value 

of variance. The SPE is the perpendicular distance of the i-observation from the (hyper)-plane 

described by the loadings vectors, giving a measure of what the model does not fit. An 

observation with a high SPE has thus some variables that are not taken into account by the 

model, i.e. it does not follow the variance that is suitable to characterize the major part of the 

observations [49]. 

The control charts make use of control limits (CLs) that are some reference values calculated 

from the T2 and SPE statistics. If an observation has a T2 or SPE value higher than the 

respective CL, it may be considered as an outlier. CLs are calculated, for the first A PCs, as 

follows: 

CLT2 =
(M2 − 1)A

M(M − A)
Fα(A,I−A) (4) 
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CLSPE =
υ

2b
χα

2 (
2b2

υ
) (5) 

where α is the confidence interval of the χ2
α distribution and of the  Fα(A, M-A) distribution with 

(A, M-A) degrees of freedom, and b and υ are respectively the mean and the variance of the SPE 

distribution [48]. Some clarifications about the meaning of the confidence interval may be 

supportive. As an example, if α is equal to 99%, all the observations within the 99% of the 

distribution are considered, while if α is equal to 95% a smaller number of samples (within the 

95% of the distribution) is taken. Consequently, only the observations that better fit the 

distribution are found within the CLs when a lower value of α is adopted, thus representing a 

more stringent condition. 

 

2.2.2 Partial Least Squares Discriminant Analysis 

PLS makes a linear decomposition, of both X and Y in this case, looking for some LVs able to 

model X and Y at the same time. Then, the matrix of regression (B) is calculated with the 

following linear combination [43]: 

B =  W∗ Q′ (6) 

Q is the M x A loading matrix of Y describing the covariance in Y. W* is a J x A fictious loading 

matrix, made of the coefficients (or weights) that describe the covariance between X and Y. 

The fictious loading matrix W* is needed to project the observations in the space of the PLS 

decomposition, i.e. to calculate the score matrix T [48]: 

T =  X W∗ (7) 

Finally, given a new dataset (Xpred), its quality attributes (Ypred) can be predicted with the 

regression matrix [48]: 

Y𝑝𝑟𝑒𝑑  =  X𝑝𝑟𝑒𝑑 ∙ B (8) 

A type of PLS is PLS for Discriminant Analysis (PLS-DA) [50]. It is focused on the separation 

of the observations in classes and, after training, it is able to associate a new observation to a 

specific group [34]. For this purpose, the Y matrix is filled with binary values, representing the 

membership of an observation to a class rather than to the other, i.e. the attribute associated to 

the observation is qualitatively rather than a precise number coming from a certain physical 

property. Actually, a strategy to turn the Y matrix into a categorical matrix, is introducing two 

dummy values (or flag values), i.e. binary values of Boolean type (true or false). Thus, Y turns 

out as an (M x 1) categorical matrix, i.e. an array of binary values describing a categorical 
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variable of X [51]. A regression matrix is obtained, and the outcome results in a predictive 

clustering of the observations, that can either be displayed in a score plot where the clusters 

may be distinguished, or adapted to a binary form in the Ypred matrix. 

A PLS-DA can be validated through a permutation test (or randomization test), aimed at testing 

the significance of the statistics obtained with the model [52,53], i.e. the model is not spurious 

and it does not fit just the calibration set. The categorical matrix of attributes Y undergoes a 

number of random permutations (Yrand), while the data matrix X is kept not permuted, and the 

test is based on the comparison between the original model and the permuted ones, by means 

of two parameters, Q2 and R2. The latter is the fraction of the total sum of squares explained 

by the model, i.e. it gives a measurement of the goodness of the fit in the training set, and Q2 

is indicative of the model predictivity [34,53]. The Q2 and R2 values are plotted in a 

permutation plot, with respect to the Pearson correlation coefficient (r) , calculated for each 

permutation with the original Y and the permuted (Yrand). For a high validity of the model, the 

original Q2 and R2 values are expected to be higher and outside the distribution of the permuted 

ones [53]. Negative values of the indicators may also occur, as a further indication of the model 

validity [50]. For each permutation R2, Q2, and r are calculated with the following equations 

[54]: 

R2 (Q2) = 1 −
∑ (y𝑖 − y𝑝𝑟𝑒𝑑,𝑖)

2𝑀
𝑖=1

∑ (y𝑖 − Ym)2M
𝑖=1

 (9) 

𝑟 =
M ∑ (y𝑖 ∙ y𝑟𝑎𝑛𝑑,𝑖)

𝑀
𝑖=1 − (∑ yi

𝑀
𝑖=1 ) ∙ (∑ y𝑟𝑎𝑛𝑑,𝑖

𝑀
𝑖=1 )

([𝑀 ∑ y𝑖
2𝑀

𝑖=1 − (∑ y𝑖
𝑀
𝑖=1 )2] [𝑀 ∑ y𝑟𝑎𝑛𝑑,𝑖

2𝑀
𝑖=1 − (∑ y𝑟𝑎𝑛𝑑,𝑖

𝑀
𝑖=1 )

2
])

0.5 (10) 

where 𝐲𝒊 , 𝐲𝒑𝒓𝒆𝒅,𝒊 and  𝐲𝒓𝒂𝒏𝒅,𝒊 correspond to the i-th observation of the Y, Ypred and Yrand 

matrices, and Ym is the mean value of the Y matrix, paying attention to take the matrices of the 

calibration or validation set if R2 or Q2 is calculated. 

 

 

3. Data processing 

 

Processing of NIR spectra and data modeling were performed by means of algorithms written 

ad-hoc in MATLAB (R2019b), based on the algorithms described by McGregor and Kourti 

(1995) [46] and Wold (1992) [56]. 
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3.1 Pretreatment of spectra 

Prior to modeling, pretreatments of spectra are desirable in order to reduce some phenomena, 

e.g. light scattering, baseline shift, random noise [57]. Pre-processing of spectra was performed 

by means of standard normal variate (SNV) to study the spectrum in term of its variability from 

the mean value, to reduce the variability between samples due to light scattering, and to adjust 

the base-line shift [58]. SNV consists in subtracting the mean value of the spectrum from all its 

points  and dividing for its standard deviation. 

Attention was paid to reduce fictious modifications from the original data, and preserve the 

original information contained in the spectra. Therefore, other common pretreatment 

techniques, e.g. scatter corrections, derivates, and smoothing [42], were not implemented, since, 

for this application, the only SNV was found to return data suitable enough for high accuracy 

models. 

After this, spectra have to be carefully evaluated as in some cases the NIR probe was not in 

perfect contact with the monitored vial and, thus, the spectrum appeared very different from the 

expected one. This issue is mainly related to our experimental setup, designed for proof-of-

concept purposes, and is expected to be solved in an industrial application. These spectra, 

obtained after vial unloading from the freeze-dryer, must be removed from the analysis. This 

could be done manually. Aiming to speed up this step, we used at first PCA for removal of 

these spectra (considered as outlier) and then, we quickly checked that removed spectra were, 

effectively, the anomalous spectra, with a trend that could not be due to a different water content 

in the sample. No outliers of this type were evidenced in datasets #1 and #2, while, respectively, 

6, 3 and 3 outliers were identified in datasets #3a, #3b and #3c. Figure A2, in the Supplementary 

Material, shows the spectra of all the sets involved, after pretreatments and removal of outliers 

over a wavelength range reduced to 9500 - 4100 cm-1, since the signal collected at higher 

frequencies (wavelength lower than 4100 cm-1) was too noisy. Here, the differences between 

the reference spectra and the other sets can be appreciated. #1 and #2 clearly differ form #3a 

for the intensity of the peak around 5150 cm-1, a typical signal of water [22]. Only minimal 

differences can be seen with respect to #3b, while a very different shape characterize the spectra 

of #3c. 

In Table 1 the subdivision of the spectral datasets between the calibration and validation sets is 

summarized, for both the methods proposed. 

 

3.2 Multivariate control charts 
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3.2.1 Calculation of control limits 

The first step for building the multivariate control charts was calculating the CLs, and this step 

can be considered as the calibration phase of the method. The spectra of the reference set #1 

were used to this purpose. 

They were, firstly, processed by PCA, which was functional for calculating the Hotelling T2 

and SPE statistics. Hence, for each observation, i.e. for each spectrum of the calibration set, the 

T2 and SPE values were calculated by means of equations (2) and (3). Following, the CLs were 

computed accordingly to equations (4) and (5), with a confidence interval α of 95% and 99%. 

In this way, two sets of CLs were obtained: the T2 and SPE CLs at α = 95%, and at α = 99%. 

 

3.2.2. Validation 

The validation of the method consisted of comparing each observation of the validation sets 

with the CLs calculated with the reference. For the sake of clearness, two validation sets were 

used (see Table 1) instead of a single one: the first was #2, the second was made of the datasets 

#3a, #3b and #3c. Therefore, from the validation with the #2 datasets, all samples were 

supposed to be found in compliance with the reference. Conversely, all the samples of the other 

datasets were expected to be classified as outliers. 

For each observation of the validation sets, the T2 and SPE values were calculated by means of 

equations (2) and (3), and these values compared with the respective CLs. An observation was 

considered an outlier if its T2 or SPE value resulted higher than the corresponding CL 

calculated at 99% of the confidence interval. For this classification, the CLs at α = 99% were 

preferred to those at α = 95%. Indeed, a sample exceeding a CL at α = 95% might be an extreme 

observation, i.e. it lies in the outer region of the distributions, but still within the distributions, 

while a sample exceeding a CL at 99% is much more likely to be non-compliant. Lately, this is 

the reason why two confidence intervals were adopted, i.e. to distinguish between a potential 

extreme observation and a definitely outlier. 

 

3.3 PLS-DA 

 

3.3.1 Calibration 

A PLS-DA has to be trained by a categorical binary matrix Y, which means that samples of 

both classes (compliant or not with the target value) have to be involved in the calibration step. 

It has to be underlined that this is a major difference with respect to the calibration step 

performed for building the control charts. In fact, for calculating the CLs of the control charts, 
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only the reference samples were required. Conversely, for calibrating the PLS-DA at least two 

groups are needed: one of samples in compliance with the CQAs and one or more referring to 

samples that should be rejected. 

For this reason, the calibration set of the PLS-DA model was made not only by #1, but also by 

half of the spectra of the dataset #3, which were selected randomly (see Table 1). In this 

framework it has to be remarked that the two datasets considered in this part of the study are 

not composed by a “similar” number of samples, as group #1 is larger than group #3. Anyway, 

as this “unbalanced” set of data does not appeared to affect the results, no further analysis was 

considered to be necessary.  

Following, the Y matrix was filled with a flag value (+1, meaning “true”) if the corresponding 

spectrum belonged to #1, and with another flag value (-1, meaning “false”) if the observation 

was from another set. The calibration step consisted in performing a PLS regression with the 

calibration set and the Y categorical matrix, and calculating the regression matrix B by means 

of equation (6). In order to perform the PLS with the number of LVs that would yield the best 

model, the misclassifications of the calibration and prediction sets were analyzed as a function 

of the number of LVs [59]. For this analysis the numbers of misclassifications were quantified 

by calculating the RMSEC, RMSEP [60], and RMSECV [61] (respectively the Root Mean 

Square Error of Calibration, of Prediction, and of Cross Validation). The minimum number of 

LVs giving minimal errors was then selected for further calculations. 

 

3.3.2 Validation 

For the validation step of the PLS-DA, the data matrix X was made of the spectra of #2, plus 

the remaining half of the dataset #3 (see Table 1). The regression matrix was applied 

accordingly to equation (8), to predict the matrix of attributes Ypred associated to the validation 

set. The outcome of this prediction was managed in order to obtain a binary Ypred, so that each 

spectrum of the validation set could be identified by a flag value, i.e. +1 or -1 if the sample was 

classified as in compliance or as an outlier, respectively. 

Another validation of the PLS-DA was carried out through a permutation set. The dataset 

involved in the calibration were used for calculating R2 and those involved in the validation for 

calculating Q2. Following, the Y matrix underwent to 100 random permutations: for each 

permutation a new PLS-DA model was calibrated and validated, and the R2, Q2, and r values 

calculated through equations (9) and (10). Finally, the R2 and Q2 distributions of the permuted 

models were compared with the original R2 and Q2 values through a permutation plot. 
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4. Results and discussion 

 

4.1 Control charts performances 

Building the control charts was the first step, by making use of the sample set #1. After SNV, 

#1 dataset was analyzed by a PCA over the range 9500 - 4100 cm-1. The loading plot showed 

that the two PCs had lower loading values in correspondence of the outer frequencies, i.e. the 

highest and lowest frequencies were found to be less significative (as shown in Figure A3, in 

the Supplementary Material). Therefore, the wavelength range was reduced to 7700 - 4590 cm-

1, where higher loadings could be seen, in order to focus on the meaningful regions of the spectra 

and avoid further potentially misleading signals. At this point, the first 2 PCs of a new PCA 

were found able to explain more than 99% of the variance among the spectra, thus they were 

considered enough for modeling the spectra of #1. For the sake of completeness, the loading 

plot over the reduced wavelength range are also displayed in Figure A3. 

To underline the capacity of a PCA to discriminate observations in clusters, the score plot of 

all the datasets was traced and reported in Figure A4 in the Supplementary Material. This score 

plot is useful to test preliminary the ability of the PCA to differentiate observations of different 

groups, since the control charts are basically built on the discriminant capacity of a PCA. The 

score plot was obtained by the first two PCs of the PCA and it underlines the division in two 

clusters. The main cluster represents the reference spectra (#1), where also #2 scores could be 

found. The second cluster, clearly spaced from the previous one, contains all the other 

observations and a partial sub-division can be seen between the samples of #3a, #3b and #3c. 

It is not surprising that all the challenge data (#3) lie so far from the reference data. In fact, 

moisture level in dataset #3a is highly different from that of the reference batch (see Table A2), 

as expected as this test was carried out for this goal. With respect to datasets #3b and #3c, the 

difference in moisture level is not as high, but, due to the different excipient, the shape of the 

spectra is very different, as it appears in Figure A2. 

The CLs were calculated at a confidence interval α of 0.95 and 0.99, from the Hotelling T2 and 

SPE statistics obtained after the decomposition of #1 in principal components. As expected, the 

CLs at α = 0.95 were lower than the CLs at α = 0.99, since adopting a smaller confidence 

interval means taking as acceptable a smaller part of the distributions.  

The control charts of calibration are showed in Figure 1: the same observations used for the 
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calculation of the CLs are compared with the CLs. Provided that an observation was rejected if 

its T2 or SPE value exceeded the respective CL, 13.3% of the observations would have been 

rejected at α = 0.95, while only 1.5% appeared as rejects with α = 0.99. These percentages are 

considered as calibration errors, since all the samples used for calibrating were expected to be 

identified as compliant with the target. The difference between the calibration errors at α = 0.95 

and 0.99 is a direct consequence of accepting a smaller / larger part of the statistic distributions. 

As expected, the CLs at α = 0.99, being less restrictive, seemed more suitable for discriminating 

the outliers, and, lately, adopted as the reference values. 

Dataset #2, made of spectra in compliance with the reference, were processed to calculate the 

T2 and SPE values and compared with the CLs. The control charts reporting the validation with 

#2 dataset are given in Figure 2. It can be seen that almost all the observations had the T2 and 

SPE values below the CLs at α = 0.99, and the percentage of misclassified samples was barely 

1.2% (3 samples out of 245, i.e. almost 99% accuracy). Thus, #2 samples were classified, as 

expected, in compliance with the reference. 

A second validation was performed with the other datasets, being different for the product 

contained (#3b and #3c) or for the residual moisture (#3a). The validation with the #3a, #3b and 

#3c dataset is presented in Figure 3. Here the totality of the observations (113 samples) was 

correctly identified as not in compliance with #1. It is worth to notice that also the #3a 

observations were correctly identified as non-compliant: the method proposed was perfectly 

able to discriminate samples with higher RM, which was a fundamental ability to be proven. 

The role played by the SPE statistic is highlighted by the validation with these datasets, for 

which very high SPE values were calculated (up to more than 128). Actually, the datasets were 

made by spectra of samples with some variability not taken into account in the calibration of 

the model, i.e. the samples used for calculating the CLs did not contain any trehalose, nor 

arginine, and had a lower RM. This turned out in high SPE values, essentially meaning that 

there was some more variance lying in the structure of these datasets. 

 

4.2 PLS-DA performances 

The spectra of the training set (see Table 1) were pretreated by SNV and the categorical Y 

matrix was filled with proper flag values. After the removal of outliers by means of PCA, a 

total of 300 spectra were available for training the PLS-DA. The calibration dataset was 

analyzed through a PLS-DA over the range 9500 - 4100 cm-1, and the first 4th LVs turned out 

to be preferable for modeling. In fact, as displayed in Figure A5 in the Supplementary Material, 

the performance parameters, i.e. RMSEC, RMSEP, and RMSECV, dropped markedly till the 
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4th LV. Instead, the decrease in correspondence of the 5th LV was minimal. Therefore, the last 

LV was not used for performing the PLS-DA, as it did not appear to be very beneficial, and 

avoiding data overfitting was crucial. 

The loading plot of the first four LVs (Figure A6 in the Supplementary Material) was 

investigated to select the more significative wavelength range. The trends of the loadings 

showed that they had higher values in a narrower wavelength range, comparable with the range 

of the PCA performed for building the control charts. Thus, the same wavelength rage was 

selected to perform the PLS-DA. In Figure A6, also the loadings of the LVs over the smaller 

wavelength range are displayed, for sake of completeness. Finally, the model was trained by a 

PLS-DA with four LVs over the range 7700 - 4590 cm-1, and the regression matrix B calculated.  

The regression matrix was firstly applied to the training set itself, to assess the performances of 

the calibration. The outcome was provided as a stem plot (Figure 4), with upward and 

downward categorical values, accordingly to the observation being classified as in compliance 

or not. All the samples of #2 were correctly identified as in compliance with #1, and just few 

samples were misclassified, i.e. considered in compliance while they were not. The calibration 

error was just 1.7% (5 samples out of 300) and all the samples misclassified belonged to #3b. 

The validation of the PLS-DA was performed on the validation dataset, made of #2 and the 

remaining half of spectra of dataset #3 (see Table 1). The spectra of the validation set were pre-

processed similarly to the calibration set: pretreated by SNV, the outliers removed by a PCA 

with two PCs, and the wavelength range reduced to 7700 - 4590 cm-1. Hence, 303 spectra were 

available for validating the model. The binary matrix Ypred was calculated through the 

regression matrix B calculated in the calibration phase. The classification performed by the 

PLS-DA is presented in Figure A7 in the Supplementary Material, by mean of another 

categorical stem plot. Since the calibration and validation sets were made by almost the same 

number of samples, and samples of different products ordered similarly in the calibration / 

validation sets, Figure A7 looks very like to Figure 4, as also the calibration and validation 

performances were totally comparable. All the observations of #2 were correctly recognized as 

in compliance with the reference, as well as the big majority of the defective samples. Just few 

samples of #3c were wrongly identified as in compliance. However, the error of validation was 

still low (6 samples over 303, corresponding to about 98% accuracy). Nevertheless, it is relevant 

to notice that also the PLS-DA was able to distinguish all the #3a samples, proving to be reliable 

for discriminating samples with a residual moisture higher than the target set as a CQA. 

It has to be noticed that all the samples misclassified by the PLS-DA were samples of group 

#3b, pointing out a sort of systematic error. Summing the number of errors both in the 
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calibration and in the validation step, 11 #3b samples out of 13 were misclassified, suggesting 

the PLS-DA was not very effective in distinguish the sucrose from the trehalose at that specific 

solid fraction and value of residual moisture. This may be due to the lower number of samples 

belonging to this dataset considered in the model development stage: it has to be taken into 

account that the subset #3b is a particularly challenging case study, as a totally different product 

is present in the vial. Actually, this case is not expected to occur in a real case study, in the 

sense that the model will be calibrated using data acquired in a validation run and, then, it will 

be used in production, trying to identify cases where the residual moisture is not meeting the 

target (like in set #3a), or when some impurity could be present (set in #3c). The case #3b was 

included in this study to challenge the model also in a very different situation that, in any case, 

is not expected to occur. The method based on multivariate control charts did not had to cope 

with this issue, since samples of #3b were all correctly classified. Though the control charts 

method and the PLS-DA performed similarly in terms of calibration and validation errors, the 

errors of the former looked like being related to the statistic and to the distributions, i.e. the 

misclassifications in the control charts had a random nature and might be resolved by adding a 

larger number of samples to the statistics. On the contrary, the PLS-DA seemed to have some 

intrinsic limitations affecting its performances in relation to the trehalose samples. A possible 

explanation could be the similarity between #1 and #3b spectra. In Figure A2, #3b already 

appeared much similar to #1 and #2. A further investigation was carried out by comparing #1 

and some ad-hoc spectral sets, made by joining #1 and one of the non-compliant set of group 

#3 at a time, i.e. #1 and #3a, #1 and #3b, #1 and #3c. These sets were processed by a PLS with 

four LVs, as done for the development of the PLS-DA model. In Figure A8 in the 

Supplementary Material, the loadings of the 2nd LV, which was found to be particularly 

explanatory, are compared. The loading of #1 is clearly different from the loading describing 

the sets made by #1 and #3a and by #1 and #3c, meaning that the contribution introduced by 

#3a or #3c is significant enough to make the loadings change. On the contrary, the loading of 

the set made by #1 and #3b is much similar to the loading of #1. Hence, it seems that #3b, when 

joined to #1, is described similarly to the reference set, which, finally, may lead to 

misclassification issues. 

An additional validation of the PLS-DA was carried out through a permutation test. The 

goodness of the fit in calibration and the ability of the prediction of the unpermuted model were 

estimated through the parameters R2 and Q2, which actually reached high values (0.934 and 

0.888 respectively). On the other hand, the values of R2 and Q2 calculated for each permuted 

model were much lower (close to zero or even lower). Therefore, the PLS-DA model could be 
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considered not spurious, and the outcome of the permutation test can be seen in the permutation 

plot in Figure 5. 

The classification carried out by the PLS-DA was also investigated in a score plot, which 

graphically resumed the information given by the categorical stem plots. All the four PCs used 

for the PLS-DA were able to perform a clear clustering of the samples, and two main clusters 

could always be found: one for the reference and the samples in compliance, the other for the 

rejected samples. In Figure 6 all the combinations with the 1st component are displayed as an 

example. Not only the first PCs gave a good clustering (which is something expected, since the 

1st and 2nd PCs explained the majority of the variance), but also the 3rd and 4th PCs were proved 

to be relevant, with particularly clear clustering (Figure 7, upper right and lower left corners). 

However, in the plane described by the 2nd and 3rd PC, some overlapping turned up, as showed 

in Figure 6 in the lower right corner. In particular, the #3b scores were not grouped in a cluster, 

but appeared spread and partially mixed with the #1 and #2 scores. The overlapping of the #3b 

scores is representative of the misclassification of the #3b samples highlighted in the stem plots. 

Finally, it is important to notice that the clusters made by the validation samples were coincident 

with the clusters made by the decomposition of the calibration set. This was indicative of the 

goodness of the PLS-DA, being able to perform a decomposition of the reference samples in 

such a space where the projections of the new samples could be ordered with consistency. 

 

 

5. Conclusions 

 

In this paper an at-line application of NIRS was described, aimed at performing a qualitative 

SQC of freeze-dried samples. Two statistical methods were developed and tested. The first was 

based on multivariate control charts, obtained from the Hotelling T2 and the SPE statistic, 

calculated by means of a previous PCA; the second was a PLS-DA, which is a categorical 

binary version of the PLS. The two models were calibrated with a reference set, and the goal 

was classifying some new sample as in compliance or not with the reference. 

Overall, both approaches turned out to have excellent performances, with very little errors, thus 

being able to discriminate samples with accuracy. In particular, according to the application 

pursued, i.e. to the characteristic of the samples that is looked at to perform the classification, 

a method is preferable rather than the other. In order to identify samples out-of-specification 

because of some issues in their composition (#3b and #3c) the method based on control charts 

is more reliable. The PLS-DA is better to confirm samples as in compliance (#2), since it 
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performed a perfect discrimination of all the samples in compliance with the reference. Both 

method, instead, were perfectly suitable to detect  samples non in compliance because of the 

higher residual moisture content (#3a), which is a crucial attribute for freeze-dried products. 

Moreover, since these are statistical approaches, the performances of the algorithms presented 

can be further improved and consolidate by training the models with new sample datasets. 

Additionally, NIRS could be implemented also in-line, as a PAT tool for the freeze-drying 

process. Thus, further developments in the direction of a NIRS application for in-line statistical 

process control could be done in following researches. 
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Table 1. Number of samples of each set (calibration and validation) used in this study. 

 

Sample set 
Control charts PLSDA 

Calibration set Validation set Calibration set Validation set 

#1 245 - 245 - 

#2 - 245 - 245 

#3a - 79 34 35 

#3b - 27 13 14 

#3c - 17 8 9 

Total samples 245 368 300 303 

 



32 
 

Figure 1. Calibration step for building the control charts, calculated with the 245 spectra (on the 

horizontal axes) of the #1 sample set. T2 and SPE values are reported on the vertical axes. The CLs 

(solid horizontal lines) were calculated from the T2 distribution (upper charts) and from the SPE 

distribution (lower charts). The CLs calculated at 0.95 of confidence interval α are shown on the 

left, the CLs at α 0.99 are on the right. 
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Figure 2. Validation of the PCDA with the #2 dataset (245 samples axis). The CLs at 0.95 of 

confidence interval (dashed line) and at 0.99 (solid line) are shown, as calculated in the calibration 

step. The Hotelling T2 statistic is presented above, the SPE statistic below. Black bars correspond to 

outlier observations. 
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Figure 3. Validation of the control charts method with dataset #3. Samples 1 – 69 (light grey bars) 

refer to #3a dataset, 70 - 96 (dark grey bars) to dataset #3b, and 97 - 113 (white bars) to dataset #3c. 

The values of T2 (above) and of SPE (below) of each sample are compared with the respective CLs 

calculated at α 0.95 (dashed line) and 0.99 (solid line) of confidence interval. 
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Figure 4. Categorical stem plot obtained through the application of the PLS-DA to the calibration 

set. Samples 1 - 245 refer to #1 dataset, samples 246 - 279 to #3a dataset, samples 280 – 292 to #3b 

dataset, and samples 293 - 300 to #3c dataset. The samples corresponding to a stem pointing 

upward are classified as in compliance, those represented by a stem pointing downward are 

identified as outliers (indicated on the vertical axis as COMPL and OUT, respectively). The 

observations from #1 are marked by a circle, those from the dataset #3 by a diamond. 
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Figure 5. Permutation plot showing the values of R2 (triangles) and Q2 (circles) calculated for each 

permutation as a function of the correlation coefficient (r) between the categorical attributes matrix 

(Y), and the Y permuted. Grey symbols refer to the values of R2 and Q2 of the original model. 
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Figure 6. Score plots obtained by the PLS-DA over the 7700 - 4590 cm-1 range. The calibration set 

is represented by gray diamonds (samples from #1) and grey squares (dataset #3); the validation set 

is represented by white marks: diamonds represent the #2 samples, triangles the #3a samples, circles 

stand for #3b samples, and squares for the #3c ones. 
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Figure A1. Experimental setup for spectra acquisition: NIR spectrometer probe is placed on the 

visual inspection station, while a sealed vial is being scanned. 
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Figure A2. Spectral datasets (given as absorbance vs. frequency), after pre-processing, over the 

wavelength range 9500 - 4100 cm-1: #1 and #2 (490 spectra), #3a (79 spectra), #3b (27 spectra), #3c 

(17 spectra). 
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Figure A3. Loading plot of the first 2 PCs of the PCA performed on #1, over the wavelength ranges 

9500 - 4100 cm-1 (on the left) and 7700 - 4590 cm-1 (on the right). 
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Figure A4. Score plot of the PCA analysis of all the spectral datasets considered in this study. 

Black triangles refer to #1 observations, while green circles to the #2 spectra. Blue, orange and 

black circles refer to the observations of datasets #3a, #3b and #3c respectively. 
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Figure A5. Influence of the number of LVs on the performance of the PLS-DA. 
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Figure A6. Loading plot of the first four PCs of the PLSDA, over the wavelength ranges 9500 - 

4100 cm-1 (on the left) and 7700 - 4590 cm-1 (on the right). 
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Figure A7. Application of the PLSDA to the validation set: samples are recognized as in 

compliance with the reference or as outliers (COMPL or OUT on the vertical axis, indicated by the 

stems). Samples 1-245 refer to #2 dataset, samples 246-280 to #3a dataset, samples 281-294 to #3b 

dataset, samples 295-303 to #3c dataset. The #2 samples are marked by circles, those from the 

dataset #3 by diamond. 
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Figure A8. Loadings of the 2nd PC over the wavelength 7700 - 4590 cm-1 describing (in blue) the 

reference set made by #1 and (in orange) the ad-hoc sets made by: (a) #1 and #3a, (b) #1 and #3b, 

(c) #1 and #3c. 

 

 

 



46 
 

Table A1. Values of RM, measured by KF, of samples of datasets #1 and #2. 

 

dataset #1 dataset #2 

Sample RM, % Sample RM, % 

1 0.64% 1 0.64% 

2 0.82% 2 0.54% 

3 0.52% 3 0.78% 

4 0.59% 4 0.81% 

5 0.68% 5 0.59% 

6 0.77% 6 0.69% 

7 0.75% 7 0.72% 

8 0.70% 8 0.76% 

9 0.51% 9 0.75% 

10 0.74% 10 0.78% 

11 0.77% 11 0.71% 

12 0.63% 12 0.64% 

13 0.77% 13 0.59% 

14 0.74% 14 0.63% 

15 0.88% 15 0.95% 

16 0.77% 16 0.96% 

17 0.62% 17 0.79% 

18 0.67% 18 0.73% 

19 0.79% 19 0.66% 

20 0.67% 20 0.68% 

21 0.82% 21 0.80% 

22 0.74% 22 0.69% 

23 0.77% 23 0.82% 

24 0.82% 24 0.77% 

25 0.74% 25 0.78% 
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Table A2. Values of RM, measured by KF, of samples of datasets #3a, #3b and #3c. 

 

dataset #3a dataset #3b dataset #3c 

Sample RM, % Sample RM, % Sample RM, % 

1 3.02% 1 0.54% 1 1.03% 

2 2.75% 2 1.25% 2 0.41% 

3 2.40% 3 0.54% 3 1.12% 

4 3.02% 4 0.40% 4 0.53% 

5 1.55% 5 0.75% 5 0.34% 

6 4.60%     

7 2.06%     

8 5.46%     

9 2.00%     

10 2.93%     

 

 

 

 

 


