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Abstract
In this paper, we describe the fingerprintmethod, a technique to classify bags ofmixed-
typemeasurements. Themethodwas designed to solve a real-world industrial problem:
classifying industrial plants (individuals at a higher level of organisation) starting from
the measurements collected from their production lines (individuals at a lower level
of organisation). In this specific application, the categorical information attached to
the numerical measurements induced simple mixture-like structures on the global
multivariate distributions associated with different classes. The fingerprint method is
designed to compare themixture components of a given test bagwith the corresponding
mixture components associated with the different classes, identifying the most similar
generating distribution. When compared to other classification algorithms applied to
several synthetic data sets and the original industrial data set, the proposed classifier
showed remarkable improvements in performance.
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1 Introduction

Modern data sets describe complex phenomena. It is not uncommon that the records
contained in these data sets jointly measure categorical and numerical information.
It is also not uncommon that entities in the physical world might be described by
multiple records; in this case, it might happen that the samples that describe different
entities greatly differ in size.

For instance, mixed-type data can provide a natural representation for the habits
of website users, where categorical information can track choices and numerical data
can track the time spent on specific pages or the time elapsed in between specific
actions. Another use case where mixed-type data can provide richer descriptions is
industrial monitoring. In this context, one can think of a piece of equipment that can be
configured according to different setups (described by the combinations of the levels
of one or more categorical variables) and that produces numerical data about chosen
performance metrics.

Sometimes, choosing the single measurement as the relevant point of view of the
phenomenon might not be the most informative option. For example, molecules often
have multiple isomers; given a specific molecule, observing just one of its possi-
ble configurations might not suffice to tell whether the molecule can be used in the
development of a target chemical application. Going back to the industrial monitor-
ing example, observing the performance of a single production line in an industrial
plant might not be representative of its overall performance. In these cases, the overall
distribution of the data might provide a more informative picture.

Given the plethora of potential applications, recent years havewitnessed an increase
of interest in models and algorithms that can handle mixed-type and bagged data
(Ahmad and Dey 2007; Hae-Sang and Chi-Hyuck 2009; Abdullin and Nasraoui 2012;
Sandhya and PV. 2015).

Standard approaches to process mixed-type data are based on a preprocessing step
that maps the original data in ametric space where all their components are of the same
type, so that standard statistical or machine learning methods can be applied on top of
a homogeneous-type space. For example, the so-called one-hot encoding can be used
to map purely categorical data (where no natural order relationship can be defined)
into numerical spaces; the main disadvantage of this transformation is that it might
produce data distributed on extremely-low rank spaces, especially when the converted
categorical variables can take on many values. Going in the other direction, binning
techniques can be used tomap numerical data into discrete values; this process destroys
the geometry of the data, with the risk of losing potentially important information
related to the native metric structure.

Naïve approaches to bag classification can be derived under the assumption of i.i.d.
observations. In these cases, a classifier can be trained at the vector-level (also said
at the instance-level), and its predictions about the elements of a given test bag can
then be passed through a max-win voting procedure that assigns a bag to the class
coinciding with the mode of the predictions.

In both the mixed-type and bagged data scenarios, more advanced classification
methods are available. For example, the mixture composer (MixtComp) algorithm
(Biernacki et al. 2015) can classify mixed-type data by identifying different generative
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models for the observations of different classes; in eachmodel, the distribution of each
component depends on the class but is independent of the other components. In the
original formulation, categorical components are modelled as multinomials, whereas
numerical components can be modelled by Gaussian or Weibull distributions. The
parameters of the model are then learnt using the classical expectation-maximisation
algorithm, whereas inference is performed accordingly to the maximum-likelihood
principle. The multiple instance learning (MIL) framework (Dietterich et al. 1997;
Doran and Ray 2014) encompasses a family of techniques built on top of different
existing machine learning methods to discriminate bags of samples. In the binary
classification setting, a MIL algorithm is tasked with identifying a “critical region” of
the domain. The bags sampled from distributions whose supports intersect such region
are classified as positive, otherwise they are classified as negative.

These methods are not free of shortcomings. For example, MixtComp might some-
times be too strict in that it imposes the condition of mutual independence on the
components of the observations, and therefore can not detect correlation patterns.
This assumption is indeed quite strong. For instance, in Sect. 3 we will illustrate and
discuss an industrial data set of mixed-type measurements where the values of the cat-
egorical components influence the distribution of the numerical components. On the
other side of the spectrum, model-free approaches like MIL can sometimes struggle
to discriminate patterns that would be much easier to detect by encoding some of the
structure of the data into specific features.

In this work, we propose a novel classification algorithm for bagged, mixed-type
data called the fingerprint method. The algorithm takes advantage of a simple prin-
ciple: each class is interpreted as a family of probability distributions which can be
represented as mixtures, and whose components follow class-dependent distributions.
Whenever the algorithm is presented a test sample, it factorises the corresponding dis-
tribution according to the attached categorical information, and compares the resulting
mixture components to the corresponding mixture components associated with the
classes. Then, it assigns the sample to the class for which the corresponding mixture
components are most similar. Although the fingerprint method follows a model-free
approach to classification, it can exploit conditional dependence relationships between
the components of mixed-type measurements.

Originally designed to solve a real-world industrial classification problem, the fin-
gerprintmethod performed remarkably better at this task thanmany standard statistical
and machine learning algorithms, and also than algorithms designed specifically to
handle mixed-type and bagged data.

The paper is organised as follows:

• in Sect. 2 we introduce the notation and propose the formalisation for the prob-
lem of classifying mixed-type, bagged data on which the fingerprint method was
conceived;

• in Sect. 3 we describe the original data sets that motivated the analysis; this section
will clarify the derivation of the formalism and shed light on the specific design
choices which characterise our formulation of the fingerprint method;
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• in Sect. 4 we detail the fingerprint method; we also describe a hierarchical version
of the method (the multi-stage fingerprint method) that is capable of classifying
“problematic” bags;

• in Sect. 5 we report the experimental results obtained on a series of toy examples
that illustrate some of the strength and weaknesses of the method when compared
to a suite of chosen competitor methods; we conclude the paper by comparing
the performance of the method to that of the selected competitor methods on the
original industrial data set.

2 The problem

2.1 Classifyingmixed-type data

Let Q be a finite set that represents the domain of a categorical variable q, and define
NQ := #(Q). Here, #(·) is the cardinality operator. Let d > 0 be an integer and
X ⊆ R

d be a subset of the d-dimensional Euclidean space, representing the domain
of a numerical variable x. We define amixed-type measurement to be a tuple (q, x),
where the numerical information x is attached categorical information q.

Wewill nowdevelop a probabilistic framework to discuss the problemof classifying
mixed-type data. We use p(q) to denote probability mass functions (PMF) over Q.
Also, we work under the assumption that all the “interesting” probability measures
μ : AX → [0, 1] over X (where AX ⊆ P(X) represents an arbitrary σ -algebra
over X ) are absolutely continuous, so that we can identify them with their probability
densities p(x). Complete knowledge of the mixed-type data in Q × X is available
whenever we know the joint distribution

p(q, x) .

Let now Y be a finite set of classes, and define NY := #(Y ). Classifying mixed-type
measurements (q, x) into Y can be done applying the maximum likelihood principle:

y∗ = argmax
y∈Y

p(q, x | y) .

This is precisely what is accomplished by the MixtComp algorithm, though under the
quite strong assumption of mutual independence between all the components of q and
x.

2.2 Mixed-type data bags

Given an integer m > 0, we define a mixed-type data bag as a sample

B := {(q(1), x(1)), . . . , (q(m), x(m))}
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of size m from an unknown distribution p(q, x). The measurements (q(i), x(i)) can
appearmore than once in each bag. For this reason, bags are also known in the literature
as multi-sets (Blizard 1991), and are the suitable structure to represent samples from
given probability distributions or the databases where such samples are collected.

However, the curly braces notation {·} is typically reserved for sets, where the
elements must by definition be distinguishable. Hence, we unambiguously represent
bags as functions

B : Q × X → N0 (1)

such that
∑

(q,x)∈Q×X B(q, x) < +∞. In this case, the set Q × X is also called the
base set of the bag. Intuitively, given ameasurement (q̄, x̄) ∈ Q×X , the valueB(q̄, x̄)
represents the multiplicity of (q̄, x̄) inside the sample represented by bag B.

In general, bags can also be empty (i.e., itmight happen thatB(q, x) = 0, ∀ (q, x) ∈
Q× X ). From a statistical perspective, empty samples are not useful. Hence, although
the definitions that we will give in the following also hold for generic bags, the reader
can safely consider only non-empty bags when multi-sets are used to represent sam-
ples.

In this formalism, a mixed-type data bag can be characterised by its generating
distribution p(q, x) and by the sample size m. Consequently, we can describe a class
of bags by defining a probability distribution on a space of probability distributions
for mixed-type data:

p(p(q, x) | y) . (2)

Although the idea of defining a probability distribution on a space of functions, mea-
sures or more abstract objects might seem exotic, the axioms of measure theory do not
impose any constraint on the nature of the objects in the base set on which the structure
of measurable space is defined. For example, thanks to the identification between the
possible parametrisations of a discrete categorical distribution on a finite set of size N
and the points of the (N −1)-dimensional simplex, the Dirichlet distribution describes
a probability distribution over the collection of categorical distributions that can be
defined on a finite set of size N .

In this framework, classifying the generating distribution pk̄(q, x) of a givenmixed-
type data bag (where k̄ ∈ K is an identifier for the bag and K is a discrete, possibly
infinite, set of identifiers) can be phrased as a maximum-likelihood problem:

y∗ = argmax
y∈Y

p(pk̄(q, x) | y) . (3)

This formalisation is quite general. Taking a model-based approach towards solving
this problem might involve several delicate decisions and possibly heavy compu-
tational tasks: defining a model for the mixed-type data distributions, selecting a
procedure to estimate the best hypothesis from data (or to evolve a distribution over
the space of hypothesis), and finally implementing a maximum-likelihood procedure
to identify the most likely generating class. Therefore, we propose the following sim-
plification.
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By the law of total probability, we can associate to pk̄(q, x) the corresponding
mixture distribution on X :

pk̄(x) :=
∑

q∈Q
pk̄(x |q)pk̄(q) . (4)

This distribution is completely known if we know the mixture weights pk̄(q) and the
mixture components pk̄(x |q).

In this way, we can simplify problem (3) by assuming that pk̄(q, x) depends on the
class y through the mixture components. More formally, given an arbitrary pk(q, x) ∼
p(p(q, x) | y) such that pk(x) is the associated mixture (4), then we have

pk(x |q) = p(x |q, y) ,

independently of k ∈ K . In other words, we postulate that the bags sampled from
different classes are such that the impact of the generating class is detectable from the
correspondingmixture components, without the need to analyse themixture’sweights.

This assumption implies that to correctly classify a mixed-type data bag Bk̄ whose
items are sampled from pk̄(q, x) it might be sufficient to know the collections

{pq,y(x) := p(x |q, y)}q∈Q (5)

for each class y ∈ Y , and the collection of mixture components

{pk̄,q(x) := pk̄(x |q)} (6)

associated with the given bag. We call the collections (5) the class fingerprint distri-
butions, whereas we call the collection (6) the bag fingerprint distribution.

2.3 Bagsmanipulation

Class fingerprint distributions and bag fingerprint distributions can not be known
exactly, and one needs to estimate them from data. Since bags are the natural structure
to represent statistical samples, it is useful to define operations to manipulate mixed-
type samples and data sets of bags. To clarify the applicability range of the proposed
formalisation, we will accompany the definitions with examples taken from the real-
world industrial problem that motivated this research.

In the following, we will denote by k a variable taking values in a discrete set of
identifiers K , and we will use k̄ to identify a specific bag. In the same way, y will be
a variable taking values in the finite set of classes Y , and we will use ȳ to identify a
specific class. Due to the similarity with the algebra of databases, we will introduce
operations on bags using similar terminology.

Given a fixed level q̄ ∈ Q of the categorical variable, we define a homogeneous
sub-bag to be any bag of mixed-type measurements

S : Q × X → N0 (7)
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such that S(q, x) = 0 whenever q 	= q̄. In other words, homogeneous sub-bags
represent samples where the categorical variable q takes a constant value q̄ ∈ Q.
For instance, if Q describes the possible configurations of a sensor, this structure can
represent the samples acquired by a sensor whose configuration is fixed to q̄ ∈ Q.
Given a configuration q̄ ∈ Q, the corresponding set of homogeneous sub-bags

Z q̄ :=
⎧
⎨

⎩
S : Q × X → N0

∣
∣
∣
∣ 0 <

∑

(q,x)∈Q×X

S(q, x) < +∞ ∧
∑

(q,x)∈Q×X |q 	=q̄

S(q, x) = 0

⎫
⎬

⎭

represents all the possible (non-empty) samples that can be obtained from a sensor
whose configuration is q̄.

Bags can be used to represent not only samples but also data sampling setups that
commonly emerge in real-world scenarios. Continuing the sensor example, given a
collection of m > 0 distinct sensors, we define a bag composition of size m to be a
multi-set

C : Q → N0 (8)

such that
∑

q∈Q C(q) = m.
Given a bag composition (8), fix q̄ ∈ Q and consider mq̄ := C(q̄). In our example,

this number counts the sensors in the collection that share the same configuration q̄.
We can describe the collection of samples acquired by these sensors with the multi-set

TC,q̄ : Z q̄ → N0

that satisfies the property
∑

S∈Zq̄
TC,q̄(S) = mq̄. Intuitively, TC,q̄ counts the multi-

plicity of each sample in the collection of samples acquired by a (finite) number mq̄
of distinct but identically configured sensors.

Releasing the constraint on q, we define a bag realisation to be a collection of
multi-sets ⎧

⎨

⎩
TC,q : Zq → N0

∣
∣
∣
∣

∑

S∈Zq

TC,q(S) = mq

⎫
⎬

⎭
q∈Q

.

Intuitively, this set describes the collection of samples acquired by m distinct sensors
whose configurations are described by C.

By combining these concepts, we can represent a generic data set of mixed-type
data. Indeed, we can compose a data set bag B by first aggregating homogeneous
sub-bags (e.g., the samples gathered from sensors that share the same configuration)

Sq :=
∑

S∈Zq

TC,q(S)S , q ∈ Q , (9)

and finally aggregating these homogeneous sub-bags into

B =
∑

q∈Q
Sq . (10)
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Despite the fact that the set Zq appearing in (9) might be infinite, note that themulti-set
TC,q can assign non-zero multiplicity only to a finite number of samples S due to the
definition of bag composition. Therefore, Sq is still a finite sample.

The operations in (9) and (10) are instances of the union operation on bags. This
operation takes in input one or more bags (which must be defined on the same base
set), and returns as output a bag (again defined on the same base set).

Although the introduction of the concepts of bag composition and bag realisation
might seemunnecessarily complicated, in Sect. 3wewill showhow these ideas provide
natural tools to represent the collection of samples coming from multiple production
lines inside a single industrial plant, and how they enable a simple description of the
process that led to the creation of the fingerprint method.

As a sort of inverse operation of union, we can define the partition operation.
We will describe this operation in the specific instance of mixed-type bags, but the
generalisation to more general bags should be straightforward. Consider a bag B :
Q× X → N0 defined on the base set Q× X . Define a partition P ⊂ P(Q× X) (i.e., a
collection of non-empty subsets of Q × X such that Si 	= S j ∈ P satisfy Si ∩ S j = ∅
and ∪S∈P S = Q × X ). The partition operation takes the bag B and a partition P of
its base set, and returns a collection of bags

{BS : Q × X → N0}S∈P , (11)

where

BS(q, x) =
{
0, if (q, x) /∈ S ,

B(q, x), if (q, x) ∈ S .

An important application of the partition operation is the construction of homoge-
neous sub-bags starting from a given mixed-type data bag. In this case, the base set is
a mixed-type set Q× X , and one can partition the domain starting from the singletons
of Q: P := {{q} × X |q ∈ Q}.

The careful reader should have noticed that the partition can not always work as the
inverse of the union: whereas uniting sub-bags which are homogeneous for different
levels of the categorical variable q as in (10) can be reversed, uniting sub-bags which
are homogeneous in the same level q̄ as in (9) destroys the information about the
composing sub-bags. For this reason, it is important to define an operation that can
label a bag with additional information.

Given a bag B : Q × X → N0, a set K , and a value k̄ ∈ K (which can represent
an identifier for the entity from which the measurements in B are sampled), we can
join the information about K to the bag by defining

Bk̄ : K × Q × X → N0

(k,q, x) �→
{
0, if k 	= k̄ ,

B(q, x), if k = k̄ .

(12)
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In this example, we used the join operation to annotate a bag with identification
information. Another example of the utility of the join operation is the classification
of bags, where class information ȳ is added to the bag.

Once we have access to a bag, we might want to analyse just part of the information
it contains. For instance, considering again a mixed-type data bag B : Q × X → N0,
we might be interested just in the numerical part of the measurements it contains.
Given a bag B and one of the factors of its base set, for example X , the projection of
B on X is the bag

R : X → N0

x �→
∑

q∈Q
B(q, x) . (13)

In some sense, the projection acts as an inverse of the join operation (although
it destroys the information about the discarded parts of the measurements). In the
specific case of numerical measurements x ∈ X , we will also refer to bag projections
(13) as point clouds, due to the visualisation property enjoyed by such samples in
low-dimensional spaces.

We conclude this section by introducing some additional terminology that will
be useful in the following parts of the paper. We consider the analysis of a data set
composed of bags (12) labelled with bag identity information, which we will call
simply bags or test bags:

Bk̄ . (14)

If we know the class ȳ of such a bag, the join operation will produce bags Bk̄,ȳ .
By uniting these bags, we obtain the training set B (a bag defined on the base set
K × Q × X × Y ). We can then partition the complete data set according to the levels
of the class variable y, obtaining class bags

Bȳ . (15)

We can partition both test and class bags according to the levels q̄ of the categorical
variable q. We will refer to the resulting bags Bk̄,q̄,Bq̄,ȳ as homogeneous sub-bags of
the test bag and homogeneous class sub-bags, respectively.

Finally, we will be interested in the numerical samples associated with test and
class bags, and their homogeneous sub-bags. To this end, we will consider the training
point cloud R obtained by projecting the entire training set B on X . If we consider a
test bag Bk̄ , we can project it on X obtaining the associated point cloud Rk̄ , or first
decompose it into homogeneous sub-bags Bk̄,q̄ and then project them on X obtaining
a corresponding collection of point clouds

{Rk̄,q}q∈Q . (16)

These point clouds are called the homogeneous groups associated with the test bag.
Analogously, given a class ȳ ∈ Y , we can define the class point cloud Rȳ and the
corresponding homogeneous groups

{Rq,ȳ}q∈Q . (17)
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In Sect. 4 we will describe an original approach to use (16) and (17) to approximate
the comparison between (5) and (6).

3 A heterogeneous and unbalanced data set

3.1 Classifying food processing plants

Tetra Pak is a market leader in the sector of food processing equipment and materials.
Tetra Pak’s customers are food processing companies that own multiple food pro-
cessing plants, where raw food (e.g., milk, fruit) is transformed into packaged food.
Packaged food is then distributed to retailers, where consumers ultimately buy it. The
preferences, habits, and marketing profiles of consumers change over time, and food
retailers want to quickly adapt to these changes. Since retailers are supplied by food
processing companies, those who manage to implement lean production strategies in
their plants can gain long-term economic advantages. Being able to anticipate and
facilitate the required infrastructure transitions of customers has therefore become
an essential capability for industrial players that, like TetraPak, operate in dynamic
business-to-business (B2B) markets.

Packaging material and packaging equipment supplies, as well as equipment main-
tenance, are amongst the most profitable strategic services that Tetra Pak can offer to
its customers. Since these services are managed by the food processing companies at
the plant level, Tetra Pak considers the food processing plant as the relevant level of
organisation. A typical food processing plant can run one or more production lines
for food processing and packaging. A food processing and packaging line consists of
different pieces of equipment, going from pasteurizers and blenders (which prepare
and sterilise the raw food), through filling machines (which wrap processed food into
cartons), to conveyor belts and palletizers (which group cartons in units ready to be
delivered to retailers). For this project, Tetra Pak provided us with two data sets col-
lected at different time scales (yearly and monthly, respectively) and describing two
different levels of organisation: food processing plants and their production lines.

As we said, it is common that food processing plants change their production
strategy to adapt to the needs of retailers. From Tetra Pak’s perspective, this mostly
reflects into changes in the quantity and quality of the packaging material bought by
its customers. Such changes are captured by the packaging material sales data set
(PMSD): each record in the PMSD set includes aggregated indicators about the yearly
purchases of packaging material from a specific food processing plant. Tetra Pak can
use the information provided by the PMSD to understand and meet its customers’
needs.

One of Tetra Pak’s business divisions defined a four-class segmentation of food
processing plants according to two quantities computed every year for each plant
using its PMSD record:

• the production volume, i.e., the total amount of food packages which can be
obtained by using the purchased packaging material;
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• the production complexity, i.e., the variety of food products that can be obtained
by using the purchased packaging material.

Roughly speaking, Segment 1 is composed of plantswith high production volumes and
low production complexity, Segment 2 is composed of plants with small volumes of
highly diversified production, Segment 3 - lowvolumes and lowcomplexity, Segment 4
- high volumes and high complexity. Due to a non-disclosure agreement, we can
disclose neither the specific formulas adopted to quantify the production volume and
the production complexity of a customer plant, nor the thresholds used to compute its
segment.

If we represent the segments as classes in the finite set

Y = {y1, y2, y3, y4} ,

and denote by K the set of plants, the described process amounts to defining a classi-
fication {(k, y)}k∈K .

In some cases, when a customer plant implements a transition in its production
strategy, the process might imply a change in packaging material supplies, possibly
increasing the purchases of packaging material from one of Tetra Pak’s competitors,
reducing the purchases from Tetra Pak, or a combination of the two. Such a situation
impacts the reliability of the plant’s PMSD record, hampering Tetra Pak’s visibility
on its customer’s needs, and ultimately increasing the churn risk. Therefore, for Tetra
Pak, it is important to be able to track the strategies of its customers even when the
PMSD records of the corresponding plants are not available.

3.2 The PLMS data set

The packaging linemonitoring system (PLMS) is Tetra Pak’s standard data manage-
ment system to monitor the configuration (e.g., package shape, package volume), the
processing parameters (e.g., temperatures, pressures), and the mechanical efficiency
(e.g., packaging material waste, equipment stops) of the packaging lines installed at
its customers’ plants. These quantities are monitored at high frequency, but for storage
reasons, only averages over longer time scales are usually retained for long periods.

Tetra Pak’s engineers deem the filling machine the critical component of the pack-
aging line: since this is where processed food is wrapped inside carton packages,
problems on the filling machine are likely to cause problems also detectable along the
packaging line. Thus, Tetra Pak’s engineers suggested us to limit our investigation to
five categorical indicators and the monthly averages of ten numerical key performance
indicators (KPIs) associated with filling machines.

We represented the categorical information as an aggregated vector variable

q = (q1, q2, q3, q4, q5) , (18)

where q ∈ Q := ×5
i=1Qi and the component qi takes values in a corresponding finite

set Qi called a categorical factor. The elements of the i-th factor Qi will be referred
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to as its levels. In particular, the interpretation of the five categorical factors is the
following:

1. Q1 – geographic cluster: where the food processing plant is located (5 different
regions); this information is constant for all the production lines inside the same
plant;

2. Q2 – filling machine system: which filling machine model is installed on the
packaging line (39 different systems); this information is constant for all the mea-
surements collected from a specific production line;

3. Q3 – package type: which types of packaging technology and packaging material
are used on the line (9 different options);

4. Q4 – package shape (10 different options);
5. Q5 – package volume (21 different levels).

We represented the KPIs as ten-dimensional numerical vector variables

x = (x1, x2, . . . , x10)
′ (19)

(where the apex denotes transposition), which are supposed to live in some subset
X ⊂ R

10 of the ten-dimensional Euclidean space. We call X the KPI space.
In this context, it is natural to represent each PLMS measurement as a realisation

of a mixed-type vector variable (q, x) taking values in Q × X , and each plant as a
mixed-type data bag (12). In the specific case of the PLMS data, due to the nature of
the numerical variables, we will refer to point clouds (13) also as KPI point clouds.

3.3 Analysis of the PLMS data

We pointed out that the PMSD of a plant can often be incomplete and sometimes even
completely unavailable. Being able to achieve reliable insights into the production
strategy of a plant even without access to its PMSD record is a relevant business intel-
ligence problem: can we determine the commercial segment of a plant by observing
the technical performance of its lines? According to the notation and formalism intro-
duced in Sect. 2, this problem can be phrased as a classification on mixed-type data
bags.

The subsets of the PMSD and PLMS data sets we used for this study were collected
over three years, and describe 174 food processing plants around the world; some
plants were not observed over all the three years. Since the commercial segment is
a characteristic determined yearly at plant level (and it can change from one year to
another), we define a bag to be the collection of measurements acquired in one year
inside a given food processing plant. After the training-test set split, we obtained 429
labelled training bags (32316 vectors) and 83 labelled test bags (6589 vectors).

Food processing plants can run from a few to tens of production lines each. For this
reason, the size of their yearly PLMS records can vary from a few dozens to hundreds
of measurements.

On average, plants of Segment 1 and Segment 4 run more machines than plants of
the other segments. Therefore, their bags usually contain more measurements than the
bags of plants in Segment 2 and Segment 3.Moreover, large food processing plants are
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Fig. 1 LDA applied to the labelled KPI measurements. Due to the high overlapping, the majority Segment 1
and Segment 4 (red and violet) hide the minority Segment 2 and Segment 3 (green and cyan)

more numerous than small ones, and large plants are more numerous in Segment 1 and
Segment 4, implying that the PLMS data set counts more bags from these segments.

These two facts add up to increase the gap between the number of observations
available about Segment 1 and Segment 4 on one side, and Segment 2 and Segment 3
on the other side. The reader can thus understand that the PLMS data set is highly
unbalanced. In particular, since 35 over the 83 test bags represent plants of Segment 4,
the baseline performance for classification is approximately 40%.

To avoid complicating our analysis unnecessarily, we focussed our first investi-
gations on KPI measurements (19), temporarily ignoring the categorical information
included in the PLMS measurements.

The first question we asked ourselves is how different the KPI measurements col-
lected from plants belonging to different segments are. To this end, we analysed the
class KPI point clouds Ry, y ∈ Y using standard multivariate analysis of variance
(MANOVA) tests (Rencher 2003). These tests showed that the means of their distri-
butions appear to be significantly different (Pillai, Hotelling-Lawley, Roy, and Wilks
tests return p-values which are close to zero).

However, even though the class KPI point clouds have different means, their sup-
ports are highly overlapped. This property is clearly shown by Fig. 1, which displays
the values of the first two linear discriminant functions associated with an LDAmodel
trained on the KPI measurements of the training set.

Even the record of a single plant is usually spread on a large region of the KPI space
and is highly overlapped to the records of other plants. A visual example is provided
by Fig. 2, where the PCA scores of a plant KPI point cloud are compared to those of
the KPI point cloud of the entire training set.

In such circumstances, also considering that the PLMS data set is unbalanced,
inferring the commercial segment of a plant from the KPImeasurements alone seemed
unlikely to attain satisfying performance. This intuition was confirmed by some exper-
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Fig. 2 PCA scores of the KPI point cloud of a food processing plant compared to the PCA scores of the
KPI point cloud of the whole training set. The first three principal components are shown

iments with state-of-the-art classification methods which will be described in more
detail in Sect. 5.1, whose confusion matrices are reported in Fig. 3.

As expected, the minority Segment 2 and Segment 3 were impossible to detect,
with the noticeable exception of Segment 2 through the lens of quadratic discrimi-
nant analysis (QDA) (that anyway came at the cost of reduced accuracy for plants of
Segment 4).

Due to its nature, factor Q1 is unspecific to the commercial segmentation criteria.
Factor Q2 can be used to discriminate high-throughput machines from low-throughput
machines: intuitively, the corresponding levels should provide no information about
the production complexity of a plant, though they could correlate with the production
volume of a plant. Nevertheless, plant managers can in principle choose to install
multiple low-throughput machines to achieve the production volumes which could be
obtained by fewer high-throughput machines, or install machines produced by Tetra
Pak’s competitors. The levels of the remaining factors Q3, Q4 and Q5 can provide
some information about the production complexity of a plant, but they are unspecific
to the production volumes.

Therefore, we also trained some models using only the categorical measurements
to check whether this information could yield satisfying classification performance.
The results of our experiments, reported in Fig. 4, led us to rule out this possibility.
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(a) Linear discriminant analysis. (b) Quadratic discriminant analysis.

(c) Support vector machine. (d) Multi-layer perceptron.

Fig. 3 The classification performance of several classification algorithms applied to the KPI measurements

(a) Support vector machine. (b) Multi-layer perceptron.

Fig. 4 The classification performance of multiple classification algorithms applied to the categorical mea-
surements

In isolation, the KPI measurements and the categorical information were not suffi-
cient to attain good classification performance. Therefore, we proceeded to investigate
the interactions between the categorical factors and the KPI measurements, i.e., the
distributions p(q, x). Since Q is a finite set, we decided to describe these distributions
in an “enumerative” way by decomposing them as p(x |q)p(q). This decomposi-
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Fig. 5 LDA on PLMS data – impact of the geographic cluster factor. Different point clouds represent
packaging lines equipped with the same filling machine system and producing the same kind of package
but running in different regions of the world

tion has the additional advantage of enabling the application of standard multivariate
statistics techniques to the analysis of the mixture components p(x |q).

Consider the complete training bag B. We analysed the collection {Rq}q∈Q of its
homogeneous groups with the following procedure. First, we fixed a factor Qi , i ∈
{1, 2, 3, 4, 5} and fixed the levels q̄ j , j 	= i of the remaining four factors. Then, we
defined Qq̄ j , j 	=i := {q ∈ Q | q j = q̄ j , j 	= i}. Finally, we processed the collection
{Rq}q∈Qq̄ j , j 	=i of homogeneous groups using linear discriminant analysis (LDA).

The individual impact of the five factors was interestingly revealed by multiple
applications of this simple algorithm. Figure 5 shows the LDA scores of three homo-
geneous groups, differentiated by the geographic cluster factor Q1.

Figure 6 shows the LDA scores of four homogeneous groups, differentiated by the
filling machine system factor Q2.

Figure 7 shows the LDA scores of three homogeneous groups, differentiated by the
package volume factor Q5.

We also applied LDA to the collections {Rk̄,q}q∈Q of homogeneous groups associ-
ated to different plant bags Bk̄ . As opposed to the apparent lack of structure exhibited
by the plant point cloud Rk̄ in the KPI space (see Fig. 2), this collection fragmented
in interesting mixture-like structures when considering categorical information, as
shown in Fig. 8.

Multivariate normality tests (such asMardia’s,Henze-Zirkler’s,Royston’s,Doornik-
Hansen’s) showed that the homogeneous groups in the considered data set are typically
not normally distributed. In Fig. 9, four different class homogeneous groupsRq,y are
analysed.

The two-dimensional contour and the three-dimensional surface graphs repre-
sent the sample densities of the first and the second principal component scores.
The quantile-quantile plots compare the squared Mahalanobis distances of the data
points from the point clouds’ mean vectors to the chi-square statistics (a well-known
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Fig. 6 LDAonPLMSdata – impact of themachine system factor.Different point clouds represent packaging
lines from a specific region of the world producing the same kind of package but using different filling
machine systems
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Fig. 7 LDAonPLMSdata – impact of the package volume factor.Different point clouds represent packaging
lines from a specific region of the world equipped with the same filling machine system and using the same
packaging material technology but producing packages of different sizes

multivariate normality criterion). Although the multivariate distributions of the homo-
geneous groups are not multivariate Gaussians and even not perfectly uni-modal, they
usually exhibit one strongly predominant mode.

We interpreted these results in the following way. The productive contexts in which
the analysed food processing plants operate are extremely diverse, depending on geo-
graphic factors (energy supplies), political factors (work regulations), and specific
market contingencies (product seasonality). Moreover, the diversity of the operational
conditions of the packaging equipment and the complex interactions between differ-
ent levels of organisation (packaging line, food processing plant, owner company)
also contribute to this diversity. For example, the choice of the package type, shape,
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Fig. 8 The representation of a plant point cloud as obtained by applying LDA using the levels of the
categorical variable as classes. Different colours identify the different homogeneous groups that partition
the point cloud. This is the same plant depicted in red in Fig. 2

and volume can be defined for the single packaging line; the efficiency of the energy
supply and the failure recovery procedures are characteristics of the plant; mainte-
nance policies can be defined at an even higher level of organisation. Partitioning the
records into groups that are homogeneous with respect to the levels of q eliminates
the deterministic impact of the categorical information, enhancing the uni-modality
of sample distributions; vice versa, ignoring qualitative factors gradually reintroduces
multi-modality.

4 The fingerprint method

4.1 Acceptable groups and the fingerprint of a bag

Let X∗ := {R : X → N0 | 0 <
∑

x∈X R(x) < +∞} denote the set of all (finite)
samples from the space X . We define a statistic to be any function

t : X∗ → T

taking values in a given set T . For example, if X := R
d is the d-dimensional Euclidean

space, we could set T = X and define t to be the sample mean.
It might happen that a given sample does not contain a sufficient number of (or

sufficiently good) measurements to compute a given statistic t . For example, if we
want to compute the sample mean of a point cloud, then it should contain at least
one vector. If we want to compute the first principal component of a point cloud,
then it should contain at least two distinct vectors that define a one-dimensional affine
subspace; more generally, if we want to compute the firstm principal components, the
point cloud should contain at leastm+1 distinct vectors that define anm-dimensional
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Fig. 9 The first and second columns show the contour graphs and the surface graphs of the sample densities
of the first and second principal components of four class homogeneous groups. The third column shows
QQ plots for the corresponding 10-dimensional KPI samples, illustrating deviation from normality

affine subspace. Again, if wewant to compute theMahalanobis distance (Mahalanobis
1936) of a data point from the mean of its point cloud, then the sample covariance
matrix S should be invertible.

These requirements become evenmore stringent when performing computations on
a digital computer. To see this, consider the last example. Froma theoretical standpoint,
a sufficient condition for invertibility of S is that the point cloud should contain at least
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d linearly independent vectors (d is the dimensionality of the sample space). But even
in this case, the matrix could be computationally singular, meaning that the inverse
that can practically be computed (the computational inverse) might greatly differ from
the true inverse due to numerical instability issues.

Given a statistic t , we need to characterise whether or not it is possible to compute
it on a given sample R ∈ X∗. To this end, we define the acceptance function:

at : X∗ → {0, 1}

R �→
{
0 , if t(R) cannot be computed,

1 , otherwise.

We can extend this definition to the case of multiple statistics. Let t1, . . . , tL denote
statistics on X∗, and at1 , . . . , atL the corresponding acceptance functions. If we denote
by t := (t1, . . . , tn) the collection of these statistics, the corresponding acceptance
function is

at : X∗ → {0, 1}

R �→
{
0 , if ∃ �̄ ∈ {1, . . . , L} s.t. at�̄ (R) = 0 ,

1 , if at� (R) = 1 , ∀ � = 1, . . . , L .

(20)

Definition 1 Let t be a collection of statistics defined on X∗, and denote by at the
corresponding acceptance function (20). We say that the homogeneous group (13) is
acceptable for the statistics t whenever

at(R) = 1 .

LetBk̄ denote a bag, and {Rk̄,q}q∈Q the collection of its homogeneous groups.Anal-
ogously, let Bȳ denote a class bag, and {Rq,ȳ}q∈Q the collection of its homogeneous
groups.

Definition 2 Let t denote a given collection of statistics and at the corresponding
acceptance function. The collection of acceptable homogeneous groups

Fk̄ := {Rk̄,q | at(Rk̄,q) = 1} , (21)

(respectively,Fȳ := {Rq,ȳ | at(Rq,ȳ) = 1}) is called thebagfingerprint (respectively,
the class fingeprint).

Algorithm 1 in Appendix 1details how to build the fingerprint of a given bag.
For a given bag fingerprint Fk̄ , we define the symbol

Qk̄ := {q ∈ Q |Rk̄,q ∈ Fk̄}

to identify the set of the levels of the categorical variablewhich define its homogeneous
groups. Analogously, for a given class fingerprint Fȳ we define the set

Qȳ := {q ∈ Q |Rq,ȳ ∈ Fȳ} .
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Definition 3 Let Bk̄ and Bȳ denote a test bag and a class bag, respectively. Let Fk̄ and
Fȳ denote the corresponding bag and class fingerprints. We say that Fk̄ and Fȳ have
a match whenever

Qk̄,ȳ := Qk̄ ∩ Qȳ 	= ∅ ;
Qk̄,ȳ is called the match of the fingerprints of k̄ and ȳ.

4.2 Themethod

In Sect. 2we framed the problemof classification of amixed-type data bag identified by
k̄ as the result of a comparison between the bag fingerprint distributions {pk̄,q(x)}q∈Q
and the class fingerprint distributions {pq,y(x)}q∈Q , where y ∈ Y . Qualitatively speak-
ing, the fingerprint method instantiates this operation by comparing specific sample
statistics derived from the available bag and class fingerprints.

In the following, we detail its training and inference phases.

Training Given a class ȳ ∈ Y , the following statistics are computed for each homoge-
neous group Rq̄,ȳ ∈ Fȳ :

– the sample mean vector mq̄,ȳ := ∑
x∈X Rq̄,ȳ(x)x/

∑
x∈X Rq̄,ȳ(x);

– the sample covariance matrix Sq̄,ȳ := ∑
x∈X Rq̄,ȳ(x)(x − mq̄,ȳ)(x − mq̄,ȳ)

′
/(

∑
x∈X Rq̄,ȳ(x) − 1);

– the average Mahalanobis distance from the mean vector

mq̄,ȳ :=
∑

x∈X Rq̄,ȳ(x)
√

(x − mq̄,ȳ)′S−1
q̄,ȳ(x − mq̄,ȳ)

∑
x∈X Rq̄,ȳ(x)

;

– the standard deviation of these Mahalanobis distances sq̄,ȳ ;
– the first n pcs principal directions νq̄,ȳ,i (i.e., the eigenversors of Sq̄,ȳ associated
with its n pcs largest eigenvalues).

The process is repeated for each class in Y . See Algorithm 2 in Appendix 1 for
additional details.

Inference Given a test bag Bk̄ with fingerprint Fk̄ , two steps are needed.

1. [Comparing homogeneous groups] Given a class ȳ ∈ Y , determine thematched
fingerprint Fk̄,ȳ := {Rk̄,q ∈ Fk̄ |q ∈ Qk̄,ȳ}. Then, for each homogeneous group
Rk̄,q̄ ∈ Fk̄,ȳ , compute the following:

• the averageMahalanobis distance from themean of thematching homogeneous
group in the class fingerprint

mk̄,q̄,ȳ :=
∑

x∈X Rk̄,q̄(x)
√

(x − mq̄,ȳ)′S−1
q̄,ȳ(x − mq̄,ȳ)

∑
x∈X Rk̄,q̄(x)

;

• the first moment fit

αk̄,q̄,ȳ := (mk̄,q̄,ȳ − mq̄,ȳ)/sq̄,ȳ ;
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this statistic aims at capturing the compatibility of the “scatterings” of pk̄,q̄(x)
and pq̄,ȳ(x);

• the sample covariance matrix Sk̄,q̄ of the homogeneous group Rk̄,q̄;• the first n pcs principal directions ν k̄,q̄,i of Sk̄,q̄;• the second moment fit

βk̄,q̄,ȳ :=
∑n pcs

i=1 | cos(θk̄,q̄,ȳ,i )|
n pcs

,

where | cos(θk̄,q̄,ȳ,i )| := |〈ν k̄,q̄,i , νq̄,ȳ,i 〉| quantifies the alignment between the
i-th principal directions of the two point clouds; this statistic aims at capturing
the compatibility of the “orientations” of pk̄,q̄(x) and pq̄,ȳ(x).

This step must be iterated for each class.

2. [Classification] Assign the bag to a class ȳ ∈ Y by applying the following three
(subordinate) criteria:

0. Qk̄,ȳ 	= ∅;
1. the average of the first moments fits

∑

q∈Qk̄,ȳ

αk̄,q,ȳ/#(Qk̄,ȳ)

is minimized;
2. the average of the second moments fits

∑

q∈Qk̄,ȳ

βk̄,q,ȳ/#(Qk̄,ȳ)

is maximised.

Failure to meet criterion 0 automatically excludes the possibility to assign k̄ to ȳ,
since the knowledge about the required distributions {pq,ȳ(x)}q∈Qk̄

is insufficient.
Criterion 2 is applied onlywhen criterion 1 provides similar answers for two classes
yi , y j ∈ Y , yi 	= y j ; by similar, we mean that the ratio between the average first
moments fits of the two classes lies in a given interval [1 − τ, 1] (τ is a tunable
hyper-parameter of the method). In this way, we make the second-order properties
of the point clouds more relevant when the first-order properties are not sufficiently
informative.

See Algorithm 3 in Appendix 1for additional details.
Intuitively, the fingerprint method assigns an individual to the segment for which

the point clouds of the matching homogeneous groups have the most similar sample
distributions.Although the chosen statistics are not sufficient to compare complexmul-
tivariate distributions, they proved to be sufficently good choices under the assumption
of “quasi-uni-modality” of the homogeneous groups discussed in Sect. 3.
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Given two different classes yi , y j ∈ Y , it might happen that the matchesQk̄,yi
and

Qk̄,y j
differ not only in size but also in composition. In principle, thefingerprintmethod

can thus compare the collection {pk̄,q(x)}q∈Qk̄
with different sets of distributions

{pq,yi (x)}q∈Qk̄,yi
, {pq,y j (x)}q∈Qk̄,y j

, depending on the specific test bag k̄.

Although the PLMS data set described in Sect. 3 contained thousands of measure-
ments, the number NQ of possible levels was still too high to prevent the information
about q from being “sparse”. I.e., certain levels of the categorical variable appeared
only in certain classes and not in others. At the same time, recall that the classification
methods based on purely categorical data did not attain satisfying performance.

Under such circumstances, the set
⋂

y∈Y Qk̄,y is likely to be empty for many test
bags. Taking the means of the first and second moments fit over all the levels inQk̄,ȳ ,
possibly depending on the class ȳ, is meant to combine all the available information
about the specific bag-class comparison.

4.3 Themulti-stage fingerprintmethod

The fingerprint method can classify a plant only when at least one class ȳ ∈ Y is such
that Qk̄,ȳ 	= ∅. What happens if no match can be found between the bag fingerprint
and any of the class fingerprints?

When no shared levels of q can be identified between the bag and the class finger-
prints, one of the categorical factors composing Q can be dropped so that the bags
and homogeneous groups are redefined with respect to the combined levels of the
remaining factors. The procedure can be iterated by eliminating one factor at a time
until all the categorical factors have been removed. At the last iteration, the fingerprint
method reduces to a quadratic classifier based on the Mahalanobis distance. We call
this version of the algorithm the multi-stage fingerprint method.

In which order should the categorical factors be dropped? Recall that in Sect. 3 we
observed that using all the categorical factors produced distributions pq̄,ȳ(x) which
are approximately uni-modal. The effect of dropping a factor is to merge some previ-
ously separated homogeneous groups, and this can turn uni-modal distributions into
multi-modal ones. The specific criteriawe chose to compare pk̄,q̄(x) to pq̄,ȳ(x) (the dis-
tribution of the sample Mahalanobis distances and the alignment between the sample
principal directions) are sufficiently representative in case of uni-modal distribution,
but they can become less informative when transitioning to multi-modal distributions.
Indeed, in Sect. 5 wewill show that the use of fewer factors during the iterations makes
the classifier less precise.

For this reason, we prescribe a heuristic rule to determine the order in which the
categorical factors should be dropped: the merging should maximise the number of
test bag fingerprints Fk̄ that have a non-empty match Qk̄,ȳ with at least one class
fingerprint Fȳ . In this way, the geometric criteria become applicable to the largest
number of individuals while dropping a minimum number of categorical factors, thus
reducing the degradation of the uni-modality of the distributions. We remark that
computing the drop sequence does not require computing the statistics for all the
homogeneous groups in the test bag fingerprints and class fingerprints. Indeed, it only
requires the computation of the matches Qk,y, k ∈ Ktest , y ∈ Y .
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We formalise the above considerations as follows. We define

Q[i] := Q1 × Q2 × · · · × Qi−1 × Qi+1 × · · · × QNF

as the set obtained from Q by dropping the i-th factor. The homogeneous groups R[i]
k̄,q̄

and R[i]
q̄,ȳ are straightforwardly redefined by replacing q̄ ∈ Q with q̄ ∈ Q[i]. We then

define
K [i]
test := {k ∈ Ktest | ∃ ȳ ∈ Y ,Qk,ȳ 	= ∅}

as the set of plants for which the criteria are applicable for at least one segment. Finally,
we select i ∈ {1, . . . , NF } to maximise #(K [i]

test ).
Note that classifying different test sets might define different sequences of elim-

inations and, consequently, require the computation of a different collection of
fingerprints. In turn, this difference yields different multi-stage fingerprint classifiers.
In a sense, the training process for the multi-stage fingerprint method depends on the
properties of the test set.

We observed an analogy between the multi-stage fingerprint method and the for-
malism of hierarchical learning. Hierarchical learning is a conceptual meta-model
which can be applied to general statistical and machine learning tasks (Zhang and
Zhang 2006). Hierarchical learning suggests that models with stronger inference capa-
bilities can be developed by trainingmultiplemodels at different scales (local, regional,
global). For example, an image can be analysed pixel-by-pixel, by considering sets of
neighbouring pixels and analysing the picture as a whole.

Themathematical foundations for hierarchical learning are set by the quotient space
theory of problem-solving (Zhang and Zhang 2004). Given a domain X , a problem
view is a triplet

([X ], [F], [ f ]) , (22)

where [X ] is quotient space defined by some equivalence relationship on X (which
defines the scale or grain size of the view), [F] is an algebraic structure on [X ] and
[ f ] on [X ] is a map called the feature map of the problem view. The learning problem
is then represented by a semi-lattice whose elements are quotient spaces (22), each of
which provides a view of X at a specific grain size.

The multi-stage fingerprint method applies the same geometric criteria at differ-
ent grain sizes, by hierarchically aggregating homogeneous groups. This hierarchical
aggregation reflects the definition ofmultiple equivalence relationships on the space of
measurements.Given a training set that includes information aboutmultiple qualitative
factors, one can define a combinatorial number of drop sequences for the factors. These
sequences generate a tree structure of fingerprints which describe the distribution at
different grain sizes. Depending on the chosen merging criterion, the multi-stage fin-
gerprint method selects one of the possible tree-traversing paths, hence instantiating
a specific hierarchical view of the learning problem.
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5 Experimental results

To assess the performance of the fingerprint method and its multi-stage version, we
compared them to other classification algorithms on a series of synthetic data sets
plus the original industrial PLMS data set. In all our experiments we set the hyper-
parameters of the method to n pcs = 2 and τ = 0.1. In the toy examples, it was
sufficient to apply a single stage of the multi-stage fingerprint method, resulting in
the application of the “basic” fingerprint method. In the industrial use case, instead,
it was necessary to apply all the stages to classify all the test bags and compare the
results with those of the competitor methods (which always yield a prediction by
construction).

After briefly presenting the selected competitor methods, we will describe the toy
data sets and summarise the main insights of the corresponding experiments. Then,
we will report the performance of the multi-stage fingerprint method on the PLMS
data set.

5.1 Competitor methods

We compared themulti-stage fingerprintmethod to a rich variety of standard statistical
and machine learning methods, as well as to methods explicitly designed to classify
mixed-type and bagged data.

LDA & QDA Linear discriminant analysis and quadratic discriminant analysis are
standard techniques in multivariate statistics (McLachlan 1992). We used the imple-
mentations readily available in the MASS package for the R programming language.

MixtCompThemixture composer algorithm is a recently proposedmethod designed to
classifymixed-typemeasurements (Biernacki et al. 2015).Weused the implementation
provided by the RMixtComp package for the R programming language.

SVM Support vector machines are consolidated machine learning systems, with a
solid theory and efficient implementations (Boser et al. 1992; Cristianini and Shawe-
Taylor 2000). In our experiments, we adopted a Gaussian kernel K (x(i), x( j)) :=
e−γ ‖x(i)−x( j)‖2 , widely used to classify data sets characterised by non-linear decision
surfaces. We tuned the kernel sensitivity hyper-parameter γ and the regularisation
hyper-parameter C (associated with the numerical optimisation problem) through
cross-validation on top of training data. We wrote a MATLAB wrapper around the
parallel gradient projection-based decomposition technique (parallel GPDT) software
for efficient optimisation (Zanni et al. 2006).

MLPMulti-layer perceptrons are simple artificial neural networks consisting of multi-
ple densely connected layers (Hinton 2007). We used MLPs composed of two hidden
layers containing 20 and 10 neurons, respectively; the artificial neurons used the hyper-
bolic tangent as the activation function,whereas the four neurons in the output layer use
the (standard) identity activation function. We minimised the cross-entropy (CE) loss
using the standard combination of the backpropagation algorithm (Rumelhart et al.

123



M. Spallanzani et al.

1986) and a variant of stochastic gradient descent (in our case, the Adam optimisation
algorithm (Kingma and Ba 2014)) with a learning rate η = 0.001 and a mini-batch
size of nbatch = 200. We used the implementation provided by the scikit-learn
library for the Python programming language.

RF Random forests (Breiman 2001) are popular ensemble machine learning systems
(Schapire 1990) which leverage decision trees (Quinlan 1986) as their weak learn-
ers. Random forests are natively capable of handling mixed-type data, and have the
noticeable property of avoiding overfitting (provided, of course, that the training data
distribution is representative of the real-world distribution). We used RFs consisting
of ntrees = 100 DTs. The trees were grown using the maximum information gain
branching criterion and applying the maximum depth termination criterion. We used
the implementation provided by the scikit-learn library for the Python program-
ming language.

MIL The framework ofmultiple instance learning encompasses a series of techniques
designed to classify bags of data (Dietterich et al. 1997). To the best of our knowledge,
this is the only family of methods explicitly designed to handle bagged data. In our
experiments, we used theMI-SVM variant (Andrews et al. 2003), which is based on a
constrained SVM learning problem designed to take into account themultiple instance
hypothesis. As in the experiments with standard SVMs, we adopted the widely used
Gaussian kernel and tuned the hyper-parameters γ and C using cross-validation on
top of training data. We used a publicly available Python implementation associated
with a comprehensive literature review on the topic (Doran and Ray 2014).

The methods we considered vastly differ for statistical and computational proper-
ties. Most of the methods (LDA, QDA, MixtComp, SVM, MLP, RF) are designed to
perform classification at the instance-level, not at the bag level. In particular, some
of them are natively capable of handling multi-class classification problems (LDA,
QDA, MixtComp, MLP, RF), whereas we needed to adapt the others (SVM, MIL) to
implementmultiple class-vs-class classifiers, whose resultswere then fed to amax-win
voting (MWV) procedure.

Amongst the considered methods, only MixtComp and RF can natively handle
mixed-type data; hence, for the other methods, we needed to implement a type-
conversion preprocessing before we could feed the data points to the algorithms.
As we have seen in Sect. 3, geometry provides critical information about the PLMS
data set and, therefore, preferred to convert categorical measurements into numer-
ical measurements by one-hot encoding their values, instead of binning numerical
measurements into categorical or ordinal values.

Finally, some of the chosen algorithms have linear cost in the training data set size
(LDA, QDA, MixtComp, MLP), some superlinear (RF), and others quadratic (SVM,
MIL). Notice that the higher computational cost for SVM and MIL adds to the need
of building multiple class-vs-class classifiers, making these methods less appealing
for big data regimes.

We conclude this subsection with a couple of technical remarks.

• Inmost of the experiments, including those on thePLMSdata set, one-hot encoding
the categorical variables led to computationally singular covariance matrices of
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class data, resulting in QDA failing. To simplify the comparisons, we decided not
to report the results of this method on the experiments, even for those few where
it provided predictions.

• Although, in theory, RF are natively capable of handling categorical data, the
chosen scikit-learn implementation does not. Hence, also the results for the
RFs are computed on top of mixed-type data where the categorical components
have been one-hot encoded.

5.2 Toy data sets

To better understand the performance of the fingerprint method and the conditions
under which it should be preferred to other methods, we designed a parametric algo-
rithm to generate a collection of toy data sets which are representative of the use cases
for which the fingerprint method is intended.

First, we need to define the set of classes Y and the domain of categorical variables
Q. Then, for each pair (q, y) ∈ Q × Y , we need to parametrise the distribution
pq,y(x) = p(x |q, y). In Sect. 3 we showed that the homogeneous group represented
in the PLMS data set appeared to be approximately uni-modal. Hence, in order to keep
things simple, we chose to model the homogeneous groups pq,y(x) as multivariate
Gaussians with mean μq,y and covariance matrix Σq,y .

These parameters are generated (with a possible degree of stochasticity) according
to a simple set of conditioning rules. We parametrised the mean generation to simulate
two cases. In the first case, the means of homogeneous groups belonging to the same
class (i.e.,μqi ,yi , μq j ,y j |qi 	= q j∧yi = y j ) can be forced to bemutually close or even
identical and, at the same time, they are enforced to be far from the means of matching
homogeneous groups belonging to different classes. This setup is not interesting, since
it can lead to (approximately) linearly separable clusters in the Euclidean space X .
What is interesting is imposing that the means of corresponding homogeneous groups
belonging to different classes (i.e., μqi ,yi , μq j ,y j |qi = q j ∧ yi 	= y j ) are mutually
close, and at the same time that they are far from the means of the other homogeneous
groups belonging to their same class since this setup can create considerable overlaps
between the supports of the distributions of different classes. Hence, we used this
second setup in all the reported experiments.

The covariance matrices are generated by combining three factors: the spectrum,
the volume (i.e., the magnitude of their largest eigenvalue), and the orientation. In
particular, the spectrum and the volume concur to determine the “shape” of the Gaus-
sian clouds. A spectrum with eigenvalues that decay quickly to zero will have a more
elongated shape, whereas a spectrum with all equal eigenvalues will return spherical
clouds. The volume factor can instead determine how “concentrated” a cloud is since
it is the magnitude of the maximum eigenvalue. Finally, the orientation implicitly
defines the principal components of the distribution.

Once the classfingerprints have been created,weneed to generate the actual data set.
This process is accomplished by repeatedly generating bags. We split the generation
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procedure for a single bag into three steps: deciding the class, generating the bag
composition, and finally sampling the numerical measurements.

First, a class y is sampled. Then, the bag composition is generated by first sampling
the number m of sub-bags, and then sampling a value q( j) of the categorical variable
q for each j = 1, . . . ,m. Finally, the sample of numerical vectors is generated by
sampling a fixed number of measurements from pq( j),y(x).

The parametrisation also allows to set the class probabilities, the bag size dis-
tributions, and even the conditional probabilities p(q | y) used to generate bag
compositions. In this waywewere able to emulate another characteristic of the original
Tetra Pak data set, i.e., the fact that it is unbalanced.

In all our experiments, including the one with PLMS data, we considered 4-class
classification problems. The interested reader can find the details of the generation
procedure and the exact values for the parameters in the GitHub repository associated
with the present work.

5.3 Experiments on toy data sets

In the first experiment, we defined NQ = 4 levels of the categorical variable, yielding
NY · NQ = 16 homogeneous groups. We generated matching homogeneous groups
with close or identical means; the shapes of the groups were slightly ellipsoidal and
mutually similar, with the main difference coming from the orientation. In this case,
the resulting point clouds resulted very overlapped.

Fig. 10 The setup and experimental results for the first toy data set. Top row: the complete data set (top left
image) is partitioned into the class point clouds; the point cloud of a test bag (red points) is overlaid onto the
point clouds of the individual classes, which exhibit a mixture-like structure. Bottom row: the performance
of the different classification methods is reported, also for the individual classes
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Fig. 11 The setup and experimental results for the second toy data set. Top row: the probability of sampling
a bag from Class 1 is 40%, 20% for Class 2, 10% for Class 3, and 30% for Class 4; moreover, some
homogeneous groups are extremely unlikely to be sampled when composing bags of Class 2 and Class 4;
a test bag (red points) is overlaid to the individual class point clouds. Bottom row: the performance of the
different classification methods is reported, also for the individual classes

As can be seen from Fig. 10, the competitor models are prone to overfit the distri-
bution of Class 1 (with the only exception of the RF, which is capable of detecting a
weak correlation), whereas the fingerprintmethod is capable of attaining an impressive
≈ 60% accuracy.

In the second experiment, we increased the number of levels of the categorical
variable to NQ = 6, for a total number of homogeneous groups of 24. We also
unbalanced the data set by setting a slightly higher probability of sampling from
classes 1 and 4, and by increasing the average number of sub-bags sampled for each of
their bags. These choices added up to globally generate more data points for these two
classes. We also unbalanced the conditional probabilities p(q | y) of sampling specific
categorical values used during the bag composition stage.

In this case, as can be seen from Fig. 11, all the competitor methods can perform
better than random chance (the worst method, MIL, has an accuracy higher than 40%,
which is the probability of sampling a bag fromClass 1).We ascribe this success to the
fact that, since the data set is unbalanced, the overlaps between corresponding homo-
geneous groups are less severe. Consider a specific cluster of matching homogeneous
groups (i.e., one of the eye-detectable clusters in the image at the top left corner of
Fig. 11), and the decision surface of a model like an MLP: in this case, the part of
the model’s decision surface which intersects the support of the cluster distributions is
required to discriminate between just two or three classes instead of four, resulting in
reduced uncertainty for some of the groups. Note that the SVM, MLP, and RF indeed
struggle to determine proper decision surfaces for the underrepresented Class 3 (which
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Fig. 12 The setup and experimental results for the third toy data set. Top row: note that the orientation of
matching homogeneous groups can greatly differ, although their means remain closer; a test bag (red points)
is overlaid to the individual class point clouds. Bottom row: the performance of the different classification
methods is reported, also for the individual classes

has a probability of only 10% of being sampled from). Note that the fact that the qual-
itative factors are unbalanced seems to have favoured the model-based MixtComp
approach as well.

In the third and fourth experiments, we modified the second toy data set to inves-
tigate how the shape and volume of the homogeneous groups distributions impact
performance.

The third data set was generated by enforcing more “elongated” shapes of the
Gaussian point clouds (i.e., ellipsoids where the ratios between the longest semi-axis
and the shorter semi-axes are larger); nevertheless, note that the volume factors (i.e.,
the magnitude of the largest eigenvalues) were kept similar.

In this case, probably because the overlaps betweenmatching homogeneous groups
are further reduced, the regions where the competitor methods still struggle to dis-
criminate data points are smaller. At the same time, the points which are sampled from
a specific class can easily end up having enormous Mahalanobis distances from the
means of the homogeneous groups that are not their generating ones. This implies
that bags are easier to classify also for the fingerprint method. Hence, as depicted in
Fig. 12, we observe more correct predictions and overall higher performance for most
methods.

In the fourth and last experiment with toy data sets, we restored the shape factors
as they were in the second experiment, but explored the effect of changing the volume
factors.

Interestingly, while the performance of the competitor methods remained quite
satisfying, that of the fingerprint method dropped. In particular, as can be seen from
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Fig. 13 The setup and experimental results for the fourth toy data set. Top row: note that the homogeneous
groups ofClass 2 aremuchmore “concentrated” than thematching homogeneous groups of other classes, but
their means are also close to those of matching homogeneous groups; a test bag (red points) is overlaid to the
individual class point clouds: intuitively, it is easy to assign this bag to Class 2, but the fingerprint method
consistently fails at classifying such bags. Bottom row: the performance of the different classification
methods is reported, also for the individual classes; note that the fingerprint method is not capable of
classifying correctly bags that belong to Class 2 and Class 4

Fig. 14 Confusion matrix of the
multi-stage fingerprint method
applied to the fourth toy data set

Fig. 13, we observe that the classification performance for Class 2 and Class 4 (the
ones whose homogeneous groups are more “concentrated”) suffers the most. Why
does this happen?

Looking at the confusion matrix reported in Fig. 14, we see that most of the bags in
Class 2 are misclassified as belonging to Class 1 or Class 3. Noticing that the means of
its homogeneous groups are very close to the means of the (larger) matching homoge-
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Fig. 15 Performance of the competitor methods (SVM,MLP, RF) and the fingerprint method on the mixed-
type PLMS data. Some of the methods that we applied to the toy examples could not be trained on the
PLMS data set: the fact that the training set is unbalanced led to computational issues for MIL (namely,
the software reported computationally singular matrices during optimisation), whereas MixtComp failed
at computing the likelihood scores for certain test points since the levels of their categorical variables had
never been observed in the training set (and the corresponding multinomial probabilities thus estimated
zero probability for those levels)

neous groups of Class 1 and Class 3, we formulated the following hypothesis. Since
the first criterion on the fingerprint methods is based on the Mahalanobis distance,
the points sampled from a homogeneous group in Class 2 or Class 4 are much farther
(under the metric defined by the associated Mahalanobis distance) from its mean than
from the means of the matching homogeneous groups of Class 1 or Class 3 (under the
metrics defined by the corresponding Mahalanobis distances). Since this fact is likely
to hold for most of the homogeneous groups in Class 2 and Class 4, a sample of points
from one of these classes is likely never classfied as belonging to it. At the same time,
standard machine learning methods like SVM, MLP, and RF show good performance
at classifying bags from Class 2. We interpret this as the fact that their learning algo-
rithms are capable of drawing “efficient” decision surfaces around the homogeneous
groups of Class 2. By this use of the term, we mean that these decision surfaces are
likely very tight around the clusters containing most of the points of the homogeneous
groups of Class 2: they “accept” to misclassify a few points which are sampled from
matching homogeneous groups of other classes in these localised regions, but they are
then able to compensate for these errors by classifying most of the remaining points
in the test bags correctly (which, if sampled from other classes, are unlikely to fall in
these tiny regions).

5.4 Experimenting with the PLMS data set

Weconclude this section by reporting and commenting on the results of the experiment
on the industrial PLMS data set. Recall that the test set for this problem is highly
unbalanced in favour of Segment 1 and Segment 4: over 83 test bags, 24 are labelled
as Segment 1 and 35 are labelled as Segment 4, 15 as Segment 2, and only 9 as
Segment 3. Thus, the baseline performance would be ≈ 40% classification accuracy
(by always predicting Segment 4).
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In this experiment, the multi-stage fingerprint method far outmatched the com-
petitor methods: the gap with respect to the best competitor model (a random forest
achieving an accuracy of 63.86%) amounts to almost ten accuracy points (the multi-
stage fingerprint method achieves an accuracy of 73.49%). The accuracies shown in
Fig. 15 reveal that this gap is mostly due to the fact that the fingerprint method classi-
fies correctlymost plants of the under-represented Segment 2 and Segment 3 (classes 2
and 3), which are usually missed by the competitor methods. As shown be the first and
second toy examples in the previous sub-section, this might be because the matching
homogeneous groups of the corresponding segments are highly overlapped, and only
the evaluation of higher-order statistics of the homogeneous groups (considered as
wholes) can allow to discriminate them.

By design, the multi-stage fingerprint method had to be able to classify all the
bags in a given test set: we did not allow the scenario of leaving unclassified bags.
The classification of all the test bags can be achieved at the last stage of the method
when all the qualitative factors have been dropped. As anticipated in Sect. 4, Fig. 16
shows that the use of less qualitative criteria at later stages makes the classifier less
precise on the remaining test bags. In our experiments, the initial definition of the
homogeneous groups involved all the five available factors. In such circumstances,
the test set contained several bags whose fingerprints did not have any match with the
class fingerprints (10.8%of the total test individuals). After the first stage, 68.7%of the
test bags were correctly classified (remarkably, 77.0% of the bags whose fingerprint
had a non-emptymatch with at least one class fingerprint were correctly classified). At
the second stage, the geographic cluster factor Q5 was dropped, and 72.3% of the total
test bags were correctly classified (77.9% of the test bags which could be classified),
while the class of 7.2% of the bags (six plants) remained unknown. Note that all the
newly classified plants were correctly classified. At the third stage, only one of the
three newly classified bags was correctly classified. None of the mergings that were
possible at the fourth and fifth stages allowed to classify other plants. At the last stage,
when all the factors had been dropped, none of the three remaining bags was correctly
classified: as we expected by merging multiple homogeneous groups, the precision is
greatly reduced with respect to the previous stages.

We recall from Sect. 3 that being unbalanced and heterogeneous are key charac-
teristics of the PLMS data set. Classification methods for unbalanced data sets can
be classified in two families: re-sampling approaches and model-based approaches.
Re-sampling approaches aim at balancing the available data by under-sampling the
majority classes to match the size of the minority classes, over-sampling the minority
classes to match the size of the majority classes, or combinations of these two tech-
niques. We refer the interested reader to Liu et al. (2006), Khoshgoftaar et al. (2007)
for additional details. On the other hand, model-based approaches aim at developing
algorithms that can directly cope with the fact that the available data is unbalanced.
Some examples include weighing more the classification errors for points belonging
to the minority classes during training, rare events modelling, and anomaly detection.
The fingerprint method takes a model-based approach to the unbalance problem. Note
that the definition of acceptance function (20) has the intrinsic advantage of reducing
the impact of the data set unbalance: if a homogeneous group Rq̄,ȳ is acceptable,
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Fig. 16 Confusion matrices of different stages of the multi-stage fingerprint method applied to the PLMS
data set. The six figures represent, in lexicographic order, the results obtained by dropping one categorical
factor at the time, starting from all factors (top left) and concluding with no factors (bottom right)

the corresponding sample statistics are independent of the number of points that it
contains (although more points might make the statistics more precise).

A reader might anyway wonder why we did not explore re-sampling approaches
in the present study. We hypothesised that straightforward over-sampling the minor-
ity classes by using interpolation or nearest-neighbours techniques might alter the
mixture-like structure of the PLMS data set; some support for this hypothesis comes
from the degradation in performance that we witness when merging different homo-
geneous groups in the multi-stage version of the method.
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6 Conclusions

We have presented the fingerprint method, a new classifier that can process variable-
length records (bags) of mixed-type measurements. Inspired by and applied to a real-
world industrial problem, it performed remarkably better than standard statistical and
machine learning methods (linear discriminant analysis, support vector machines,
multi-layer perceptrons, random forests), and also than methods specifically designed
to handle mixed-type and bagged data (mixture composer, multiple instance learning).

The specific criteria chosen to approximate the comparison between the bag finger-
print distributions {pk̄,q(x)}q∈Q and the class fingerprint distributions {pq,ȳ(x)}q∈Q
(the Mahalanobis distances and the principal components) are simple heuristics con-
ceived according to specific properties of the original industrial data set but proved
effective in both synthetic and real-world experiments.

The fingerprint method can achieve remarkable accuracy levels even when match-
ing generating distributions (i.e., distributions p(x |qi , y j ), p(x |qi , y j ) |q1 = q2 ∧
y1 	= y2) have highly-overlapping supports, cases where the competitor methods
completely fail (i.e., their accuracy is the same of a random guess) or can detect only
weak correlations (see the first toy example). On the other hand, the choice to use
the Mahalanobis distance as a classification criterion might sometimes result in the
method to fail. In particular, this weakness emerged when matching homogeneous
groups had similar means but whose covariance matrices had maximum eigenvalues
which differed by orders of magnitude (see the last toy example).

There are some directions in which the fingerprint method can be further devel-
oped. The chosen heuristics to compare the bag distributions {pk̄,q(x)}q∈Q to the
class fingerprint distributions {pq,ȳ(x)}q∈Q can be improved. A possible investiga-
tion approach can be briefly outlined here. Once the match Qk̄,ȳ has determined the
comparisons bag-class that have to take place, one could apply a series of multivariate
two-sample Kolmogorov-Smirnov tests: the sample distribution associated with a bag
homogeneous group can be compared to the sample distributions of matching class
homogeneous groups, and the class whose sample distribution is most likely to be
obtained from the same ideal population can be detected. This is expected to provide a
more robust theoretical substitute for the proposed heuristics. More general questions
regarding the handling of different matches Qk̄,yi

	= Qk̄,y j
, rules for aggregating the

(possibly probabilistic) outcomes of the comparisons at the homogeneous group level
into a bag level response, and the related computational challenges seem non-trivial.

At the moment, the determination of the drop sequence for qualitative factors in the
multi-stage fingerprint method is based on a greedy heuristic prescription (classifying
the largest number of test bags by removing the least number of factors). The rationale
for this choice is that the chosen geometric comparison criteria are more reliable on
uni-modal mixture components. This approach has performed well so far, but there are
opportunities for implementing a more advanced feature selection procedure, possibly
related to hierarchical learning.

Going back to the original industrial problem, there is one characteristic of the
PLMS records which has not been exploited in this research. The measurements col-
lected from a single production line are indexed over time. In the scope of the broader
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study of which this work represents a part, we detected and analysed some interesting
temporal patterns (e.g., seasonal variations, different inventory management strate-
gies) in the PMSD set. These patterns are possibly reflected in the PLMS data, but this
could also introduce additional complications in the formalisation and experimental
activities. For instance, the fact that in the southern and the northern hemisphere some
seasonality-related patterns are shifted might force to design dedicated “alignment”
procedures for time series. Hence, our approach to classificationwas developed around
bags of measurements instead of time series. Although interesting, such an extension
goes beyond the scope of the present paper.

The formalisation of thefingerprintmethodweprovided in Sect. 2 is general enough
to suggest that the method could be applied to other mixed-type bagged data sets. As
a first example, anomaly detection can be considered. The performance parameters of
a given system in different operational regimes can differ quite substantially. Imagine
a jet turbofan, with its operational regimes of takeoff, cruise, and landing (interpreted
as the levels of a categorical variable): the fingerprint of the machine can be exploited
to distinguish normal and anomalous states of the system (interpreted as classes).
From this viewpoint, the fingerprint of the system can be interpreted as the result of a
physical diffusion process which starts from a set of centroids (the initial conditions)
that describe different ideal states.

Wearable devices for health monitoring might provide another example. In this
case, a collection of sensors placed on different body parts (head, wrists, ankles) and
measuring different biological signals (EEG, ECG, O2 sats) can be represented as a
bag composition. The fingerprint of such a system can be used to monitor the health
state of an individual.
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A: Algorithms

Algorithm 1 Given an acceptance function at, split a bag B (list of structures) into its
fingerprint F (dictionary of lists).

Function compute_fingerprint
Input at,B
Output F

1: Q ← list()
2: F ← dict()
3: for b ∈ B do
4: q ← b.q
5: if q /∈ Q then
6: Q.append(q)

7: F [q] ← list()
8: end if
9: F [q].append(b.x)
10: end for
11: for q ∈ Q do
12: if at(F [q]) = 0 then
13: delete(F , q)
14: end if
15: end for
16: return F

Algorithm 2 Given the class bag Bȳ (list of structures), compute the statistics Tȳ of
its fingerprint (dictionary of structures).

Input at,Bȳ , n pcs
Output Tȳ

1: Fȳ ← compute_fingerprint(at,Bȳ)

2: Tȳ ← dict()
3: for q ∈ Fȳ .keys() do
4: Rq,ȳ ← Fȳ [q]
5: mq,ȳ ← mean(Rq,ȳ)

6: Sq,ȳ ← cov(Rq,ȳ)

7: mq,ȳ ← mean({
√

(x − mq,ȳ)
′S−1
q,ȳ(x − mq,ȳ) | x ∈ Rq,ȳ})

8: sq,ȳ ← std({
√

(x − mq,ȳ)
′S−1
q,ȳ(x − mq,ȳ) | x ∈ Rq,ȳ})

9: Nq,ȳ ← {νq,ȳ,i }i=1,...,n pcs = PCA(Sq,ȳ , n pcs )
10: stats ← (mq,ȳ , Sq,ȳ ,mq,ȳ , sq,ȳ , Nq,ȳ)

11: Tȳ [q] ← stats
12: end for
13: return Tȳ
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Algorithm 3 Assign a test bag Bk̄ (list of structures) to a class y∗ (enumerated;
−1 represents “unknown”), given the trained statistics T of the class fingerprints
(dictionary of dictionary of structures).

Input: at,Bk̄ ,T , n pcs , τ
Output: y∗

1: Fk̄ ← compute_fingerprint(at,Bk̄ )

2: Qk̄ ← set(Fk̄ .keys())
3: M ← dict()
4: for y ∈ Y do
5: Qy ← set(T [y].keys())
6: Qk̄,y ← Qk̄ ∩ Qy

7: if Qk̄,y = ∅ then
8: M[y] ←NULL
9: else
10: α ← list()
11: β ← list()
12: for q ∈ Qk̄,y do
13: Rk̄,q ← Fk̄ [q]
14: (mq,y , Sq,y ,mq,y , sq,y , Nq,y) ← T [y][q]
15: mk̄,q,y ← mean({

√
(x − mq,y)′S−1

q,y(x − mq,y) | x ∈ Rk̄,q})
16: α.append((mk̄,q,y − mq,y)/sq,y)

17: Sk̄,q ← cov(Rk̄,q)

18: Nk̄,q ← {ν k̄,q,i }i=1,...,n pcs = PCA(Sk̄,q, n pcs )
19: β.append(mean({|〈ν k̄,q,i , νq,y,i 〉|}i=1,...,n pcs ))

20: end for
21: M[y].α ← mean(α)

22: M[y].β ← mean(β)

23: end if
24: end for
25: Yk̄ ← {y ∈ M.keys() |M[y] 	=NULL}
26: if Yk̄ = ∅ then
27: y∗ ← −1
28: else
29: if #(Yk̄ ) = 1 then
30: y∗ ← y | Yk̄ = {y}
31: else
32: yA ← arg min

y∈Yk̄
M[y].α

33: yB ← arg min
y∈Yk̄\{yA}

M[y].α
34: if M[yA].α/M[yB ].α ≥ 1 − τ then
35: if M[yB ].β > M[yA].β then
36: y∗ ← yB
37: else
38: y∗ ← yA
39: end if
40: else
41: y∗ ← yA
42: end if
43: end if
44: end if
45: return y∗
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B: Experimental results on themixed-type PLMS data set

(a) SVM vector-level performance. (b) SVM bag-level performance.

(c) MLP vector-level performance. (d) MLP bag-level performance.

(e) RF vector-level performance. (f) RF bag-level performance.

Fig. 17 Confusion matrices of SVM (top row), MLP (central row) and RF (bottom row) applied to the
mixed-type PLMS data
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Fig. 18 Vector-level performance of the competitor methods (SVM, MLP, RF) on the mixed-type PLMS
data
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