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ABSTRACT: 

 

The paper presents DECAI - DEcay Classification using Artificial Intelligence, a novel study using machine learning algorithms to 

identify materials, degradations or surface gaps of an architectural artefact in a semi-automatic way. A customised software has been 

developed to allow the operator to choose which categories of materials to classify, and selecting sample data from an orthophoto of 

the artefact to train the machine learning algorithms. Thanks to Visual Programming Language algorithms, the classification results 

are directly imported into the H-BIM environment and used to enrich the H-BIM model of the artefact. To date, the developed tool is 

dedicated to research use only; future developments will improve the graphical interface to make this tool accessible to a wider public. 

 

 

1. INTRODUCTION 

The paper proposes a novel study that involves the use of digital 

tools and applications for the management and analysis of decays 

in historical buildings. Recently, many studies and 

methodologies have tried to digitise processes of decay 

annotations, but to date, a methodological approach is missing. 

Diverse technologies and tools are available, but they are 

generally employed by users with different backgrounds and 

purposes. The presented research aimed at creating a novel 

collaborative process between ICT scientists and the AEC sector, 

their common methodologies and interoperable tools. 

Building Information Modelling (BIM) and its application at 

architectural heritage (H-BIM) methodologies are increasingly 

being investigated in the management of architecture (Logothetis 

et al., 2015; Murphy et al., 2013). The use of these methodologies 

has opened research to investigate novel approaches considering 

a multidisciplinary perspective in the collection, management, 

and analysis of different types of data (Tsilimantou et al., 2020). 

Computer science and technological advancement enabled the 

creation of a large amount of data in the architectural heritage 

field. These data acquired by diverse instruments are no longer 

collected for the unique purpose of measuring or verifying metric 

accuracy but can be analysed with specific purposes. The efforts 

made in recent years in this direction have led to the development 

of many techniques useful to generate new forms of knowledge 

analysing data and information through pattern recognition 

algorithms (Dulli et al., 2009). 

Despite the large amount of data acquired and available, the 

architectural field still has to become confident with novel ICT 

techniques, such as machine and deep learning, encouraging and 

promoting the development of good practices for recording, 

documentation and information management of architectural 

heritage.  

In the field, finding diverse methodologies to map the decay of 

walls is an ongoing area of research, where diverse approaches 

are available. To date, the operations of cataloguing and 
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assessing degradation and materials are carried out manually by 

specialised operators. The images collected of the artefact are 

studied individually: efflorescence, exfoliation, biological patina, 

cracks, black crusts, detachments, and stains due to rising damp; 

they are all identifiable "on sight". This information can be also 

digitised using BIM software (Bruno and Roncella, 2019; 

Malinverni et al., 2019) where the digitisation process consists in 

the creation of objects that are computerised in the H-BIM 

environment and that can be created by parametric modelling 

(Brumana et al., 2017; Chiabrando et al., 2017) or using 

algorithms (Giovannini and Tomalini, 2021; Lo Turco et al., 

2021). 

Some studies focus on the development of workflows and 

methodologies that can create H-BIM models from point clouds 

(Fryskowska and Stachelek, 2018) or by using point clouds as 

reference data (Grilli and Remondino, 2019; Lo Turco and 

Santagati, 2016; Quattrini et al., 2015). 

Analysis and use of this data are usually focused on the 3D 

modelling phase instead of on the recognition of decay elements. 

The paper presents preliminary results of the ongoing project 

DECAI - DEcay Classification using Artificial Intelligence, a 

collaboration between Links Foundation and the Department of 

Architecture and Design of Politecnico di Torino. DECAI 

proposes a machine learning-based pipeline that uses an 

orthophotos “intelligent” analysis to classify and recognise 

materials, degradations, surface gaps of elevations in a semi-

automatic way. The classification results can be imported into the 

H-BIM environment by using Visual Programming Language 

algorithms. 

 

2. THE CASE STUDY 

2.1 The Castle of Bonavalle 

The Castle of Bonavalle is located in the Italian Province of 

Cuneo and it is nowadays in a state of abandonment since the 

early 20th century. The fief of Bonavalle was claimed in the 19th 
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century, by the Municipality of Racconigi, for historical reasons, 

but there is no concrete evidence of an actual annexation, even if 

the reason for its abandonment is certainly related to its property 

transfer to the public body. 

The settlement, with its original defensive function, has towers 

on the main south front and a perimeter moat that is no longer 

recognizable. Following the loss of the function of fortification, 

the castle was used as a "noble" residence outside the city. The 

presence of diverse transformation of the building reflects the 

succession of different lord owners during diverse past years. The 

transformations have interested both the change of use (first 

fortress, immediately after Consignoria and finally farm) and 

sometimes the structural modification of the building that 

nowadays appears to be a stratified set of interventions. However, 

the more drastic and invasive interventions (for example the 

creation of chimneys), over the years have caused the formation 

of cracks and various instabilities that, not having been 

monitored, have become widespread and now involve serious 

consequences from a structural point of view (Comoli 

Mandracci, 1988; Cravero, 2010). 

The ruinous state of the castle, however, is not only due to the 

repeated change of ownership, but also to the subsequent 

abandonment of the Seigniory, which occurred after the death of 

the last owner Giuseppe Augusto Levis at the beginning of the 

20th century, who, before his death, left one-third of his property 

to the Municipality of Chiomonte, and the remaining two thirds 

to the Municipality of Racconigi. The lack of care on the part of 

the Municipality led the building is in a state of abandonment, 

and this situation could even worsen leading to the collapse of 

the entire property. Intending to avoid this, around the year 2000, 

the Municipality of Racconigi opened a public auction to assign 

the management of the ruin to private individuals. 

 

 

 
The ruin consists of a square body, with two angular towers 

facing south and two small towers surmounted by domes facing 

north. The north, east and west fronts rose to three floors above 

ground; the south one has a further two-storey elevation in the 

central part. The load-bearing structure of the Castle is composed 

of solid brick walls. Their development in height varies from 

floor to floor and it starts from a useful section of 1.20 m up to 

0.50 m approximately. In addition to the three floors above 

ground, the building also has a basement consisting of rooms 

with vaulted brick. The main element of coverage, which ran on 

the four sleeves, is no longer present.  

 

2.2 The digital acquisition 

The digital acquisition and survey campaign were performed 

using tools and methodologies to obtain an accuracy that allowed 

a precise analysis of both the degradation of walls and the surface 

characteristics. Furthermore, the dataset allowed a 

comprehensive understanding of the artefact. 

During the survey campaign, traditional topographic, image-

based and range-based technologies have been employed.  The 

performed survey operations have respected the precise and 

defined order going "from general to particular".  

For a correct georeferencing of the acquired and produced data, 

a topographic network has been created using GPS/GNSS 

technologies; every subsequent elaboration has been referred to 

this topographic network.  

The architectural components have been acquired using 

terrestrial and aerial tools. 135 pictures were made using a Canon 

EOS 5DS R with a focal length of 25 mm and a constant focal 

ratio of f/11. The camera acquisition had a trajectory circle 

clockwise starting from the facade facing south. Obtained RAW 

images were post-processed to obtain .jpeg format with max. 

resolution of 8688x579 pixels. 

The aerial acquisition was made using the DJI Phantom 4 Pro 

drone. Its camera, the FC6310 has a CMOS 1” sensor (13,2x8,8 

mm) and allows it to obtain 20 MP pictures (Figure 1). The 

drone's path showed in Figure 2 was made manually through a 

radio control connected to the smartphone, which normally 

reaches a maximum transmission distance of 3.5 km. 283 images 

were acquired in .jpg format of 5472x3648 pixels and the height 

of the flight was defined using a pre-calculated Ground Sample 

Distance (GSD) (Cusniriuc and Martillo Flores, 2019). 

 

 

 
2.3 H-BIM digitisation process 

Autodesk Revit 2020 software was used to create the H-BIM 

model. The point clouds obtained by the post-processing of 

collected pictures were imported in Revit. For more suitable 

management, the clouds were translated from the original 

coordinates (x, y, z) to coordinates close to the origin of the axes 

(x', y', z') in the Revit coordinates system. 

The perimeter walls were modelled using conceptual masses 

obtained from the extrusion of sections generated by the 

intersection between numerous section planes and the point 

cloud. The distance between the section planes ranges from 1m 

to 1,5m, then refinements section planes have sometimes 0,5 m 

 

Figure 1. Drone Phantom 4 Pro picture of the ruins of Castle. 
 

Figure 2. From the top: drones trajectories; position of cameras 

used for architectural component’s acquisition. 
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of distance. The section planes, therefore, allow obtaining a more 

accurate H-BIM model as shown in Figure 3. 

Once the perimeter walls were defined, the modelling of all 

architectural elements, functional and decorative, were 

developed using ad-hoc parametric families (Figure 4). 

 

 

 

 

 
3. A DECAY CLASSIFICATION METHODOLOGY 

3.1 Digital tools and environments 

3.1.1 Machine Learning (ML) algorithms: Image 

classification and pattern recognition represent a very explored 

research field. Numerous algorithms are nowadays available, 

along with their implementations, to perform these tasks. ML 

algorithms allow creating models that can be trained on a dataset 

and learn how to classify images from the data itself.  These 

models can be conceptualised as the collection of the memories 

the algorithms recall to perform the classification tasks. It is also 

worth noting that one of the differences between classic ML and 

Deep learning (DL) algorithms lies in how much data is needed 

to train the models: usually, solutions using DL algorithms 

require considerably more data. In recent years, these algorithms 

have become easily accessible and performing enough to allow 

developers to integrate these solutions into the most different 

fields, and architecture is no exception. In this project, we use the 

ML algorithms implementation available in the scikit-learn open-

source Python library (Pedregosa et al., 2011). 

Since each algorithm brings advantages and disadvantages, more 

than one algorithm should be tested when approaching a new 

classification problem. Thus, when facing the challenge 

described in this paper, our approach has been to consider each 

image as a different classification problem, with a set of 

algorithms to try and models to be created explicitly for that 

image. The advantage of this approach is that only a small 

amount of training data is needed to perform the classification, 

with respect to solutions using DL algorithms. 

 

3.1.2 Visual Programming Language (VPL):  The use of 

VPL software became quite common in the architectural field 

because it allows simplifying the complexity of the parametric 

design. VPL is a programming language that uses graphical 

elements and figures to develop a program instead of coding. In 

DECAI, it is used to integrate the ML classification results in the 

H-BIM environment. The ML part, instead, is developed in a 

traditional programming environment since it allows shorter and 

more flexible workflows; moreover, the available libraries are 

much more performing and developed than those ready for use in 

the VPL environment. The VPL application chosen for this 

research is Grasshopper. It was chosen for its flexibility and for 

the numerous plugins already developed that allow connecting 

different applications with the BIM environment. 

 

3.1.3 H-BIM environment: The ML software produces a 

classified orthophoto, where each class is represented by a 

different colour and allows exporting the results in a VPL 

compatible file. Once imported within the VPL environment, the 

results are geo-referenced and projected onto the H-BIM model 

of the architectural artefact. Using VPL as a connector between 

traditional modellers and the H-BIM environment allows to 

easily import and manage data that have been analysed and 

processed in the external environment. The libraries for this type 

of operation in the VPL environment are already well developed. 

 

3.2 DECAI overall workflow 

Figure 5 presents DECAI general workflow, describing the 

process that leads from the survey phase to the creation of the 

final H-BIM model, and the corresponding data flow. Once all 

the images from the survey (.JPG files) have been collected, they 

are processed by the Agisoft Metashape software to create a point 

cloud. On the one side, this point cloud data is used to manually 

build the H-BIM model in Revit. On the other side, the same 

point cloud allows the generation of orthophotos (.TIF file) that 

will be the input of DORA, the ML classification software. 

DORA employs ML algorithms to classify the different parts of 

the orthophoto as belonging to one of the classes (materials, 

finish, gaps, degradations) that the user wants to identify. These 

results are exported in a VPL compatible format (text files) so 

that they can be easily imported in Grasshopper. Thanks to the 

developed VPL algorithms and the integration of Grasshopper 

with Revit, the information about the identified types of decay 

can be automatically projected onto the manually built H-BIM 

model, thus building the final H-BIM model, enriched with the 

results coming from the automatic ML classification of areas 

presenting signs of decay. 

 

Figure 3. Digitisation workflow to obtain an H-BIM model 

starting from a point cloud. 

 

 

 

Figure 4. From the top: parametric family for a window, 

parametric family for wall decorative elements. 
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4. THE  APPLICATIVE SCENARIO 

4.1 The ML algorithm workflow 

4.1.1 Preprocessing: Preprocessing techniques may be 

helpful to facilitate image classification, especially in cases 

where there is noise or bad illumination conditions. The 

employed preprocessing phase currently includes contrast 

enhancement through histogram equalization. 

 

4.1.2 ML models training: In the field of supervised 

learning, to learn how to distinguish data belonging to different 

classes, ML models have to be trained with some labelled data, 

where the class of each data point is known. In this work, we 

leverage the expertise of a cultural heritage operator to select 

these training data from the orthophoto exported from the Agisoft 

Metashape software. Guided by the user interface, the operator 

has to select rectangular areas on the displayed orthophoto (a 

couple of rectangular areas for each class that they want to 

identify). A moving window system is implemented to divide the 

training areas into smaller parts, which are more suitable for 

feature extraction. Indeed, as happens in a typical ML pipeline, 

the so defined training data are used to extract features that will 

be given as input to the ML models during the training phase. 

Once trained, the models are ready to receive features coming 

from data that they have never seen before and classify them as 

belonging to one of the considered classes. 

 

4.1.3 Feature extraction: Both the training data and the new 

unseen data undergo feature extraction before being given as 

input to the ML models. In ML, features represent some 

characteristics of the data, which allow the models to 

discriminate among different classes. In particular, in this work, 

we have employed features quantifying shape (Hu Moments), 

texture (Haralick texture) and colour (Histograms, saturation, 

hue, brightness). To be significant, the features are not calculated 

from the whole areas selected by the user (for the training data) 

or from the whole image (for unseen data); instead, they are 

calculated on smaller areas, defined according to the 

implemented moving window mechanism. 

4.1.4 Moving window mechanism: To define small portions 

of the image that are suitable for feature extraction, we have 

implemented a moving window mechanism that works as 

follows. In the beginning, we define the size of the window that 

will delimit the image area where to compute the features from; 

this is done according to the user settings. In the case of training 

data, for each area selected by the user (see example in Figure 9), 

we shift the window along that area, and at every step, we 

calculate the features for the part of the area marked by the 

position of the window. This procedure is illustrated in Figure 6. 

In the case of the classification of the whole image, when the 

trained ML models have to classify unseen data, we apply again 

the moving window system in an analogous way, this time 

shifting the defined window along with the whole image. For 

every position of the window, the set of features is computed and 

given as input to the trained ML models, which have to classify 

the considered area of the image. 

 

 

 
 

4.1.5 Classification: As written before, the classification step 

requires that the whole image is divided into smaller areas, 

according to the window mechanism, and each of them is 

assigned one of the classes (selected by the user) by the ML 

models. Once all the smaller areas have been processed by the 

ML models, the classification process is complete. It is important 

to note that the same set of features is calculated only once, and 

given as input to all the models. Each model acts independently 

from the others, this means that the user can have as output one 

orthophoto for each selected model and pick the best looking one. 

To build the employed models, we have tested (and included in 

the list of available choices for the user) the following algorithms: 

Random Forest, Support Vector Machine, Logistic Regression, 

Extremely Randomized Trees, AdaBoost Decision Trees, 

Bagging Decision Trees, Linear Discriminant Analysis and K-

Nearest Neighbors. As a remark, in this work, we do not utilize 

pre-trained models. For each experiment, we generate new 

models according to the user’s choices and train them on the 

training data selected by the user. Since textures may vary a lot 

in different use cases, this solution provides more flexibility, 

because for each different case the operator can choose any set of 

classes to be identified, and optimize the models based on the 

available data. 

 

4.1.6 Postprocessing: Postprocessing techniques may be 

used to improve the quality of the result, i.e. the classified 

orthophoto. Currently, the postprocessing phase includes image 

filtering with the implemented median filter. This filter is 

characterized by a parameter named window size, which can be 

set to the desired value by the user. Higher values of this 

parameter usually bring a higher “blurring” effect. 

 

4.1.7 Orthophoto classification workflow: A scheme of the 

workflow for the orthophoto classification with ML algorithms 

performed by DORA  is illustrated in Figure 7. 

 

Figure 5. Scheme of DECAI general workflow, highlighting the 

data flows from survey to H-BIM environment. 

 

  

Figure 6. Illustration of the moving window mechanism to 

define the areas used for feature extraction from the training 

areas selected by the user. 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B2-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-847-2021 | © Author(s) 2021. CC BY 4.0 License.

 
850



 

 

 
The classification workflow includes the following steps: 

1) The user selects the desired orthophoto exported from the 

Agisoft Metashape software in the TIFF format and then 

proceeds to import it in the developed classification software. 

2) The user can now decide whether to perform preprocessing on 

the orthophoto or not. 

3) The user has then to select the ML models that they want to 

use, among the ones available in the provided list. Then the user 

may also choose some parameters relative to the classification 

phase: 

(a) the size in pixels of the window used in the moving window 

mechanism for feature extraction and classification; 

(b) the different classes that they want to distinguish in the image, 

e.g. plaster, bricks, frescos, gaps, defects…; 

(c) the colours that they want to assign to each class, among the 

ones available in the provided list. 

4) The user, following the instructions provided by the user 

interface, should select some training data for each class. This is 

done by selecting rectangular areas on the displayed orthophoto. 

Each rectangular area is then divided into smaller parts, 

according to the moving window mechanism. 

5) After the selection, it is possible to visualize again all the 

training data, to check that they are consistent with the 

instructions and that there are no accidental mistakes. 

6) The user is finally asked for a confirmation. If the user deems 

the training data as adequate, the software proceeds with the next 

steps, otherwise the user is brought back to the training data 

selection (step 5). 

7) The software proceeds to extract the features from the training 

data, computing the set of features explained in “Feature 

extraction” for each window of training data. 

8) The models are now trained on the previously extracted 

features. 

9) The next step is the classification of the whole image. As 

explained, here it is necessary as well to extract the features that 

will be used to feed the trained ML models, and this is done 

according to the moving window mechanism. Therefore, for 

every position of the window, the set of features is computed and 

used by each model to classify the considered part of the image 

as belonging to one of the classes and to assign it the 

corresponding colour. At the end of this step, we get a classified 

orthophoto for each ML model. 

10) Afterwards, the user can visualize the classified orthophoto 

(for each selected ML model) and decide if they are satisfied with 

it or if they want to perform post-processing. The user can try 

postprocessing many times with different settings, or even decide 

to start over and try a different approach in some other steps. 

11) If the post-processing option is selected, the user has to 

configure some settings, e.g. a stronger or weaker effect of the 

median filter. The result of this step is again an orthophoto for 

each ML model.  

12) Once they are satisfied with the resulting orthophoto, the user 

can export the results in a VPL compatible format (text files). 

 

4.1.8 ML results and discussion: The image classification 

results for the Castle of Bonavalle are reported in Figures 8-13. 

Figure 9 illustrates which training areas have been selected by the 

user for each class, starting from the orthophoto in Figure 8. The 

chosen classes were plaster, fresco, brick, brick with lacks, stone, 

vegetation and others. Given the good illumination conditions 

and general aspect of the image, no preprocessing has been 

considered necessary in this particular case. The Random Forest 

classifier was the model that provided the classified orthophoto 

(Figure 10) which was the most similar to the ground truth in 

Figure 12, i.e. an orthophoto that has been manually labelled by 

an operator for results comparison and evaluation. The choice to 

perform a post-processing phase has led to the image in Figure 

11, where a lot of noise has been filtered out and the areas 

representing the different classes are more homogeneous. 

 

 

 

 

 

 

Figure 7. Scheme of DORA classification workflow. 

 

 

 

Figure 8. Original orthophoto of the Castle of Bonavalle. 

 

 

 

Figure 9. Training areas selected by the user through the user 

interface. Legend: magenta=plaster, navy=fresco, red=brick, 

brown=brick with lacks, blue=stone, lime=vegetation, 

cyan=other. 
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Since the user is free to choose the training areas that they 

consider as the most representative of each class, the final results 

will highly depend on this choice. However, the graphical 

interface provides guidelines that can help the user in this phase, 

e.g. suggesting how many areas to select, how big they should 

be, or which details to avoid, to facilitate the ML models’ 

learning and possibly optimise the classification results.  

At first glance, the result in Figure 11 can be already considered 

a good approximation of the manually labelled image in Figure 

12. Having such an approximation allows to easily calculate the 

size of the surface corresponding to each class, and this is crucial 

especially in the case of restoration work. In that situation, an 

estimate of the needed amount of materials is calculated 

according to the size of the surface to be renovated. According to 

the professional sector, in Italy, it is sufficient to obtain an 

approximation of this area to ensure proper management of the 

materials needed to complete the restoration work. 

Besides the visual comparison, we also defined some metrics to 

quantitatively evaluate the performance of the proposed system. 

Considering the manually labelled orthophoto (e.g. the one in 

Figure 12) as ground truth, and the resulting orthophoto (e.g. the 

one in Figure 11) as the prediction, we compute a confusion 

matrix. Each column of the matrix represents a class of the 

ground truth image, while the rows represent the classes in the 

predicted image; each element of the matrix indicates how many 

pixels of that column’s (actual) class has been classified as that 

row’s (predicted) class. The values are normalised by columns so 

that each column’s values sum up to one. 

 

 

 
In Figure 13 we report the confusion matrix obtained from the 

results shown in Figures 8-12. We can see that the class with the 

highest percentage of correctly classified pixels is vegetation, 

where 94% of the ground truth pixels have been predicted as 

vegetation. It is important to observe that also for the other 

classes the majority of pixels have been correctly classified. We 

can notice that classes that are more similar among them are 

sometimes confused. For example, 59% of fresco pixels are 

classified as such, but 19% are classified as plaster; regarding 

brick with lacks, 61% pixels are correctly predicted, while 24% 

are confused with simple bricks; and so on. This happens because 

many areas belonging to those pairs of confused classes look so 

similar that they may be difficult to distinguish even for an 

operator. 

 

4.2 VPL and H-BIM approach 

As mentioned above, the output of the ML processes includes 

text files in a VPL compatible format. The .txt extension can be, 

in fact, imported without any formatting request by grasshopper 

plug-in. In particular, there are two text files for each selected 

class (material or degradation) that the user has chosen to identify 

in the orthophoto.  

One file contains a list of all the points coordinates that are useful 

for identifying the perimeter of those portions of the elevation 

surface characterized by homogeneous finish characteristics.  

The other file collects a list of numbers corresponding to the 

number of points that generates each surface perimeter: a pattern 

with which the points of the first list are divided. The purpose of 

the developed VPL algorithm is to use these textual files to 

automatically generate a set of surfaces that will enrich the 

previously constructed H-BIM model with further details. 

The proposed VPL workflow can be summarized in the following 

 

Figure 10. Orthophoto resulting from the image classification 

with ML, using Random Forest classifier. 

 

 

 

Figure 11. Classified orthophoto after postprocessing. 

 

 

 

Figure 12. Orthophoto manually labelled by an operator, 

serving as ground truth to evaluate the results. 

 

 

 

Figure 13. Confusion matrix related to the results of the 

classification results of figures 8-11. 
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six phases and was developed using grasshopper and Revit 

environments. The whole procedure can be repeated for each 

necessary class identified into an orthophoto. 

 

 

 
1) The first phase consists of the importing of the two text files 

corresponding to the identified classes into the VPL environment. 

The list including all perimeter points is divided into a list of lists 

(data structure used within Grasshopper to manage data). Using 

the components "Polyline" and "Boundary", all the surfaces 

belonging to the considered class are automatically identified.  

2) After the check that identifies possible overlaps between the 

generated surfaces, if the function finds that within a larger area 

there is a smaller area that does not belong to that category, the 

overlap is identified. The surfaces are then arranged on the Z-

axis. Their orders are constrained to have the smallest one at the 

top and the largest one at the bottom. The centre point of each 

surface is projected downwards and if there is an intersection the 

upper surface is subtracted from the below one. 

3) During the phases described above, diverse functions are 

performed to obtain all the surfaces resulting from subtraction 

operation and characterized by the same finish characteristics. As 

reported in Figure 14 the resulting dataset is composed of diverse 

trimmed surfaces. 

4) The coordinate system of the preliminary phases is defined by 

the ML system and corresponds to the pixel resolution of the 

selected orthophoto. The fourth phase, then, has to perform a 

change to the previous coordinate system to make it compatible 

with the BIM environment. But first, the alignment with the 

coordinate system of the point cloud referenced file is necessary. 

Surfaces are scaled and roto-translated to the correct position 

using data from the *.tfw file (a file generated by the Agisoft 

Metashape software that contains a 2x2 matrix for roto/scaling 

and two values for a translation vector). 

5) The fifth phase consists in visualizing the H-BIM model within 

the VPL environment and projecting generated surfaces on the 

model as shown in Figure 15.  

 

 

 

 

 
6) Finally, the algorithm imports the surfaces into Revit software 

(Figure 16). These elements are displayed and imported as walls 

with a thickness of 1mm. The creation of these families allows 

the assignment of a material’s parameter that can be counted and 

 

Figure 14. Graphic display of the phases 1 to 5, performed in 

the VPL environment. 

 

 

Figure 15. Grasshopper environment: surfaces projected on 

imported model using VPL. 

 

 

 

Figure 16. Revit environment: surfaces imported as a wall 

building component in the BIM environment. 
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managed through an abacus. The import process was tested using 

two different Grasshopper add-ons, Grevit and 

Rhino.Inside®.Revit. The most stable workflow was obtained 

with Rhino.Inside®.Revit, where the "Add Geometry 

DirectShape" component allows to import any geometry inside 

Revit and assign it a specific Category, Name and Material. 

 

5. CONCLUSIONS 

In this paper, we have presented the DECAI project, which 

combines decay recognition with machine learning algorithms, 

VPL programming and H-BIM modelling. It must be emphasised 

that the proposed pipeline is still under development, but the 

results are promising. Processing times are still short and 

accuracy results are satisfying. However, there may be 

improvements in both the ML procedures and the algorithm 

construction in the VPL environment. 

In the ML environment, the implementation of more specific 

preprocessing techniques could further improve the aspect and 

noise of the orthophotos, leading to higher classification 

accuracy. Moreover, the integration of a previously built texture 

dataset with the training data selected by the operator could be 

explored, both to minimize possible mistakes on the operator’s 

side and to enhance the classification performance. Another path 

that could be explored is the implementation of contouring 

algorithms on the segmented orthophotos, to obtain a more 

detailed drawing that supports also a larger scale of 

representation. 

In the VPL environment, the management of surface overlaps 

must certainly be improved, currently being the bottleneck of this 

phase of the general workflow. It is essential to be able to link 

more information to the geometries imported into the BIM 

environment. Furthermore, it is necessary to develop a labelling 

system linked to this information, which can streamline the 

procedure of drawing up the tables. 

The flexibility of the proposed workflow needs to be verified as 

well. To date, the output of the ML procedures has been 

formatted in the most general way, with the aim that systems 

other than Grasshopper can also integrate and process this kind 

of output. Future development will be to transpose the same 

algorithm also within Dynamo visual programming platform, to 

test the actual flexibility of the VPL workflow and the 

opportunities connected to this different tool. 
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