
18 October 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Special session: Operating systems under test: An overview of the significance of the operating system in the resiliency
of the computing continuum / Casseau, E.; Dobias, P.; Sinnen, O.; Rodrigues, G. S.; Kastensmidt, F.; Savino, A.; Di
Carlo, S.; Rebaudengo, M.; Bosio, A.. - ELETTRONICO. - 2021-:(2021), pp. 1-10. ((Intervento presentato al convegno
39th IEEE VLSI Test Symposium, VTS 2021 tenutosi a San Diego, CA, USA nel 2021
[10.1109/VTS50974.2021.9441042].

Original

Special session: Operating systems under test: An overview of the significance of the operating system
in the resiliency of the computing continuum

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VTS50974.2021.9441042

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2914802 since: 2021-07-23T15:45:08Z

IEEE Computer Society

Special Session: Operating Systems under test: an
overview of the significance of the operating system

in the resiliency of the computing continuum
Emmanuel Casseau, Petr Dobiáš
Univ Rennes, Inria, CNRS, IRISA

Lannion, France
petr.dobias@sorbonne-universite.fr

emmanuel.casseau@irisa.fr

Oliver Sinnen
Dept. of Electrical, Computer and Software Engineering

University of Auckland
Auckland, New Zealand
o.sinnen@auckland.ac.nz

Gennaro S. Rodrigues, Fernanda Kastensmidt
Instituto de Informatica, PGMicro

UFRGS
Porto Alegre, Brazil

{gsrodrigues, fglima}@inf.ufrgs.br

Alessandro Savino, Stefano Di Carlo,
Maurizio Rebaudengo

Control and Computer Engineering Department
Politenico di Torino

Torino, Italy
{name.surname}@polito.it

Alberto Bosio
Univ Lyon, ECL
INL, UMR5270
Ecully, France

alberto.bosio@ec-lyon.fr

Abstract—The computing continuum’s actual trend is facing
a growth in terms of devices with any degree of computational
capability. Those devices may or may not include a full-stack,
including the Operating System layer and the Application layer,
or just facing pure bare-metal solutions. In either case, the
reliability of the full system stack has to be guaranteed. It is
crucial to provide data regarding the impact of faults at all system
stack levels and potential hardening solutions to design highly
resilient systems. While most of the work usually concentrates
on the application reliability, the special session aims to provide
a deep comprehension of the impact on the reliability of an
embedded system when faults in the hardware substrate of
the system stack surface at the Operating System layer. For
this reason, we will cover a comparison from an application
perspective when hardware faults happen in bare metal vs.
real-time OS vs. general-purpose OS. Then we will go deeper
within a FreeRTOS to evaluate the contribution of all parts
of the OS. Eventually, the Special Session will propose some
hardening techniques at the Operating System level by exploiting
the scheduling capabilities.

Index Terms—Operating Systems, RTOS, Reliability, Fault
Tolerance, Fault Injection, Task Scheduling

I. INTRODUCTION

Nowadays, embedded systems are employed in several
fields, spanning from consumer electronics (e.g., mobile
phones) to safety-critical applications such as automotive,
aerospace, and avionic. To meet the application constraints
escalation, embedded systems’ computing capabilities have
increased over the years, as object detection on autonomous
driving can manifest [1]. For these reasons, embedded systems
are growing in complexity, including multi-core systems, often
characterized by integrating more than one Central Processing
Unit (CPU) and Graphical Processing Unit (GPU) on the
same chip. As a direct consequence, parallel programming

paradigms were introduced, significantly improving the com-
putational throughput. In order to cope with such computa-
tional complexity, the full system stack requires avoiding bare-
metal solutions. Instead, it needs a middle layer to deploy
the final application properly. The middle layer is commonly
composed of the Operating System (OS) and the middle-
ware (e.g., peripheral drivers), delivering mechanisms such as
synchronization primitives, i.e., semaphores, mutexes, as well
as asynchronous I/O.

Despite all innovations, according to their mission, embed-
ded systems must still meet a set of both required and desirable
features, chosen at design time and imposed by standards;
dependability is usually among them. Indeed, dependability re-
duces in many ways: without considering errors due to design,
hardware, or software bugs, issues that occurred during fabri-
cation, intentional tampering, or any other external events that
can affect this property during the lifetime of the application.
Some of those events are due to the circuit’s interaction with
the surrounding environment, causing problems like memory
bit-flip, signal degradation, data loss, permanent damage to the
physical circuit [2].

Usually, an in-deep analysis of the system, targeting its
weaknesses, allows the system to achieve the system’s depend-
ability and then implement mitigation techniques that reduce
or altogether remove such weakness. However, extensive test-
ing phases come at the cost of money and time, generally
delaying the time-to-market and increasing the final per-unit
price. For those reasons, the design phase must find an optimal
trade-off so that the product’s final price does not exceed
the target one and, at the same time, the system can still
work with the desired quality level. When literature considers
the full system, the reliability analysis target is commonly

the application-layer [3]. However, safety-critical systems may
need to manage the execution of many applications, sharing
resources. To guarantee safe management of those resources,
using an operating system (OS) is attractive when running
bare metal applications on a system could lead to a waste of
resources. Therefore, it is crucial to evaluate the possibility
of OS usage and its effects on system behavior and fault
tolerance. Some works [4] already proved that an application’s
fault tolerance might differ a lot when executing bare metal
or on top of a complex operating system such as Linux. Thus,
it is mandatory to study the most critical OS data structures
and eventually propose a specific fault-tolerant mechanism for
OS.

This paper presents an overview of the interplay between the
full system reliability and the operating system’s presence. The
overview includes evaluating several applications under fault
injection simulation, executing both on bare metal systems and
on top of FreeRTOS and Linux. The evaluation proved that a
lighter OS such as FreeRTOS would have less impact on the
system susceptibility to errors than a more robust, complex
ones such as Linux. Then, the paper move to the study of the
reliability of FreeRTOS affected by Single Event Upset (SEU)
faults. The applied methodology targets all the most relevant
variables and data structures of FreeRTOS analyzed through
a fault injection campaign. Using the FreeRTOS operating
system as a case study, the paper evaluates the impact on the
application in terms of system integrity, data integrity, and the
overall resistance to faults. The last part of the paper is devoted
to hardening techniques at the OS level. More in detail, we
discuss the analysis of the impact of task scheduling when a
multiprocessor system can make use of redundancy in both
time and space. Since offline scheduling is not appropriate for
OSs that need to react immediately when a new task arrives or
when a fault occurs, the paper suggests an online scheduling
approach to deal in real-time.

The remainder of this paper is structured as follows. Section
II presents the basics knowledge and state of the art. Section
III details the Operating System’s impact on the full system
reliability. In contrast, Section IV explores the most critical
resources of a Real-Time Operating System to the full system
reliability. In Section V proposes a fault-tolerant technique for
the Operating System, and finally Section VI draws conclu-
sions and perspectives on the matter.

II. BACKGROUND

This section presents the state-of-the-art about Fault Injec-
tion techniques (including a discussion about related works)
and the basics knowledge regarding Real-Time Operating
System.

A. Fault Model

A Single Event Effect (SEE) is the electrical noise induced
in a circuit by a natural phenomenon external to the circuit
itself. SEEs are caused by ionizing particles that collide with
electronic devices: they may come from deep space (cosmic
and gamma rays), Sun (solar wind), magnetosphere (van Allen

belts), and Earth’s crust (from naturally radioactive materials).
Those ionizing particles can be massive (heavy ions, protons,
neutrons, electrons) or mass-less (photons). Furthermore, the
incriminated particles causing SEE can directly impact the
device or create a secondary cascade of particles when entering
the atmosphere.

SEEs are dangerous because they may alter the technology
behavior, and their incidence becomes even more prominent
because of the continuous scaling of technology. Their severity
can be analyzed considering the consequences of their impact
on the circuit and how it harms its mission. SEE’s conse-
quences and the probability that a phenomenon has visible
effects on a circuit can be estimated by reproducing the
phenomenon with testing techniques. With these tests’ results,
it is possible to know which are the most sensitive parts of
the system, classify the misbehavior, and, eventually, develop
new methods to solve, or at least reduce, some vulnerabilities.

Notoriously, on-board electronics used in avionics and
aerospace are the most subjected to SEE because they work at
high altitudes or even outside the atmosphere, where there is
no protection against these phenomena. Nevertheless, many
sudden failures in electronic devices working ashore (con-
sumer electronics, industrial applications, automotive circuits)
are the results of ionizing particles reaching the ground, [5].

In general, the damage caused by SEE classifies them,
together with the harming mechanism they induce. JEDEC
standards [6] identify several classes of SEEs, while in the
following, only the most relevant ones are considered:

• Single Event Upset (SEU): This is one of the most
studied SEEs because it is very common [7]: caused by
the interaction of a particle with a memory element, it
induces a change of state (known as bit-flip too). The most
important SEU types are Single Bit Upset (SBU) and
Multiple Bit Upset (MBU). It is still considered critical
as it may lead to the modification of a memory cell’s
content, which will be random in time and location. The
randomness of the event usually relates to unexpected
consequences for the application level.

• Single Event Transient (SET): A momentary voltage
spike causes this event in a precise position of a circuit,
originated by a sudden event like a high energy particle
hitting the device or a strong electromagnetic interference
with a near source. If a memory element retains such a
transient value of the signal, misbehavior could be seen.

Thus, we can model the SEE as a memory cell logic flip
(from ‘0‘ to ‘1‘ or vice versa) since it can be due directly to
an SEU or because the memory cell stored a wrong value due
to a SET.

Figure 1 sketches how SEEs reach and manifest themselves
at the software layer by impacting both OS and running
applications. A straightforward way to model faults is to
map them into a set of fault models that affect either the
instructions or the software layer’s data. Examples of software-
level fault models are the Wrong Data in Operand (WDat) and
the Instruction Replacement (InstR) [8]–[11]. They all model
the effect of transient/permanent faults occurring either in the

Hardware

Hardware Layer

ISA

OS

Software Layer

Software Outcomes

Software Fault
Models

Physical Faults

App0 Appn-1…

Fig. 1: Fault Propagation through System Layers

memory segment storing the program’s data (WDat) or in the
memory segment storing the code (InstR). In this work, we
focus on the Wrong Data in Operand fault model since we
are interested in understanding the impact of SEE in the OS
data structure.

B. Fault Injection

Fault injection is very well-known and a useful technique
to evaluate the reliability of the systems under faults [12]–
[15]. It is based on the realization of controlled experiments
to observe the system’s performance in the presence of faults.
Fault injection can be classified based on the mechanisms used
to introduce the fault into the system artificially: (i) Physical
Fault Injection aims at exposing the final implementation of
the system to an external fault source (e.g., radiation-based
fault injections), while (ii) Hardware-based fault injection ex-
ploits existing hardware interfaces to alter the behavior of the
system (e.g., using debug interface to access to CPU internal
registers), (iii) Software-based fault injection instruments the
software layer of the system in order to inject faults directly
into memory locations, and (iv) model-based fault injection
instruments the system’s model (e.g., HDL model) to be able
to inject faults during model simulation/emulation. In [15] the
reader can find examples and details of the above techniques.

Every injection could lead to different types of behavior of
the system classified as follows:

• OK: the system continues working expectedly, with-
out showing any appreciable difference concerning the
golden run after the injection;

• Crash: When a critical error occurs, and the system stops
working (or reset itself), we are in the presence of a crash.

• Freeze: A misbehavior is classified as freeze when all
running tasks continue to run after the supposed dead-
line, and they still do not end after a time window of
observation. This time window can be defined depending
on the system requirements.

• Silent Data Corruption (SDC): A misbehavior is clas-
sified as SDC when, despite the application being able to
end its run, the output of the computation contains any
deviation from the golden one.

• Delays: Whenever a task completes its duty (without
SDC) but the execution time exceeds the expected one,
the difference is a missed deadline; in this case, the
misbehavior is classified as a Delay.

C. Hardening
To make system fault tolerant, i.e. more robust against

faults, one of commonly used techniques is redundancy. Re-
dundancy is the provision of functional capabilities that would
not be necessary for a fault-free environment [16], [17]. It can
be in time or space. Time redundancy consists of repeating the
same computation or data transmission to make a comparison
later and check for faults. Space redundancy can be classified
into three types depending on the type of redundant resources
added to the system [16], [18], [19]. Hardware redundancy
makes use of additional components, such as processors or
memories. Software redundancy considers that (i) a function to
improve system fault tolerance is added to an already existing
code or (ii) several versions of one function are codded, and
results are compared. Information redundancy takes advantage
of coding by adding a piece of supplementary information,
e.g., Hamming codes or cyclic redundancy check.

Although the redundancy improves the system’s reliability,
its overheads are not negligible. While it is not possible to
prevent the overheads due to space redundancy, the ones
caused by time redundancy can be avoided. If, after the
first execution, no fault is detected, a new execution is not
necessary.

III. EVALUATING THE IMPACT OF OPERATING SYSTEM ON
THE APPLICATION BEHAVIOR UNDER SOFT ERRORS

The goal of this evaluation is to determine the impact of the
OS on application resilience. The following subsections will
present the experimental conditions, simulator, CPU architec-
ture, Fault Injection approach, and applications under test. The
last one will discuss the obtained results.

As explained in Section II, the OS evaluation consists of
comparing a golden execution of the application (i.e., with no-
fault injection) and the executions under fault injection. Three
versions of the same application are included in the evaluation:
a bare-metal implementation, thus executed without OS, a
version running on top of the FreeRTOS operating system,
and a version running on top of Linux OS.

A. Simulator
The OVPSim simulator [20] is the tool used to support

the experimental evaluation. OVPSim is a full-system simu-
lator used to simulate the execution of a code in the target

hardware. It uses just-in-time binary translation, achieving
high simulation speeds. That makes OVP an instruction-
accurate simulator, providing the possibility to analyze each
instruction’s execution, but not real execution times.

B. ARM Cortex-A9 Model

The target hardware is the ARM Cortex-A9, with one
processor core. The recurrent presence on safety-critical ap-
plications based on commercial off-the-shelf (COTS), such
as the Xilinx Zync-7000 platform, makes this CPU a perfect
candidate. The model used to simulate the ARM Cortex-A9
was the one developed by ARM Ltd.

C. Fault Injection

The analysis compares an error-free run (called golden
execution) of the system and the faulty runs under the effects
of fault injections. The OVPSim-FIM (OVP Fault Injection
Module) [21] was used in this work for fault injection and
error evaluation. Only the processor registers are targets of
this investigation.

D. Applications

We resort to two main sets of benchmarks: (i) Successive
Approximation (SA) algorithms and (ii) General Purpose (GP)
algorithms. The two sets have a different intrinsic resilience
to SEE. SAs are more resilient than GPs because of their
inherent redundancy [22]. We selected those two sets to have
different resiliency w.r.t. SEE and show that the OS will have
a significant role independently on the executed application.
More in detail, we have three different SAs: Newton-Raphson
and Trapezoid, both useful to compute the integral of a
function and the QSolver for root computation of quadratic
equations. The GPs set comprises four benchmarks: Matrix
Multiplication, Vector Sum, and Tower of Hanoi puzzle solver
benchmarks.

E. Results and Discussion

Table I presents each application and execution results,
divided by every raised error type. It is crucial to highlight
that the exception errors include segmentation faults and every
other (unidentified) exception.

F. Bare Metal

The successive approximation algorithms are much less
susceptible to SDC errors than the three other applications.
Comparing the worst-case scenario for the successive approx-
imation algorithms (Newton-Raphson) with the other three
(Hanoi) best-case scenarios, we have that the former is about
26% less susceptible to SDC errors than the latter. With the
best-case scenario for the successive approximation (QSolver)
compared with the worst case from the other three (Vector
Sum), we find that the former may be up to 96% less sus-
ceptible to SDC errors than the latter. That means successive
approximation algorithms may be from 26% up to 96% more
reliable from SDC errors than ordinary calculation algorithms
when executing bare-metal. On the other hand, according
to Table I, those algorithms are more susceptible to Freeze

errors. Here the main point is not discussing which are the
most/less resilient to SEE but to compare the SDC rates w.r.t.
of executing the same application on the top of an OS. From
Table I, we can observe that executing bare metal applications
have a higher percentage of OK, which means they generated
much fewer errors than Linux or FreeRTOS.

G. FreeRTOS

Comparing the worst-case scenario for the successive ap-
proximation algorithms (Trapezoid) with the best-case sce-
nario of the other three (Vector Sum), we have that the former
are about 28% less susceptible to SDC errors than the latter.
With the best-case scenario for the successive approximation
(Newton-Raphson) compared with the worst case from the
other three (Hanoi), we find that the former may be up to
78% less susceptible to SDC errors than the latter. With
that data, we see that, on our tests, successive approximation
algorithms are from 28% to 78% less susceptible to SDC errors
than ordinary calculation algorithms when executing on top
of FreeRTOS. We see that FreeRTOS applications are much
more susceptible to hangs than their Linux and bare metal
counterparts. An application’s distribution of errors differs
when executing bare metal or on top of an operating system.

H. Linux

The successive approximation algorithms did not have better
fault tolerance than the typical computing applications when
running on Linux. However, the successive approximation
algorithms maintained a better susceptibility to SDC errors
on average.

As already seen in past works [4], it is clear that the
usage of an operating system drastically changes the fault
tolerance. That is because the OS itself is a target to faults
that may cause errors. In our simulations, we inject one fault
per execution. Therefore, a significant application will have
a higher probability of having a fault injected during its
execution. On the contrary, there are higher chances for a small
application that the fault will happen (hence injected) during
some OS function execution [23]. The usage of successive ap-
proximation algorithms has its natural fault tolerance masked
because of the OS criticality.

It can also be observed that Linux executions have to
deal with segmentation fault errors, which are not present
on FreeRTOS and bare metal. Nevertheless, those exceptions
represent errors caught by the operating system. In the absence
of an operating system, those errors could manifest themselves
as other types of errors.

As expected by theoretical analysis, numerical methods have
natural inherent fault tolerance because of their iterative nature.
Given this nature, a fault injected during one iteration may be
masked on the next ones unless it causes a permanent hardware
error.

The question we then further investigate is what are the
most sensitive OS data structures to SEE. If identified, this
investigation will be mandatory to provide a fault tolerance
mechanism at the OS level.

TABLE I: Error Distribution

Execution
Errors [%]

General Exceptions

OS Application OK SDC Freeze Segmentation Unidentified
(+ Crashes) Fault

B
ar

e
M

et
al

QSolver 82.1 0.9 17.0 - -
NewtonRaphson 77.1 9.6 13.3 - -
Trapezoid 87.2 3.4 9.4 - -
Matrix Multiplication 70.1 19.5 10.4 - -
Vector Sum 65.2 23.6 11.2 - -
Hanoi 77.8 13.0 9.2 - -

Fr
ee

R
TO

S

QSolver 43.0 9.6 47.1 - 0.4
Newton Raphson 74.5 8.7 15.9 - 0.9
Trapezoid 58.3 10.4 31.2 - 0.1
Matrix Multiplication 42.1 16.6 40.9 - 0.4
Vector Sum 42.3 14.6 43.0 - 0.1
Hanoi 24.5 40.8 30.7 - 4.0

L
in

ux

QSolver 53.5 19.4 9.3 6.7 11.1
Newton Raphson 53.5 18.8 9.4 6.0 12.2
Trapezoid 55.7 28.5 0.3 15.3 0.2
Matrix Multiplication 45.4 37.0 4.8 12.3 0.5
Vector Sum 43.6 40.2 4.9 10.9 0.5
Hanoi 58.1 17.5 7.8 8.1 8.5

IV. DATA STRUCTURES ROLE ON THE RELIABILITY OF A
REAL TIME OPERATING SYSTEM

Analyzing the most sensitive OS data structures requires
a proper Environment. As presented in [24], using specific
Fault Injection Environment (FIE) it is possible to target the
fault injection of all data structures included in the FreeRTOS
OS [25]. In general, RTOSs can schedule concurrent oper-
ations belonging to different contexts in the form of tasks
(or processes) and switch among them in such a way that
desired timing should always be respected. Each task can be
in a defined state at every moment of its lifetime, and the
programmer can partially choose how and when a task must
change it. All operating systems (not only RTOSs) commonly
recognize at least three states for each task: (i) the ready state,
when the task can be scheduled at any time, (ii) the running
state when the task has been switched in and runs, holding
the core of the processor, and (iii) the waiting state when
the task is waiting for an event to happen. Sometimes OS
supports two additional states: (i) the new state, to identify
newly (hence never scheduled) created task, and (ii) the deleted
state, to define to-be-removed tasks. Deleted tasks are waiting
for the kernel to clear their stack and free all memory locations
associated with those tasks.

The FIE fully described in [24] is composed of a board that
acts as DUT and by a Host machine working as the platform
that configures and controls the injection campaign and logs all
results. From a generic point of view, the host-side program
sends the DUT a sequence of injection parameters, such as
the injection target, the injection time, when the application
starts. Then, the DUT is left free to run for a defined amount
of time, after which an asynchronous interrupt routine injects

the desired target. The DUT uses a resume routine to send
back to the host results of the injection.

All investigations use the STM32F3DISCOVERY (STMi-
croelectronics®) board as DUT. The board features an
STM32F303VCT6 micro-controller based on the ARM® Cor-
tex® M4 Architecture, working at 72MHz, along with an
ST-LINKv2 debugger interface, while the Host machine is a
Linux-based operating system. Moreover, the board is fully
compatible with the FreeRTOS. Figure 2 shows a scheme of
the whole system.

This investigation follows the behavior classification ex-
plained in Section II since every injection may lead to different
types of behavior of the system:

• OK: the system continues working expectedly, without
showing any appreciable difference to the golden run after
the injection. The golden run is the first run executed on
the DUT without any injection at the beginning of each
fault injection campaign.

• Crash: When a critical error occurs on the DUT, the
internal reset handler fires to avoid further problems,
signaling a crash.

• Freeze: A misbehavior is classified as freeze when all
running tasks continue to run after the supposed deadline,
and they still do not end after a time window of observa-
tion. This time window can be defined depending on the
system requirements. Reported experimental results refer
to a dynamic time window defined as 50% more of the
longer task’s expected timing.

• Silent Data Corruption (SDC): A misbehavior is clas-
sified as SDC when, despite the application being able to
end its run, the Host detected an alteration in the output

of the computation. A CRC signature of the execution’s
output values allows for comparing the golden execution
and the fault one when SDC comes into play.

Fig. 2: Fault Injection Environment Model

The OS maintains several data, and the analysis capability
allows to target them selectively, among them we studied:

• Tasks list: The state of a task is determined based on
the state list where the task belongs. Injections target
both the ready task list (RDYLST) and the delayed task
list (DLDLST). The same structure defines both lists,
including five fault locations within it.

• Mutex and Queue structure (MTXQVARS): The queue
is a structure that can be used as a semaphore or mutex
by the kernel. It is composed of 22 fault locations.

Among the EEMBC® Automotive suite [26], we selected
few benchmarks to include as tasks running on the FreeRTOS,
evaluating the impact of its data structures vulnerability to
SEU. This way, we ensure future comparisons with the results
by performing experiments using standard programs. The
selection includes a set of benchmarks that reproduces some
very common calculations in the automotive field. While these
benchmarks target multi-core processors to test the used plat-
form’s scalability, they have been used in a single-core micro-
controller because the performance analysis is not relevant
in this work. While the full set of benchmarks comprises 16
applications, the tests include three benchmarks:

• a2time (Angle to time conversion): this benchmark
simulates an engine with different cylinders (4, 6, or 8,
to be chosen before compilation) with a crankshaft, a
toothed reluctor wheel, and a sensor able to generate a
pulse every time it detects the passage of a tooth: this type
of mechanism controls the fuel injection in the cylinders
and the subsequent spark.

• tblook (Table lookup and interpolation): a table lookup
algorithm to store a limited amount of data pairs, coming
from one or more resources (sensors, connections, calcu-
lations), and to interpolate missing pairs. It is commonly
used in embedded systems when the memory resources
are limited, and only portions of data can be stored.

• idctrn (Inverse Discrete Cosine Transform): the im-
plementation of the Inverse Discrete Cosine Transform
(IDCT) widely used in digital graphics; the actual imple-
mentation applies the IDCT to an input data-set represent-
ing a matrix of 64 bits values. It is the only multi-thread
benchmark considered in this work.

A. Results Analysis

In general, experimental results confirm that FreeRTOS is
affected by some vulnerabilities. As expected, most critical
vulnerabilities are pointers and numerical indexes stored in
integer variables (both signed and unsigned) to address ele-
ments of lists or vectors.

Figure 3 reports the classification of the fault injection over
the three target location groups. The most sensible group to
faults is the ready list group (RDYLST), which almost always
leads to crashes because it includes all data required to sched-
ule alive threads properly. The other thread list (DLDLST)
goes into an idle state, i.e., crash or freeze, in less than 50%
of the injected faults, while most of the time, an SDC is
the result of the computation, making the OS more resilient
than expected. Eventually, the MTXQVARS group shows a
prevalence of SDCs among other classes and less than 30%
of crashes and freezes as expected since they include locations
controlling mutex and semaphores.

All those considerations point out that FreeRTOS can gain
from its hardening in different ways. For example, by merely
duplicating or triplicating the most sensitive data, the reli-
ability will be guaranteed, but results already show that a
full duplication or triplication would be excessive. Moreover,
the voting systems will add some computational overhead
to all kernel procedures, which might disrupt the OS’s real-
time requirements. For this reason, if a more selective process
can identify sensitive parts among the OS data structures, the
impact of fault-tolerant techniques might be carefully reduced,
allowing to meet the OS size and performance requirements
of a real-time system.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DLDLST RDYLST MTXQVARS

Crashes Freezes SDC OK

Fig. 3: Classification summary across the different target
location groups

V. FAULT TOLERANT ONLINE SCHEDULING TO IMPROVE
THE RESILIENCY OF MULTIPROCESSOR-BASED SYSTEMS

In this paper, we assume that the system is composed
of a set of tasks, and we consider that the redundancy is
carried out at the task level, which means that task copies
are replicated. When two identical copies of the same task
are used, this approach is called duplication. If there is no
other way to detect a fault, duplication allows a system to
detect a discrepancy in results but not to decide which result is
correct. If there are three task copies, we call it triple modular
redundancy (TMR).

A. Primary/Backup Approach

1) Principle: The primary/backup (PB) approach is a
method of fault-tolerant scheduling on multiprocessor embed-
ded systems making use of two task copies: the primary copy
(PC) and backup copy (BC) [27]. It is a commonly used
technique for designing fault-tolerant systems owing to its easy
application and minimal system overheads. Consequently, it
can be used in online scheduling.

Several additional enhancements [27]–[30] to this approach
have been already presented, such as the BC deallocation and
the BC overloading. While the former technique frees the slot
initially occupied by a backup copy when the corresponding
primary copy is correctly executed, i.e., reduces system load
overheads at execution time, the latter technique authorizes
several backup copies to be overloaded if their respective
primary copies are not scheduled on the same processor.

2 4 6 8 10 12 14 16 18 20 22 24
Number of processors

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
je

ct
io

n
ra

te

(a) Baseline

2 4 6 8 10 12 14 16 18 20 22 24
Number of processors

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
je

ct
io

n
ra

te

(b) BC deallocation + BC overloading

Fig. 4: Rejection rate as a function of the number of processors
and targeted processor load (TPL) without fault injection

Figure 4 depicts the rejection rate, i.e., the ratio of rejected
tasks to all arriving tasks to the system, as a function of the
number of processors and targeted processor load (TPL). The
task set at input was generated so that the targeted processor
load remains the same no matter the number of processors. The
higher the number of processors, the lower the rejection rate
because there are more possibilities to schedule task copies.
The BC overloading helps to reduce the rejection rate by
several percents, but the contribution of the BC deallocation
is more noteworthy: the gain is about 75% compared to
the baseline PB approach and no matter whether the BC
overloading is implemented or not.

2) Enhancements: In general, an operating system should
promptly respond. Therefore, a choice of fault-tolerant algo-
rithm to be implemented is important. The primary/backup
approach is simple, quick, and already suitable to be used in
the operating system. Nevertheless, this method can be further
improved in order to be even quicker. In this section, we
present our two proposed enhancements aiming at reducing
the algorithm run-time [17]:

• Limitation on the number of comparisons: When schedul-
ing a task, the simplest idea to cut down the algorithm
run-time is to limit the number of comparisons between
the free slot duration and the computation time ci [28].
This number is computed for every task until it is
definitely accepted or rejected. Every arriving task is
assigned a maximum number of comparisons to search
for its PC and BC slots. If this threshold is exceeded, the
task is rejected. Otherwise, it is normally scheduled, i.e.,
accepted or rejected according to the baseline algorithm.

• Restricted scheduling windows: The aim of this method is
threefold: (i) to avoid the mutual scheduling interference
between primary and backup copies of the same task, (ii)
to reduce the run-time (measured by means of the number
of comparisons carried out before definitely accepting or
rejecting a task), and (iii) to place the primary copies as
soon as possible and the backup ones as late as possible,
which increases the schedulability if the BC deallocation
is enabled. A scheduling window for both the primary
or the backup copy is a time interval (subinterval of the
task window) within which the respective copy can be
scheduled. The size of the scheduling window is defined
by a parameter f representing the fraction of task window.
The primary copy window of task ti is thereby delimited
by ai and ai+f ·twi and the backup copy one by di−f ·
twi and di. In our algorithm, the fraction is within 0 <
f 6 1, whereas it equals 1 in the conventional algorithm.
An example of restricted scheduling windows with f =
1/3 is depicted in Figure 5.

Fig. 5: PB approach with restricted scheduling windows (f =
1/3)

Figure 6 shows the improvement (of two aforementioned
enhancements with the best parameters) in the rejection rate
and in the maximum and mean numbers of comparisons per
task for the PB approach with BC deallocation only. Similar
results were also obtained for the PB approach with BC
deallocation and BC overloading. All the proposed methods

diminish the number of comparisons per task, and most
of them also decrease the rejection rate. The limitation on
the number of comparisons (PC: P/2 comparisons; BC: 5
comparisons) reduces the algorithm run-time by 34% (mean
value) and 62% (maximum value) and increases the rejection
rate by only 1% compared to the primary/backup approach
without any enhancing method.

L (PC: P/2;
 BC: 5)L (PC: P; B

C: 5) RSW (f=0.5) RSW (f=0.6)

−10

0

10

20

30

40

50

60

Im
pr
o

em
en

t (
%
)

Fig. 6: Improvements to a 14-processor system compared to
the baseline PB approach (TPL = 1.0)

3) Fault Injection: To assess the fault tolerance of the
system, we inject faults with different fault rates. Figure 7
depicts the rejection rate as a function of the number of
processors for the PB approach with BC deallocation and
making use of the enhancing method L (PC: P/2 comparisons;
BC: 5 comparisons). The results show that fault rates up to
1 · 10−3 fault/ms have a minimal impact on the algorithm
performances. This value is higher than the estimated fault rate
in both standard (2 · 10−9 fault/ms [31]) and severe (1 · 10−5

fault/ms [32]) conditions. Our algorithm can therefore perform
well in a harsh environment.

2 4 6 8 10 12 14 16 18 20 22 24
Number of processors

0.1

0.2

0.3

0.4

0.5

Re
je

ct
io

n
ra

te

Fig. 7: Rejection rate at different fault injection rates (PB
approach + BC deallocation + L (PC: P/2 comparisons; BC:
5 comparisons))

B. Reducing Task Replication Overheads

In general, fault detection techniques can be implemented
in software or in hardware. The software ones are for ex-
ample task replication, [27], [33], [34], task migration [35],
[36], checkpointing [37], [38] or watchdogs [39]. As for the
hardware techniques, the main idea is based on the principle

to make several copies of a component [16], [19]. Regardless
of the implementation level, the task replication causes the
system overheads, which we will try to reduce in this section.

Therefore, we distinguish two task types: simple and double
tasks. A simple task has one PC and one BC and a double
task has two PCs and one BC. This differentiation avoids
duplication (as is the case for the PB approach) of all tasks
to detect a fault and consequently reduce the system load.
Actually, the previous section showed that some tasks do not
need a duplication to detect a fault because a fault is detected
by timeout, no received acknowledgment, or failure of data
checks. Therefore, the duplication to detect a fault is needed
only for double tasks.

The principle of an online algorithm making use of two task
types is summarised in Algorithm 1. The algorithm orders task
using the ”earliest deadline first” policy and tries to minimize
the rejection rate.

Algorithm 1 Online algorithm considering simple and double
tasks
Input: Mapping and scheduling of already scheduled tasks, (task ti)
Output: Updated mapping and scheduling

1: if there is a scheduling trigger at time t then
2: if a processor becomes idle and there is neither task arrival

nor fault occurrence then
3: if an already scheduled task copy starts at time t then
4: Commit this task copy
5: else
6: Nothing to do
7: else . processor is idle and task arrives and/or fault occurs
8: if a (simple or double) task ti arrives then
9: Add one or two PCi to the task queue

10: if a fault occurs during the task tk then
11: Add BCk to the task queue
12: Remove task copies having not yet started their execution
13: Order the task queue
14: for each task in the task queue do
15: Map and schedule its task copies (PC(s) or BC)
16: if an already scheduled task copy starts at time t then
17: Commit this task copy
18: else
19: Nothing to do

We compare the system performance of the proposed so-
lution with the one of a system without any fault tolerance
and the one of a system using the triple modular redundancy
(TMR) implemented in software. The system based on the
TMR always schedules three identical task copies for each
task between the task arrival time and task deadline, and the
no-fault tolerant system considers only one task copy for each
task. No backup copies are considered for these two systems.
Our proposed solution distinguishes simple and double tasks
depending on fault detection and schedules backup copies only
if a fault occurs.

Figure 8 depicts the processor load as a function of the
number of processors for three aforementioned systems when
no fault occurs. The task set at the input is based on real
data from APSS CubeSat [40]. It consists of 96% simple
tasks (with a uniform distribution between 100 ms; 500 ms

for the execution time) and 4% double tasks (with a uniform
distribution between 1ms; 10ms for the execution time) and
were all the time the same (no matter the fault tolerance level
of the system). This is the reason why the processor load rate
decreases (or remains constant) with the increasing number
of processors. It can be seen that if a system has more than
five processors, our proposed solution has similar values of the
processor load as the system without any redundancy. Other-
wise, the processor load of our system is lower than the one of
the system without any redundancy due to some rejected tasks.
The system using the TMR has a higher processor load (three
times if all tasks are accepted) than the other systems because
all tasks always have three task copies. The values for systems
with less than 11 processors are constant because the system
is fully loaded and cannot accept more tasks, which causes the
task rejection. To conclude, for applications mainly consisting
of simple tasks that do not need a duplication to detect a fault,
since the proposed method has a similar processor load as a
system which is not fault tolerant, its overheads are negligible.
As it provides the operating system with fault tolerance, we
recommend its implementation.

3 4 5 6 7 8 9 10 11 12 13 14
Number of processors

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pr
oc

es
so

r l
oa

d

Fig. 8: Processor load for three systems with different level of
fault tolerance as a function of the number of processors and
without fault injection

In Figure 8, no fault is injected. However, the further results
(figures not presented in this paper) show that fault rates up
to 1 · 10−4 fault/ms, which is higher than the worst estimated
fault rate in a harsh environment (10−5 fault/ms [32]), have
minimal impact on performances.

VI. CONCLUSION

In this paper, we showed the critical interplay between the
reliability of a full system and the operating system’s presence,
either real-time or desktop. On the one hand, the experimental
results highlight how significant the operating system’s impact
is in exposing the system to dependability issues. On the
other hand, a more specific investigation pointed out where
those criticalities lay when analyzing a real-time operating
system. Eventually, a fault-tolerant approach applied to the
operating system’s scheduling task demonstrated the feasibility
of targeting the operating system’s fault-tolerance selectively.

ACKNOWLEDGMENT

This study has been achieved thanks to the financial support
of the projects “IDEX Lyon OdeLe”

REFERENCES

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in 2015 IEEE
International Conference on Computer Vision (ICCV), Dec 2015, pp.
2722–2730.

[2] A. Vallero, A. Savino, A. Chatzidimitriou, M. Kaliorakis, M. Kooli,
M. Riera, M. Anglada, G. Di Natale, A. Bosio, R. Canal, A. Gonzalez,
D. Gizopoulos, R. Mariani, and S. Di Carlo, “SyRA: Early System
Reliability Analysis for Cross-Layer Soft Errors Resilience in Memory
Arrays of Microprocessor Systems,” IEEE Transactions on Computers,
vol. 68, no. 5, pp. 765–783, May 2019.

[3] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ACE analysis
reliability estimates using fault-injection,” in Proceedings of the 34th
Annual International Symposium on Computer Architecture, ser. ISCA
’07. New York, NY, USA: ACM, 2007, pp. 460–469.

[4] G. S. Rodrigues, F. L. Kastensmidt, R. Reis, F. Rosa, and L. Ost,
“Analyzing the impact of using pthreads versus openmp under fault
injection in arm cortex-a9 dual-core,” in 2016 16th European Conference
on Radiation and Its Effects on Components and Systems (RADECS),
2016, pp. 1–6.

[5] S. Duzellier, “Radiation effects on electronic devices in space,”
Aerospace Science and Technology, vol. 9, no. 1, pp. 93 – 99,
2005. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1270963804001129

[6] Jedec. [Online]. Available: https://www.jedec.org
[7] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design

Test of Computers, vol. 22, no. 3, pp. 258–266, May 2005.
[8] S. Di Carlo, A. Vallero, D. Gizopoulos, G. Di Natale, A. Gonzalez,

R. Canal, R. Mariani, M. Pipponzi, A. Grasset, P. Bonnot, F. Reichen-
bach, G. Rafiq, and T. Loekstad, “Cross-layer early reliability evaluation:
Challenges and promises,” in 2014 IEEE 20th International On-Line
Testing Symposium (IOLTS), July 2014, pp. 228–233.

[9] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis, M. Kooli, A. Savino,
G. Politano, A. Bosio, G. Di Natale, D. Gizopoulos et al., “Cross-
layer reliability evaluation, moving from the hardware architecture to
the system level: A clereco eu project overview,” Microprocessors and
Microsystems, vol. 39, no. 8, pp. 1204–1214, 2015.

[10] M. Kooli, G. D. Natale, and A. Bosio, “Memory-aware design space
exploration for reliability evaluation in computing systems,” Journal of
Electronic Testing, 03 2019.

[11] A. Savino, A. Vallero, and S. Di Carlo, “ReDO: Cross-Layer Multi-
Objective Design-Exploration Framework for Efficient Soft Error Re-
silient Systems,” IEEE Transactions on Computers, vol. 67, no. 10, pp.
1462–1477, Oct 2018.

[12] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A flexible
software-based fault and error injection system,” IEEE Trans. Comput.,
vol. 44, no. 2, pp. 248–260, Feb. 1995.

[13] J. Carreira, H. Madeira, and J. G. Silva, “Xception: a technique for the
experimental evaluation of dependability in modern computers,” IEEE
Transactions on Software Engineering, vol. 24, no. 2, pp. 125–136, Feb
1998.

[14] M. Ebrahimi, A. Mohammadi, A. Ejlali, and S. G. Miremadi, “A
fast, flexible, and easy-to-develop fpga-based fault injection technique,”
Microelectronics Reliability, vol. 54, no. 5, pp. 1000–1008, 2014.

[15] G. Di Natale, D. Gizopoulos, S. Di Carlo, A. Bosio, and
R. Canal, Eds., Cross-layer reliability of computing systems, ser.
Materials, Circuits & Devices. Institution of Engineering and
Technology, 2020, oCLC: 1191709900. [Online]. Available: http:
//public.eblib.com/choice/PublicFullRecord.aspx?p=6341977

[16] E. Dubrova, Fault-Tolerant Design. Springer, 2013, https://doi.org/10.
1007/978-1-4614-2113-9.

[17] P. Dobiáš, “Online Fault Tolerant Task Scheduling for Real-Time Multi-
processor Embedded Systems,” Ph.D. dissertation, Université de Rennes
1, 2020, https://hal.archives-ouvertes.fr/tel-03016351.

[18] P. Dobiáš, “Bibliographic Study: Mapping and Scheduling of Applica-
tions/Tasks onto Heterogeneous Faulty Processors,” ENSSAT Lannion
& Master of Research at ISTIC Rennes, Univ Rennes, IRISA, France,
School year 2016/2017.

[19] I. Koren and C. M. Krishna, Fault-Tolerant Systems. Mor-
gan Kaufmann Publishers, Elsevier, 2007, https://doi.org/10.1016/
B978-0-12-088525-1.X5000-7.

[20] (2021) Ovpsim. [Online]. Available: http://www.ovpworld.org

[21] F. Rosa, F. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable fault
injection framework to evaluate multi/many-core soft error reliability,”
in 2015 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS), 2015, pp. 211–214.

[22] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, 2016.

[23] G. A. Reis, J. Chang, N. Vachharajani, S. S. Mukherjee, R. Rangan, and
D. I. August, “Design and evaluation of hybrid fault-detection systems,”
in 32nd International Symposium on Computer Architecture (ISCA’05),
2005, pp. 148–159.

[24] D. Mamone, A. Bosio, A. Savino, S. Hamdioui, and M. Rebaudengo,
“On the analysis of real-time operating system reliability in embedded
systems,” in 2020 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2020, pp. 1–6.

[25] Freertos. [Online]. Available: https://www.freertos.org/index.html
[26] EEMBC, Autobench - Software benchmark data book. www.eembc.org:

EEMBC, 2015.
[27] S. Ghosh, R. Melhem, and D. Mosse, “Fault-Tolerance Through

Scheduling of Aperiodic Tasks in Hard Real-Time Multiprocessor Sys-
tems,” in IEEE Transactions on Parallel and Distributed Systems, vol. 8,
no. 3, March 1997, pp. 272–284, https://doi.org/10.1109/71.584093.

[28] M. Naedele, “Fault-Tolerant Real-Time Scheduling under Execution
Time Constraints,” in Sixth International Conference on Real-Time
Computing Systems and Applications (RTCSA), 1999, pp. 392–395,
https://doi.org/10.1109/RTCSA.1999.811286.

[29] T. Tsuchiya, Y. Kakuda, and T. Kikuno, “A New Fault-Tolerant Schedul-
ing Technique for Real-Time Multiprocessor Systems,” in Proceedings
Second International Workshop on Real-Time Computing Systems and
Applications, 1995, pp. 197–202, https://doi.org/10.1109/RTCSA.1995.
528772.

[30] Q. Zheng, B. Veeravalli, and C.-K. Tham, “On the Design of Fault-
Tolerant Scheduling Strategies Using Primary-Backup Approach for
Computational Grids with Low Replication Costs,” in IEEE Transactions
on Computers, vol. 58, no. 3, 2009, pp. 380–393, https://doi.org/10.1109/
TC.2008.172.

[31] S. Du, E. Zio, and R. Kang, “A New Analytical Approach for In-
terval Availability Analysis of Markov Repairable Systems,” in IEEE
Transactions on Reliability, vol. 67, no. 1, March 2018, pp. 118–128,
https://doi.org/10.1109/TR.2017.2765352.

[32] R. M. Pathan, “Real-Time Scheduling Algorithm for Safety-Critical Sys-
tems on Faulty Multicore Environments,” in Real-Time Systems, vol. 53,
no. 1, 2017, pp. 45–81, https://doi.org/10.1007/s11241-016-9258-z.

[33] S. Wang, K. Li, J. Mei, G. Xiao, and K. Li, “A Reliability-aware
Task Scheduling Algorithm Based on Replication on Heterogeneous
Computing Systems,” in Journal of Grid Computing, vol. 15, no. 1,
03 2017, pp. 23–39, https://doi.org/10.1007/s10723-016-9386-7.

[34] M. A. Haque, H. Aydin, and D. Zhu, “On Reliability Management of
Energy-Aware Real-Time Systems Through Task Replication,” in IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 3, March
2017, pp. 813–825, https://doi.org/10.1109/TPDS.2016.2600595.

[35] J. Mei, K. Li, X. Zhou, and K. Li, “Fault-Tolerant Dynamic Reschedul-
ing for Heterogeneous Computing Systems,” in Journal of Grid Com-
puting, vol. 13, no. 4, 2015, pp. 507–525, https://doi.org/10.1007/
s10723-015-9331-1.

[36] M. Hasan and M. S. Goraya, “A Framework for Priority Based Task
Execution in the Distributed Computing Environment,” in International
Conference on Signal Processing, Computing and Control (ISPCC),
2015, pp. 155–158, https://doi.org/10.1109/ISPCC.2015.7375016.

[37] M. Fayyaz and T. Vladimirova, “Fault-Tolerant Distributed approach
to satellite On-Board Computer design,” in 2014 IEEE Aerospace
Conference, March 2014, pp. 1–12, https://doi.org/10.1109/AERO.2014.
6836199.

[38] M. Singh, “Performance Analysis of Checkpoint Based Efficient Failure-
Aware Scheduling Algorithm,” in International Conference on Com-
puting, Communication and Automation (ICCCA), 2017, pp. 859–863,
https://doi.org/10.1109/CCAA.2017.8229916.

[39] O. Goloubeva, M. Rebaudengo, M. S. Reorda, and M. Violante,
Software-Implemented Hardware Fault Tolerance. Springer, 2006,
https://doi.org/10.1007/0-387-32937-4.

[40] P. Dobiáš, E. Casseau, and O. Sinnen, “Evaluation of Fault Toler-
ant Online Scheduling Algorithms for CubeSats,” in 23rd Euromicro
Conference on Digital System Design (DSD’20), August 2020, https:
//doi.org/10.1109/DSD51259.2020.00102.

