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Cardano Formula and Some Figurate Numbers

Amelia Carolina Sparavigna
Department of Applied Science and Technology, Politecnico di Torino

Here we apply the Cardano formula to obtain the sequence of the positive integers from
the sequences of integer numbers described by the cubic function of n. Examples will be
proposed concerning figurate numbers.
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Torino, 5 April 2021.

In a  previous  discussion [1],  we have  studied the  sequence of  the  Stella  Octangula
numbers:

 sn=2n3−n=n(2n2−1)

(OEIS, On-Line Encyclopedia of Integer Sequences, A007588: 1, 14, 51, 124, 245, 426,
679,  1016,  1449,  1990,  2651,  3444,  4381,  5474,  6735,  8176,  9809,  11646,  13699,
15980, ... [2]. In [1]. we have also proposed a generalised sum: sn⊕sm=sn+m , with

the form (see Refs. [3-5] for discussions):

sn⊕sm=sn+sm+3(n+sn )2 /3 (m+sm)1 /3+3 (n+sn)1/3 (m+sm)2/3

In this formula, we have a sequence  (n+sn)=n+2n3−n=2n3 , that is :  2, 16, 54,

128,  250,  432,  686,  1024,  1458,  2000,  2662,  3456,  4394,  5488,  6750,  8192,  9826,
11664, 13718, 16000, ... (OEIS A033431).

Then, the generalized sum can be written as: sn⊕sm=sn+sm+6(n2m+nm2) .
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In [1], we concluded observing that a Stella Octangula number is suitable for being
solved immediately by means of the Cardano formula:

n3−
n
2

−
Sn
 2

=0  ,   n3+ pn+q=0

 Cardano formula for  root  n  has the form:

Fig.1 - Stella Octangula Numbers and Cardano formula.

The sequence of the positive integers can be obtained by means of  Cardano formula from the
sequence of  Stella Octangula numbers. 

We can use the same approach for integer sequences described by a cubic function of n :

an3+bn2+c n+d=an3+bn2+cn+(d '−In)=0  (*)
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Then, the integer sequence of the positive integers can be obtained by means of a generalized
Cardano formula, from a given sequence of  I n  numbers, of the form described by (*).

The solution is the following:

The generalization of the Cardano formula has been provided by Eric Schechter, Vanderbilt
University,  https://math.vanderbilt.edu/schectex/courses/cubic/  .  We  can  use  a  numerical
approach to find the root as given above. Here in the following Fig.1, the result of numerical
calculus, for the first few numbers of the Stella Octangula sequence.

Fig.1 : The root of the generalized Cardano formula for Stella Octangula.

Let us continue showing other examples. We consider sequences of integers, described by cubic
functions, being also figurate numbers.
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Fig. 2 - Centered Cube Numbers: (2n−1)(n2−n+1)

https://mathworld.wolfram.com/CenteredCubeNumber.html : 1, 9, 35, 91, 189, 341, 559, 855,
1241, 1729, 2331, 3059, 3925,  ... 

Fig.3  - Octahedral Numbers: 
1
3
n(2n2+1)

https://mathworld.wolfram.com/OctahedralNumber.html :  1, 6, 19, 44, 85, 146, 231, 344, 489,
670, 891, 1156, ...
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Fig.4  - Pentagonal Pyramidal Numbers: 
1
2
n2(n+1)

https://mathworld.wolfram.com/PentagonalPyramidalNumber.html :   1, 6, 18, 40, 75, 126, 196,
288, 405, 550, 726, 936, ...

Fig.5  - Heptagonal Pyramidal Numbers: 
1
6
n(n+1)(4n−1)

https://mathworld.wolfram.com/HeptagonalPyramidalNumber.html : 1, 8, 26, 60, 115, 196, 308,
456, 645, 880,  ...
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