
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Traffic-Aware Perspective on Network Disaggregated Sketches / Cornacchia, Alessandro; Sviridov, German;
Giaccone, Paolo; Bianco, Andrea. - ELETTRONICO. - (2021). ((Intervento presentato al convegno Mediterranean
Communication and Computer Networking Conference (MedComNet 2021) tenutosi a Ibiza, Spain nel 15-17 June 2021
[10.1109/MedComNet52149.2021.9501234].

Original

A Traffic-Aware Perspective on Network Disaggregated Sketches

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MedComNet52149.2021.9501234

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2897854 since: 2021-10-10T08:35:15Z

IEEE

A Traffic-Aware Perspective on Network
Disaggregated Sketches

Alessandro Cornacchia†, German Sviridov∗, Paolo Giaccone∗, Andrea Bianco∗
Department of Electronics and Telecommunications - Politecnico di Torino, Italy

{†firstname_lastname@polito.it, ∗firstname.lastname@polito.it}

Abstract—Sketches have emerged as a powerful tool for
network traffic monitoring due to the good trade-off between
accuracy and memory footprint offered by such techniques. Yet,
implementing sketches on commercial switches raises numerous
challenges related to availability of memory and its access
frequency. Recently, disaggregated sketches, i.e., fragments of
single network-wide sketches distributed across multiple switches,
were introduced to cope with these limitations. However, none of
the current approaches exploit any knowledge about the network
traffic patterns when deploying such schemes.

In this paper, we investigate the impact of traffic patterns on
the performance of disaggregated sketches. Our findings show
that blindly updating all fragments of a sketch might degrade
the monitoring accuracy. Instead, taking into account the spatial
distribution of the traffic may lead to globally better monitoring
accuracy. Finally, we provide hints on the existence of an optimal
solution for such a problem which opens new opportunities for
the design of traffic-aware update policies for sketches.

I. INTRODUCTION

Modern telecommunications networks are characterized by
a high degree of dynamicity in traffic patterns. A continuous
rolling out of new network-based applications and sudden
changes to existing ones have been shown to have a catas-
trophic impact on the performance of seemingly unrelated
services, and on the whole network infrastructure [1]. Due to
this unforeseeable behavior, network monitoring has become
one of the most important aspects of modern network man-
agement. Complex network monitoring mechanisms have been
developed to try to predict and counteract those unexpected
behaviors. Among those mechanisms, sophisticated centralized
network monitoring schemes enabled by breakthrough tech-
nologies such as Software Defined Networking (SDN) have
found large popularity and applicability. Yet, centralized solu-
tions lack in scalability, as continuously conveying monitoring
information from all switches becomes unbearable for large
networks. As a consequence, traffic monitoring distributed
across the switches has become the dominant best practice
for network monitoring.

Still, measurements are challenging to implement due to
the huge number of concurrent flows and the ever increasing
link rates, which force network devices to complete per-
packet operations at nanosecond time scales. This implies
resorting to expensive SRAM as the only viable solution to
store measurement data. Due to the scarce amount of such
dedicated memory, it is prohibitively expensive to keep exact
per-flow information locally at each switch. Sampling-based
techniques such as NetFlow [2] were traditionally employed

to limit resource overhead. However, they are not capable
of providing sufficient accuracy and flow coverage, if not
adopting extremely high sampling rates [3], [4], [5].

Due to the aforementioned constraints, sketch-based algo-
rithms have found vast applicability in the field of network
monitoring. They permit to condense the target flow metrics in
compact probabilistic data structures stored inside the switch.
This information is then periodically fetched by a central en-
tity and aggregated into a unique, network-wide approximate
result. The accuracy of measurements is proportional to the
amount of dedicated memory and inversely proportional to
the amount of traffic that traverses the switches. While in
modern networks the volume of concurrent flows per second
keeps growing, the amount of SRAM inside single switches
remains constant and it has to be shared among concurrent
measurement services and network functions. Under such a
scenario, to increase the monitoring accuracy it is necessary
to reduce the number of flows stored inside single sketches.
A natural option in this case is to increase the sketch fetching
frequency, in order to have less flows being condensed in a
single sketch within each measuerement interval. Yet such
an approach has its own limits which are dictated by the
resulting communication overhead and, most importantly, by
the underlying hardware capabilities of single switches [6],
[7].

Recently, in [8] the authors have proposed DISCO, a system
of disaggregated sketches able to address the aforementioned
issues. At its heart, DISCO employs multiple sketch fragments
scattered around the network which are updated by the flows
that traverse them. This enables the possibility of reducing
the sketch fetching frequency of each switch without loosing
accuracy — or to provide higher accuracy with the same
amount of memory — with respect to traditional approaches.
Yet DISCO does not consider aspects related to traffic distri-
bution and locality that are critical for improving the overall
system performance.

In this paper we analyze the impact of traffic distribution
on the performance of disaggregated sketches. We show that,
under certain conditions, blindly updating all of the fragments
crossed by a flow on its path may lead to measurement
performance degradation. We show that, by just selecting a
subset of fragments to update it is possible to improve the
aggregate monitoring accuracy and we provide a hint on the
existence of such an optimal subset.

The rest of the paper is organized as follows. In Sec. II

and Sec. III we provide the background related to probabilistic
data structures for network monitoring and discuss the relevant
related work. In Sec. IV we discuss disaggregated network-
wide sketches and motivate our contribution, which is numer-
ically evaluated in Sec. V. Finally, in Sec. VI, we draw our
conclusion.

II. ATOMIC SKETCHES

Sketches are probabilistic data structures for stream pro-
cessing, able to estimate flow statistics using a fixed and small
number of entries, relatively to the number of processed flows.
To distinguish them from the recently proposed disaggregated
sketches [8], we refer to them as atomic sketches, since not
distributed across the network. While a myriad of sketch-based
algorithms has been proposed, they all are based on primary
components: one or more array of counters, a procedure for
their update upon new packet arrival and a method to read
counters and answer queries.

A. Sketch dimensioning

We take the popular Count-Min Sketch (CMS) as an ex-
ample [9]. When measuring the network traffic, its counters
keep track of flows’ occurrences in a packet stream. The
available memory budget is organized into d rows of w
counters each. The update procedure consists on computing
d pairwise independent hash functions over the flow identifier
(e.g., 5-tuple) in order to associate a flow to one counter per
row. Then, the selected counters are incremented by one, so
as to add the contribution of the new measured packet to the
current flow size. Since multiple flows may collide onto the
same counter, the query operation returns the minimum among
d values as its estimate. Generally, sketch-based algorithms
come with provable theoretical guarantees and allow us to
tune the parameters to trade between estimation accuracy and
memory consumption. Indeed, in a CMS it is possible to derive
the required number of rows d and of counters w as function
of the error magnitude ε and the error probability δ. Indeed,
if w = de/εe and d = d− log δe, the estimated size x̂ of any
flow size x is proven [9] to be within the bound:

x̂ ≤ x+ ε‖x‖1 (1)

with probability greater than 1 − δ. Here, x is the true value
of the counter, while ‖x‖1 is the `1-norm of the flow size
vector and it amounts to the total number of packets counted
in the whole sketch. A higher number of independent hash
functions d are needed in order to reduce the error probability
and statistically corresponds to relying upon more estimators,
whereas increasing w reduces the error magnitude.

B. Network monitoring with sketches and their limits

Atomic sketch algorithms have been widely used to cope
with memory scarcity while employing switch-local traffic
monitoring. Traditionally, sketches are deployed on multiple
distributed monitors, orchestrated by some controller. Individ-
ual monitors inside the network periodically convey their local
information to the controller that, together with information

from other switches, aggregates and processes data with ar-
bitrary sophisticated statistical methods and retrieve the final
measurement [5], [4], [10], [11]. A noteworthy application of
sketches is the so called heavy-hitter detection which involves
the detection of network flows utilizing an eccessive amount
of bandwidth. As it is highly impractical, and most often
impossible, to gather fine-grained per-flow statistics, CMS
found excellent applicability for such kind of task as they
permit to discriminate mice and elephant flows up to a given
error, while still utilizing small amount of resources.

Yet, as the amount of fast SRAM memory in commod-
ity switches remains constant, the ever-growing number of
concurrent flows pushes this kind of approach to its limits,
thus making it difficult to maintain an acceptable level of
accuracy. In addition, multiple measurement tasks usually
execute concurrently and share the available memory. For
example, operators may run an heavy-hitter detection task
to make intelligent routing decisions and, at the same time,
run also anomaly detection tasks to discover the presence of
port-scanners or Distributed Deny of Service (DDoS) attacks.
These tasks run in parallel and need a dedicated sketch
instance [5], [6]. While increasing the reporting frequency may
counteract the previously discussed limitations, it has its own
drawbacks as it is constrained by the underlying hardware and
the generated network overhead.

III. RELATED WORK

Sketch algorithms have been employed for various measure-
ment tasks, such as top-k flow identification, traffic entropy,
flow size distribution and cardinality estimation, as well as
heavy-changer and heavy-hitter detection [7]. The diversity
among these tasks required generic data structures to support
them concurrently at low complexity, together with efficient
communication with the central orchestrator. OpenSketch [5]
proposed a software-defined measurement architecture, where
a single unified hardware pipeline can be programmed to
support a wide range of measurement tasks based on sketches.
However, it is too complex to be implemented on recent PISA
switch architectures [12]. SCREAM [6] improves the accuracy
of distributed monitoring with sketches, by optimizing re-
source allocation across multiple tasks and multiple switches,
based on user requirements. ElasticSketch [10] combines a
hash table with a CMS to separate elephant from mice flows
and mitigate their collisions, thereby adapting to skewed flow
size distributions. Additionally, they first propose a sketch
compression technique to reduce communication overhead
with the central aggregator. FCMSketch [13] is an elegant
tree-like multi-stage counter scheme, which enables the imple-
mentation of sketches that support generic measurement tasks
directly on PISA switches.

A radically different approach was recently proposed in
DISCO [8]. The authors suggested to disaggregate a large
sketch into multiple smaller sketch fragments (i.e., a subset
of rows and columns) and distribute them across monitor
points in the network. Then, a single sketch is logically rebuilt
by assembling fragments encountered along network paths.

Hence, different paths correspond to different logical sketches.
For the case of CMS this approach leads to a very simple
implementation by which the current minimum across the
fragments is piggybacked in the packet headers and the final
estimate is obtained by analyzing the packet header at the last-
hop. This approach leads to an efficient, yet accurate, heavy-
hitter detection scheme while keeping the approach realistic
enough to be implemented in real scenarios.

IV. TRAFFIC-AWARE DISAGGREGATED SKETCHES

While DISCO is capable of outperforming atomic sketches,
it still adopts a static fragment update policy, meaning that
flows are always counted at all fragments along their path.

We argue that, for a given flow, updating all available
fragments is often unnecessary and, in some cases, even
harmful. Indeed, DISCO update policy has the side effect of
generating, otherwise avoidable, collisions (which we will re-
fer to as counter pollution) inside single fragments, ultimately
degrading heavy-hitter detection accuracy. On the other hand,
counting each flow only in one fragment would obviously
reduce collisions, but would also impair the accuracy whenever
a collision occurs. We show that there exists a trade-off on
the number of fragment updates, which balance tolerance to
collisions with pollution on sketch counters.

The effects of our observations are exacerbated by non-
uniform traffic patterns in the network. In the specific scenario
of data center networks, the traffic workload typically presents
a non-homogeneous distribution across different network de-
vices [14], with the majority of flows being rack-local. This
implies that different switches observe a different load in terms
of packets and flows per second. Now blindly updating all of
the fragments of a sketch may lead to “overload” fragments
(e.g., in top-of-rack switches) and “underutilized” fragments
(e.g., in spine switches) and this fact degrades the accuracy of
the overall network-wide sketch scheme.

To formalize the considered monitoring scenario, we assume
to have a set F of active flows and a network-wide sketch
denoted by a set S of fragments distributed in the network. For
simplicity, coherently with DISCO, we assume one sketch row
(i.e., one hash function) in each switch, but our results can be
qualitatively extended to multiple rows per switches. Consider
now a flow fi ∈ F that traverses a subset Si ⊆ S fragments
along its path. Let kopti be the optimal number of fragments
to update for fi, which maximizes the average monitoring
accuracy for all flows in F . We will show that it may hold
that kopti < |Si| for some fi ∈ F , i.e., the flow should be
not counted in all the fragments. Our goal is to highlight the
presence of this phenomenon and to quantify to which extent
it may affect the network measurement performance. Indeed,
devising a policy capable of selecting the optimal amount of
fragments to update and their location across individual flows’
path is still to be investigated.

V. NUMERICAL EVALUATION

In this section, we discuss preliminary results obtained
through numerical simulations on the testbed topology

Fig. 1: Bus topology employed for the simulations.

of Fig. 1. Our goal is to show that the accuracy of disag-
gregated sketches under different workloads depends on the
fragment update strategy and traffic patterns.

A. Simulation scenario

For our analysis, we employ a discrete-event packet-based
simulator built on top of OMNeT++ [15]. For the sake of clar-
ity, we employ a simple bus topology depicted in Fig. 1. This
choice allows us to effortlessly create a scenario highlighting
the previously discussed phenomenon of traffic interference.
We assume a set of traffic flows equal to F = ∪7k=0F

(v)
k ∪F (h),

i.e., comprising eight sets of “vertical” flows and one set of
“horizontal” flows, as shown in Fig. 1. The horizontal flows
in F (h), depicted in blue, updates all or a subset of all the
fragments S = {s0, .., s7} available in the topology. All verti-
cal flows in F (v)

k , depicted in red, can exploit only one single
monitoring point sk (i.e., the only switch traversed by them).
For all flows in F , we use a heavy-tailed Pareto flow length
distribution with shape parameter α = 1.2 and mean value 10
packets, to approximate a realistic data center workload [16].
Horizontal and vertical flows are generated according to Pois-
son processes with λh = 100×λv , respectively. Note that the
results are completely invariant with respect to the absolute
value of λv and on the link capacity and propagation delay,
which are assumed homogenous in the whole network. All
switches are equipped with sketch fragments consisting of a
single row (i.e., d = 1) and w = 2000 counters.

As in prior work [10], [17], we evaluate the performances on
the basis of the Average Relative Error (ARE) metric, which
is defined as the relative error of the estimated flow size x̂(fi)
with respect to the real flow size x(fi), averaged over all
measured flows:

ARE =
1

|F |

|F |∑
i=1

x̂(fi)− x(fi)
x(fi)

(2)

Note that in the Count-Min sketch, by construction, x̂(fi) ≥
x(fi). The relative errors are always computed at flow termi-
nation. The choice of ARE with respect to more application-
specific metrics, (e.g., false positive rate for heavy-hitter
detection), is due to its versatility. Indeed, ARE is agnostic
to the definition of an elephant flow and general enough to be
amenable for several applications.

B. Simulation results

To highlight the impact of interfering traffic on the monitor-
ing performance of sketch fragments we consider to vary the
number of fragments to update K(h) for the horizontal flow.
This implies that, out of 8 fragments present along the path,

(a) Overall (b) Horizontal and vertical flows

Fig. 2: Average Relative Error evaluated for different number
of fragment updates.

only K(h) will be chosen randomly for each fi ∈ F (h). For
vertical flows instead, we fix K(v) = 1 as those flows traverse
only one fragment.

Fig. 2 show the ARE in terms of minimum, maximum,
25/50/75-th percentiles, and summarizes the main findings
of our simulations. The bars depicted in Fig. 2a represent
the overall ARE of aggregate flows, measured for varying
K(h), while Fig. 2b presents a more detailed breakdown
to distinguish between horizontal and vertical flows. While
transitioning from K(h) = 1 to K(h) = 2, the monitoring
accuracy significantly improves, further increasing K(h) to 4
only leads to a slight reduction in the ARE for horizontal
flows. Interestingly enough, setting K(h) = 8 increases the
error for both groups of flows. Thus, in contrast with intuition,
the behavior of ARE in function of K(h) does not appear to
be monotonic, suggesting us that there exists an optimal value
for K(h) in function of the topology and traffic patterns, as
discussed in Sec. IV. Indeed, this behavior is due to the fact
that, for K(h) = 8, all horizontal flows are counted on all
fragments present in the topology, thus increasing the pollution
on all fragments, ultimately leading to reduced accuracy. On
the contrary, the monitoring performance of vertical flows
drops considerably while increasing K(h), with their ARE
increasing by a factor of 4.85 when moving from K(h) = 1
to K(h) = 8. Yet, when taking into account the overall
monitoring accuracy that includes both vertical and horizontal
flows, it can be seen that employing K(h) = 2 leads to better
aggregate monitoring accuracy across all flows.

VI. CONCLUSION

In this paper, we highlight the effect of traffic patterns
on the performance of disaggregated sketches. In particular,
we show that blind fragment update policies which force a
flow to update all of the fragments along its path may not
necessary lead to the best overall monitoring performance.
Through numerical simulation and under a simplistic testbed
scenario, we show that there should exist an optimal fragment
update policy that is capable of selecting a subset of fragments
to update among those available on the path of individual
flows. Such policy must operate on the network traffic pattern

and take into account the total traffic traversing individual
fragments. Further investigation of this behavior, alongside
more complex experimental scenarios, is left as future work.

REFERENCES

[1] M. Trevisan, D. Giordano, I. Drago, M. M. Munafò, and M. Mellia,
“Five years at the edge: Watching Internet from the ISP network,”
IEEE/ACM Transactions on Networking, vol. 28, no. 2, 2020.

[2] “NetFlow,” https://tools.ietf.org/html/rfc3954, accessed: 2021-03-14.
[3] C. Estan and G. Varghese, “New directions in traffic measurement

and accounting,” in Proceedings of the Conference on Applications,
technologies, architectures, and protocols for computer communications,
2002.

[4] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow for
data centers,” in USENIX NSDI, 2016.

[5] M. Yu, L. Jose, and R. Miao, “Software defined traffic measurement
with OpenSketch,” in USENIX NSDI, 2013.

[6] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Scream: Sketch
resource allocation for software-defined measurement,” in ACM Confer-
ence on Emerging Networking Experiments and Technologies, 2015.

[7] S. Li, L. Luo, and D. Guo, “Sketch for traffic measurement: de-
sign, optimization, application and implementation,” arXiv preprint
arXiv:2012.07214, 2020.

[8] V. Bruschi, R. B. Basat, Z. Liu, G. Antichi, G. Bianchi, and M. Mitzen-
macher, “DISCOvering the heavy hitters with disaggregated sketches,”
in International Conference on emerging Networking EXperiments and
Technologies, 2020.

[9] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” Journal of Algorithms,
vol. 55, no. 1, 2005.

[10] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Conference of the ACM Special Interest Group on
Data Communication, 2018.

[11] Q. Huang, P. P. Lee, and Y. Bao, “Sketchlearn: relieving user burdens
in approximate measurement with automated statistical inference,” in
Conference of the ACM Special Interest Group on Data Communication,
2018.

[12] “Portable Switch Architecture,” https://p4.org/p4-spec/docs/PSA-
v1.0.0.pdf, accessed: 2021-03-15.

[13] C. H. Song, P. G. Kannan, B. K. H. Low, and M. C. Chan, “FCM-sketch:
generic network measurements with data plane support,” in International
Conference on emerging Networking EXperiments and Technologies,
2020.

[14] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in ACM SIGCOMM Conference on Internet
Measurement, 2010.

[15] A. Varga, “OMNeT++,” in Modeling and tools for network simulation.
Springer, 2010.

[16] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in ACM Conference on Special
Interest Group on Data Communication, 2015.

[17] T. Yang, L. Wang, Y. Shen, M. Shahzad, Q. Huang, X. Jiang, K. Tan,
and X. Li, “Empowering sketches with machine learning for network
measurements,” in Workshop on Network Meets AI & ML, 2018.

