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Nomenclature 

a  = semi-major axis, km 

e  = eccentricity 

i  = inclination, rad 

J2  = Earth’s first zonal harmonic 

M  = mean anomaly, rad 

rE  = Earth’s equatorial radius, km 

sx  = coefficient of x 

sy  = coefficient of y 

sz  = coefficient of z 

t  = time, s 

v  = velocity, km/s 

x  = velocity change for node change, km/s 

y  = velocity change for semi-major axis change, km/s 

z  = velocity change for inclination change, km/s 

a  = semi-major axis change, km 

i   = inclination change, rad  

  = change of  , rad/s 

v  = velocity change, m/s 
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e   = eccentricity change 

   = Earth’s gravitational parameter, km3/s2 

   = right ascension of ascending node, rad 

   = right ascension of ascending node rate, rad/s 

   = argument of perigee, rad 

 

subscript 

k  = debris number 

E  = Earth 

a   = initial impulse 

b  = final impulse 

e  = eccentricity correction for velocity change 

I. Introduction 

A large number of space debris occupies the Earth orbit regions of most interest, mainly in low-Earth orbit (LEO) 

and geostationary orbit (GEO). Operational satellites and manned space vehicles or stations are threatened to be 

destroyed by space debris. Kessler Syndrome [1] states that more and more debris might be produced due to 

collision events, even if all launches into space stopped immediately. Active debris removal (ADR) of existing large 

objects from orbit is the only remediation of the debris presence in the near-Earth environment, in order to avoid 

future problems for space research and commercialization [2]. Recent studies have led to the conclusion that, in 

addition to mandatory end-of-life disposal of new satellites, removing about 5 objects per year may be necessary to 

stabilize the future LEO debris population [3].  

The LEO debris population is characterized by several clusters of objects, which occupy orbits with similar 

altitude (but not exactly the same) at particular inclinations, that is, the most useful for space applications (e.g., Sun-

synchronous, Molniya). However, the orbital planes of objects in a cluster do not coincide, as Earth oblateness 

perturbs the right ascension of ascending node (RAAN). Each object has in general a different RAAN rate of change, 

as this effect depends on its orbital elements (mainly, the semi-major axis and the inclination). As a consequence, 

RAAN values in a cluster are typically spread almost uniformly between 0 and 360 degrees. By using Earth 



oblateness perturbation, efficient sequences of debris objects with limited transfer costs can be found by exploiting 

the differential nodal precession rates, in order to define low cost ADR mission for the removal of multiple objects.  

In a typical scenario, an active debris removal spacecraft performs rendezvous with the target and delivers a 

deorbiting kit, which then provides a velocity change to the debris object and places it on a reentry trajectory. There 

is an obvious advantage if the same ADR mission can remove more than a single object. In efficient mission 

architectures, the chaser, after rendezvous, attaches a deorbiting kit to each target and then moves towards the 

following object. The choice of the targets and removal sequence is crucial to the cost-effectiveness of such 

missions. The sequence optimization results in a combinatorial problem, which has been studied using approaches 

such as branch and bound algorithms [4], ant colony optimization [5], column generation techniques [6].  

Large combinatorial problems suffer from the dimensionality curse, and it is essential to analytically estimate the 

body-to-body transfer cost, in order to enable the exploration of broad search spaces in a reasonable computational 

time. Previous works generally estimated the transfer ∆v by adding or taking the root-sum-square of the individual 

∆vs needed to match the semi-major axis, node angle, and inclination of the target debris [7]. Alfriend et al. 

presented an analytical estimation for satellite-to-satellite transfer in order to get an optimal servicing of multiple 

targets, but the focus was on Geosynchronous orbits [8], where J2 has a negligible effect.  

Machine learning has attracted extensive interest in the last decade and may have significant influence to various 

researches of aerospace engineering [9]. Recent works [10][11] explore the capabilities of deep neural networks to 

improve fast estimation of impulsive transfers, obtaining a mean relative error of less than 4%, but one has to 

balance the advantage of computation speed against remarkable time for datasets generating and network training. 

When considering the RAAN match in LEO for a specified transfer time, the general strategy consists in waiting 

for RAAN drift to align the orbit planes. However, in many circumstances this strategy may not be feasible because 

the waiting time can be very large. In this paper, a simple analytical method is developed to accurately approximate 

the transfer costs between two objects of the removal sequence. The accuracy of these estimations is verified by 

comparison with existing optimized solutions. Rendezvous transfers between two given orbits are dealt with using 

an accurate dynamical model that takes J2 perturbation into account. The state-of-the-art solution winner of the ninth 

Global Trajectory Optimization Competition (GTOC9) by JPL [12] is used as benchmark to verify the accuracy of 

the method presented in this paper.  



II. Dynamic model 

Space debris dynamics is usually defined by a set of Two-line Elements (TLE), which are propagated with the 

SGP4 model [13]. However, the model accuracy degrades with time, and the TLE information has to be updated 

regularly. A simplified propagation model is adopted in this paper to describe the dynamics of the debris. 

The body orbit is described by means of osculating orbital elements, which are specified at the known ADR 

mission departure time. Targets for removal missions have relatively large values of semi-major axis and small 

eccentricity, as aerodynamic drag would otherwise cause a fast natural orbit decay. Therefore, this paper considers 

only objects with these characteristics, and atmospheric drag is here neglected. Only secular orbit perturbation due 

to Earth oblateness (related to the harmonic term J2) is then considered. Semi-major axis a, eccentricity e and 

inclination i are constant, whereas right ascension of ascending node Ω, argument of periapsis ω and mean anomaly 

M vary according to 
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where  is Earth’s gravitational parameter, 
Er  is Earth’s equatorial radius.  

By differentiating Eq. (1), one obtains the RAAN rate change ( ) caused by small changes of a ( a ) and i 

( i )  
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When the initial values of orbital elements are given, the perturbed values can therefore be evaluated at any time 

t, and position and velocity are consequently determined. This simplified propagation model has been compared to 

the SGP4 propagator [5]. Orbit shape and orientation show good accuracy even for 200-day propagation (errors 

below few kilometers). Larger errors are found for argument of perigee and mean anomaly, but these discrepancies 

have a limited impact on the transfer costs. The eccentricity is small and ω differences have little effect, whereas 



phase adjustments can be obtained with small ∆v, as a large number of revolutions are typically required during each 

transfer leg. Thus, the propagation accuracy is considered to be satisfactory. 

III. Approximate Transfer Cost Evaluation 

In the scenario considered here, the launcher inserts the chaser spacecraft into rendezvous conditions with one of 

the objects in the debris set (target 1), and the removal kit is delivered. The mission starts at initial time t1=0 and the 

chaser orbital elements are those of the initial object at t1. The chaser then maneuvers to perform rendezvous with 

the following target and so on, until the last object has been reached. The present work focuses on finding a way to 

estimate the transfer cost between objects pairs as a function of transfer time, in order to speed up the performance 

of combinatorial optimization algorithms that define the best object sequences. 

An optimal transfer time, which minimizes the propellant consumption, exists for any debris pair. The most 

favorable opportunities occur only when the required plane change is small, and therefore when the RAAN of the 

chaser is equal (or, at least, sufficiently close) to that of the target. The chaser can remain on its initial orbit until the 

favorable orbit alignment is achieved, and then perform a relatively short Hohmann-like transfer. Mission designers 

can take advantage of J2 perturbation, which changes the RAAN of bodies orbiting the Earth with a rate that 

depends on semi-major axis and inclination. Objects with different orbits will therefore have different rates of 

change of Ω, meaning that RAANs of two objects will become equal at a specific time, thus enabling the optimal 

transfer. However, cases when this kind of solutions are not suitable may occur, e.g., in the presence of strict time 

constraints, and an estimation method capable of dealing with non-optimal transfer time is required. 

The impulse to simultaneously change velocity magnitude (i.e., semi-major axis) and orbit plane (i.e., RAAN 

and inclination) can be written as: 
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1 1 2 22 cosv v v v v      (5) 

where 1v  and 2v  are the velocity before and after the impulse and   is the angle between them. For small plane 

changes one has [14]: 

  
2 2sin i i       (6) 

Eq. (5) can be rewritten as 

  2 2 2 2 2

1 1 1 2 2sin cos 2 cosv v v v v v         (7) 



which further reduces to 

  
22 2

1 1 2sin cosv v v v       (8) 

For a small value of  , sin  , cos 1  ; moreover, 
2 1 0 00.5 /v v v a a     can be related to the change of 

semi-major axis, and Eq. (8) is rewritten as 

 2 2 2

sa iv v v v       (9) 

This root-sum-square form can be seen as a simple approximation of Eq. (5), where 
sa 0 00.5 /v v a a   , 

0iv v i   , 

and 
0 0sinv v i    are the required velocity changes due to semi-major axis, inclination and RAAN, respectively. 

Subscript 0 relates to the average value between the initial and final orbits. 

A. The transfer time is optimal 

The optimal arrival time from debris k to k+1 can be easily evaluated, given differences of initial RAAN and 

RAAN rate of change 
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where the integer value of K that correspond to the first opportunity (topt>tk) can be selected.  

Optimal phasing is assumed to obtain an estimation of the transfer v . Equation (9) is empirically modified to 

account for the additional change of eccentricity vector e  (in addition to semi-major axis and inclination) [15]: 

    
2 22/ 0.5 / 0.5v v a a i e        (11) 

The average value of semi-major axis a of the two objects involved in the leg, and the corresponding circular 

velocity v are used. 

According to the above analysis, the optimal trip time and the corresponding velocity change between any debris 

pair can be determined. It is worth noting that a change of arrival time for leg k usually does not propagate to the 

following legs, as convenient transfers typically require relatively long waiting times before starting to maneuver. 

This approximation has been validated with good accuracy, as shown in a previous work [5]. 

B. The transfer time is limited 

The arrival time from debris k to k+1 is imposed as 1k optt t  . Eq. (1) provides the final difference of RAAN 

between the chaser and the target. It is assumed that    1 1 1 0k k k kt t     , 1 0k ka a   , 1 0k ki i   ; the 



quantities x, y, z, are defined in order to account for the required ∆v cost corresponding to the changes of RAAN, 

semi-major axis, and inclination, respectively : 
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where  0 1 / 2k ka a a  ,  0 1 / 2k ki i i  , and 
0 0/v a . 

A two-impulse transfer is considered in this approximate analysis. Without loss of generality, the first impulse 

completes a partial change of x, y, z, (sx, sy, and sz are the respective fractions) and the second impulse makes up the 

remaining difference. It is worth noting that the fuel-saving solutions favor combined maneuvers, and, according to 

Eq. (9), the first impulse av  is written as 

      
22 2

a x y zv s x s y s z      (15) 

Note that there are no constraints on the ranges of 
xs , ys , 

zs , and the values for semi-major axis and inclination 

changes may be larger than unity (or may be negative), in order to take advantage of the J2 effect to reduce RAAN 

differences. This case generally occurs when the required RAAN change is too large, as the allowed transfer time is 

not sufficiently long.   

The control on semi-major axis and inclination given by the first impulse, as shown by Eq. (4), leads to a change 

of RAAN rate during the transfer time 1k kt t t   for the chaser, and therefore causes additional RAAN change 

according to Eq. (12)-(14) 

 y zx ms y ns z      (16) 

which must be added to the effect of the impulses. The coefficients  0 07 sinm i t  ,  0 0 0tan sinn i i t  are 

obtained using Eqs. (4), (13), (14), where 0  is the average RAAN rate of the chaser and the target. When the first 

impulse is optimized, the new RAAN rate tends to produce a smaller final RAAN difference and lower propulsive 

transfer cost.  

The second impulse bv  must satisfy the conditions for the target orbit and its magnitude becomes 
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The total 
a bv v v     is  
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It is difficult to find the minimum of 
a bv v v     in closed form. Through revisiting to classical Minimum-

Inclination Maneuvers by Vallado [14], an analytic approximation becomes available by squaring the two velocities 

to remove the square roots: 
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Notice that this approximation ignores the cross product terms  2 a bv v  . This allows one to differentiate this 

expression with respect to 
xs , ys , 

zs  and set the derivatives to zero to find the minimum value:  
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The unknowns xs , ys , zs  can be obtained from Eqs. (20)-(22) as follows 
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By substituting Eqs. (23)-(25) into Eq. (18), the minimum ∆v required can be simply approximated. Note that the 

fractions s may not be defined when the corresponding variable (either x, or y, or z) is zero, but Eqs. (23)-(25) still 

provide a meaningful expression for the impulse.  



An important observation can be obtained in the estimated solution. By using 
xs , ys , 

zs from Eqs. (23)-(25) to 

evaluate the cost of changing RAAN, one can easily prove that 

 
x xs x x s x x     (26) 

which shows that the first and last impulse always provide the same change of RAAN. Equation (26) can be inserted 

into Eq. (17) to further simplify the estimation expression. As a special case, when
xs is zero (i.e., 2x my nz   ), 

one easily obtains that both ys , 
zs  are equal to ½, by substituting Eq. (23) into Eqs. (24) and (25). Eq. (26) implies 

that x x   if 0xs  , which means that RAAN is not controlled by thrust but rather matched by using only the 

perturbation effect generated by the changes of inclination and semi-major axis. 

For small eccentricity variations, the required velocity change is given by   
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e y xv v e e       (27) 

where the non-singular equinoctial elements are used for eccentricity, i.e., sinye e  , cosxe e  . An empirical 

relation, which assumes that the ∆v for the change of eccentricity vector is divided equally between each impulse 

and is perpendicular to av  and 
bv , is introduced to account for the additional cost of eccentricity change: 

    
2 22 20.5 0.5a e b ev v v v v           (28) 

which provides an eccentricity correction on the previous equation a bv v v    . 

IV. Results 

The ninth edition of the global trajectory optimization competition GTCO9 [16] proposed a problem that 

concerned the removal of 123 debris objects. A complete summary of the winner solution of the GTOC9 problem by 

JPL can be found in Ref. [12]. Table 1 and 2 show the transfer durations and ∆v cost for each mission. Due to the 

stringent time constraints of the proposed problem, the opportunity of performing optimal-time transfers was 

extremely rare, and limited time solutions were sought. JPL’s solution is here used to evaluate the accuracy of the 

proposed ∆v estimation method for time-limited transfers.  

As described in JPL’s paper, their method was very good at making large numbers of significant changes to 

existing solutions, but it had difficulty in finding truly global optima probably due to the existence of multiple 



locally optimal solutions. Therefore, the exact solutions given in Table 2 may not guarantee the minimum, and it 

could be expected that the exact solution may have room to be improved to some extent.   

Table 1. Transfer Duration Characteristics of JPL’s solution 

Mission 
Number 

of legs 
Transfer Duration, days 

1 13 24.86,24.98,22.42,24.99,0.29,10.63,25.00,2.70,1.51,1.41,24.67,24.31,5.86 

2 11 24.93,0.28,0.73,0.39,17.07,1.61,22.42,2.39,15.88,24.97,2.49 

3 20 
14.16,24.94,2.87,8.10,9.00,23.13,23.09,23.09,22.83,24.98,24.98, 

24.93,24.94,9.10,13.44,24.99,24.94,24.99,24.98,24.96 

4 10 23.96,6.48,16.72,23.97,23.95,23.95,23.96,23.99,23.94,23.96 

5 13 0.45,3.17,24.93,10.34,12.53,7.11,13.44,24.94,24.94,24.98,22.19,24.99,22.01 

6 9 24.91,0.30,18.39,3.08,20.24,24.96,24.85,24.97,0.28 

7 9 15.69,0.50,9.83,24.94,24.90,24.48,20.87,24.91,0.66 

8 8 10.03,24.00,2.83,24.99,24.99,24.96,21.19,24.98 

9 11 22.69,4.24,24.47,24.46,24.47,24.44,24.46,24.46,24.46,18.54,9.22 

10 9 0.81,11.59,7.66,1.11,17.46,6.47,20.47,24.47,3.99 

 

Estimations and actual values are usually in good agreement (the average error magnitude is 4.37%), as shown in 

Table 3. A synoptic view of the missions is provided in Fig. 1, which compares actual and estimated rendezvous ∆v. 

When the additional eccentricity correction is taken into account, the estimated solution becomes even closer to the 

exact solution with an average error magnitude of 2.83%, as shown in Fig. 2 and Table 4. However, in most cases 

the estimated solution is slightly below the corresponding exact one. It is worth noting that phasing constraints, 

which may affect the legs of the optimal GTOC9 solution, are not considered in the approximate analysis. An 

additional estimation performance for all the 113 transfer legs (where 123 debris and 10 launches are involved) is 

measured by the mean absolute error (MAE), which is 16.5 m/s and 13.3 m/s for cases without and with eccentricity 

correction, respectively.  

The presented approximation method proves to be vastly superior in terms of accuracy to other commonly used 

approximation methods (their relative errors are even up to 20% [11]). Although machine learning methods have a 

computational speed advantage over traditional optimization methods, considerable computation effort is still 

required. It is worth noting that, in general, only analytic approximations of leg cost suit to the time-demanding but 

widely-used evolutionary optimization methods for targets sequence selection. 

 



Table 2. Mission ∆V Characteristics of JPL’s solution 

Mission 
Number 

of legs 
∆V, m/s 

Total ∆V, 

m/s 

1 13 161.8,139.2,65.8,208.2,115.2,300.1,564.9,78.3,105.0,233.3,453.5,340.4,300.8 3066.5 

2 11 659.0,301.1,252.1,143.8,146.8,68.6,40.6,84.2,105.3,448.5,148.0 2398.0 

3 20 
219.1,80.8,105.2,55.2,140.2,85.5,95.0,237.6,205.9,149.9,245.2,71.6,197.3, 

160.4,132.2,240.0,161.2,364.3,230.4,232.5 
3409.5 

4 10 86.1,103.1,62.6,222.9,709.1,553.9,219.9,233.9,739.0,232.6 3163.1 

5 13 129.6,45.2,172.9,52.6,160.7,280.8,221.1,163.5,98.2,115.7,164.8,674.8,291.1 2571.0 

6 9 156.0,198.0,305.8,71.2,194.4,920.5,314.1,353.0,272.8 2785.8 

7 9 400.6,173.6,211.3,374.4,109.6,171.2,145.1,194.3,233.0 2013.1 

8 8 287.9,111.9,112.2,144.5,540.0,260.1,198.8,82.7 1738.1 

9 11 83.3,148.1,495.9,464.9,405.2,285.9,254.8,62.3,156.6,36.5,174.9 2568.4 

10 9 189.4,112.9,110.0,121.3,117.9,280.1,300.4,120.6,70.2 1422.8 

 

Fig. 1 Synoptic view of the comparison between exact and estimated solutions (the circle represents JPL’s exact 

solution, and cross is the estimated solution) 

 

Fig. 2 Synoptic view of the comparison between exact and estimated solutions (the circle represents JPL’s exact 

solution, and cross is the estimated solution with eccentricity correction) 

 



Table 3. Mission ∆V by the Simple Approximation  

Mission ∆V, m/s Total ∆V, m/s Error,% 

1 165.7,140.7,31.49,209.2,109.9,295,562.9,61.85,101.4,226.8,515.7,385.3,298.9 3104.9 1.25 

2 596.5,300.8,249.1,142.9,138.6,66.43,43.64,91.4,108.8,422.2,153.4 2313.6 -3.52 

3 
198.7,65.82,96.87,44.67,137.4,53.34,92.44,248.6,204.2,151.2,194.6, 

23.93,203.9,166.5,128.6,231.6,160.3,378.8,243,256.9 
3281.3 -3.76 

4 89.73,61.54,62.77,230.8,651.5,498.6,203.9,229.2,671.8,224.1 2924.0 -7.56 

5 133.2,37.62,145.8,10.03,185.5,261.7,204.5,108.3,44.47,99.21,165.1,620.5,279.9 2296.0 -10.7 

6 153.1,160.9,313,56.61,204,841.4,304.2,339.8,261.2 2634.2 -5.44 

7 425.8,172.9,218.9,391.3,119.1,174.8,181.8,202.8,214.0 2009.3 -0.19 

8 290.7,117,96.53,144.3,502,251.7,202.7,37.14 1642.1 -5.52 

9 86.24,142.9,458.3,458.3,378.6,312.6,265.2,27.18,162.2,36.86,174.1 2502.5 -2.56 

10 189.0,107.9,94.09,75.6,119.6,287.3,310.3,124.2,69.21 1377.2 -3.20 

Table 4. Mission ∆V by the Simple Approximation with Eccentricity Correction 

Mission ∆V, m/s Total ∆V, m/s Error,% 

1 170.5,145.1,63.13,212.2,115.4,299,564.8,64.33,102.8,229.4,518.4,385.3,300.1 3170.6 3.39 

2 597.8,301.1,249.3,149.8,148.2,71.08,43.65,92.25,108.9,422.4,157.8 2342.3 -2.32 

3 
211.7,77.72,97.45,50.57,148.7,85.18,106,252.5,208.2,160.7,218.8, 

72.93,206.2,178.8,134.1,241.5,182.4,379.8,243,257.4 
3513.6 3.05 

4 89.89,88.69,66.46,232.1,652.3,500.3,204.2,230.4,674.7,241.9 2980.9 -5.76 

5 137.0,38.75,162.9,51.25,186.2,270.6,213.8,134,77.32,118.4,166,621.4,283.0 2460.5 -4.30 

6 155.2,179.2,315.8,81.18,213.3,842,308.3,340.1,271.2 2706.2 -2.86 

7 419.4,171.4,229.4,386.3,117.7,169.3,151.3,199.6,219.8 2064.3 2.54 

8 297.4,118.5,113.6,145.7,502.7,254.9,204.8,64.43 1701.9 -2.08 

9 88.35,149.8,459.6,459.1,384.4,321.6,271.7,49.73,173.1,43.15,174.3 2574.7 0.25 

10 189.4,130.6,117.8,76.58,123.5,292.2,311.3,126,80.48 1447.9 1.76 

Table 5. Detailed solution of the first leg of mission-1 (debris 23 to 55) 

Solution time, day ∆vi, m/s ∆a, km ∆i, deg ∆Ω, deg RSR ∆v, m/s Total ∆v, m/s 

Exact 

1 0.275 134.2 -37.08 -0.999 -0.083 132.2 

164.55 
2 0.312 0.818 1.196 -0.0037 -0.0014 0.811 

3 24.828 15.41 8.671 -0.114 0.005 15.56 

4 24.860 14.12 -18.23 -0.076 0.023 14.08 

Estimated 
1 0 98.17 13.59 -0.743 -0.104 98.17 

165.73 
2 24.86 67.56 -59.03 -0.449 -0.104 67.56 

 

 



Table 6. Detailed solution of the first leg of mission-8 (debris 86 to 34) 

Solution time, day ∆vi, m/s ∆a, km ∆i, deg ∆Ω, deg RSR ∆v, m/s Total ∆v, m/s 

Exact 

1 0.0667 141.30 54.82 -0.778 -0.728 141.26 

294.06 
2 0.102 76.75 -39.67 -0.432 -0.383 77.80 

3 9.997 33.32 -44.15 -0.00027 -0.187 33.45 

4 10.03 42.70 -57.10 -0.0190 -0.233 42.52 

Estimated 
1 0 165.00 70.71 -1.016 -0.705 165.00 

290.73 
2 10.03 125.73 -156.82 -0.213 -0.705 125.73 

 

Table 5 and Table 6 show two detailed solutions by comparing exact solution and estimation. The transfer time 

is relatively long (24.86 day) and medium (10.03 day), respectively, for the two solutions. Leg details are not given 

in Ref. [9], and the exact solutions are here obtained by an optimization procedure involving up to four impulses, by 

means of a continuous ant colony optimization (ACO) method [5]. The exact solutions by ACO are very close the 

JPL’s exact solutions (which considered up to 5 impulses), though a slightly larger total ∆v is obtained in both cases 

here. In the exact optimization, multiple impulses are favored in order to match phase and eccentricity, which have, 

however, a limited impact on the total velocity change.  

The approximate two-impulse solution guarantees a good accuracy in terms of total costs. The two impulses, 

which are placed at the start and final time of each leg, efficiently perform the most important orbital changes (i.e., 

RAAN, semi-major axis, and inclination), although corresponding to a rather different strategy in terms of a, e, i, 

and Ω, with respect to exact solutions. For these trajectories the transfer time is not optimal, and an active change of 

RAAN with propulsion is needed, in addition to inclination, in order to obtain the plane alignment. This kind of 

maneuvers do not occur in cases where sufficient transfer time is allowed, and demonstrate that a time-limited 

solution is required. In the estimated solution, RAAN changes are the same between the initial maneuver and the last 

maneuver, as illustrated in the previous Section (i.e., Eq. (26)). It is worth noting that, for the transfer described in 

Table 5, the two-impulse approximation uses a different strategy in terms of semi-major axis change with a small 

initial increase, but is nonetheless capable of obtaining a similar overall ∆v cost. In both approximate solutions the 

semi-major axis is initially increased and then decreased, with the purpose of obtaining the best tradeoff in terms of 

total ∆v between changes of RAAN and other parameters (semi-major axis and/or inclination). In other cases, a 

similar strategy is used for inclination. This fact shows that the semi-major axis and/or inclination changes may be 

not monotonic, which is peculiar in this kind of J2-perturbed time-limited body-to-body transfers.  



The root-sum-square (RSR) of individual ∆vs required for the combined changes of the semi-major axis, RAAN, 

and inclination according to Eq. (9), are in good agreement with the corresponding exact ∆vi, as shown in Table 5 

and 6. This fact confirms that the ∆v estimation method described in Eqs. (15) and (17), which evaluates the 

impulses as the root-sum-square of the cost of individual changes of orbital parameters into account, works properly.  

V. Conclusions 

An analytic procedure has been developed for preliminary evaluation of transfer costs between objects in LEO, 

in order to speed up the analysis of debris removal missions aiming at multiple objects, when they must be selected 

in large sets of targets with similar orbit inclination. In fact, in these cases, the solution of the combinatorial problem 

may be impractical in terms of computational time, even though it can be carried out off-line. The analysis tool that 

has been developed in this paper is therefore in particular beneficial in the preliminary design phases, when mission 

feasibility must be assessed and trade-offs are required, and a precise evaluation of the costs can reduce design 

uncertainties. The good accuracy of the proposed estimation method has been verified by comparison with precisely 

optimized solutions, and the mean relative estimation error is below 3%. Even though the estimation is in general 

slightly below the exact solution, the benefits, which can be obtained when a proper analytical approximation of 

transfer cost is used in multiple-target active debris removal, are thus demonstrated. 
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