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Abstract

Reconsidering the M2-brane solutions of d = 11 supergravity with a transverse Englert flux intro-

duced by one of us in 2016, we present a new purely group theoretical algorithm to solve Englert equation

based on a specific embedding of the PSL(2, 7) group into Weyl[e7]. The aforementioned embedding is

singled out by the identification of PSL(2, 7) with the automorphism group of the Fano plane. Relying

on the revealed intrinsic PSL(2, 7) symmetry of Englert equation and on the new algorithm we present

an exhaustive classification of Englert fluxes. The residual supersymmetries of the corresponding M2-

brane solutions associated with the first of the 8 classes into which we have partitioned Englert fluxes are

exhaustively analyzed and we show that all residual d = 3 supersymmetries with N ∈ {1, 2, 3, 4, 5, 6} are

available. Our constructions correspond to a particular case in the category of M2-brane solutions with

transverse self-dual fluxes.
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1 Introduction

The scenario underlying the gauge/gravity correspondence [1–11] is multi-faceted and involves many

different geometrical aspects. In particular there are two main paradigms:

a) The case of M2-branes solutions of d = 11 supergravity, where the eight-dimensional space M8

transverse to the brane world volume is taken to be the metric cone over a five dimensional compact

Einstein manifold M7 characterized by the metric:

ds2
(8) = dr2

+ r2 ds2
M7

; r ∈ R+ . (1.1)

b) The case of D3-brane solutions of type IIB supergravity, where the six-dimensional space M6 transverse

to the brane world volume is taken to be the metric cone over a five-dimensional compact Einstein

manifold M5 characterized by the metric:

ds2
(6) = dr2

+ r2 ds2
M5

; r ∈ R+ . (1.2)

In the case of the M2-branes, variants of the above solution included the introduction of a self-dual 4-form flux

in the transverse 8-dimensional space and were extensively studied in the literature (see for instance [12–15]).

The properties of these solutions, such as supersymmetry, strongly depend on the topology of the transverse

space as well as on the structure of the internal flux and only specific examples where analyzed.

A new class of M2-brane solutions with self-dual transverse flux was recently introduced in [16]. Inspired

by previous results in d = 7 [17,18], the 11-dimensional manifold at the base of the M2–branes was chosen

with the following topology:

M11 = Mink1,2 × R+ × T7, (1.3)

where Mink1,2 is Minkowski space in 1 + 2 dimensions and represents the world-volume of the M2-brane,

while T7 is a flat compact seven-torus. R+ × T7 is the eight-dimensional space transverse to the brane. It

was shown that one can obtain exact solutions of d = 11 supergravity where the metric is of the form:

ds2
11 = H(y)−

2
3
(
dξ µ ⊗ dξν ηµν

)
− H(y)

1
3

(
dyI ⊗ dyJ δI J

)
, (1.4)

the function H(y) over the transverse eight-dimensional space being defined by an inhomogeneous Laplace

equation whose source is provided by the norm of an Englert flux. By this we mean a solution of the

following linear equation for a three-form Y[3] living on the T7 torus:1

⋆T7 dY[3]
= − µ

4
Y[3], (1.5)

which is the natural generalization of Beltrami equation for a 1-form on a T3-torus:

⋆T3 dY[1]
= − νY[1]. (1.6)

1The relation between equation (1.5) and the self-duality condition on the 4-for field-strength in the Euclidean 8-dimensional

transverse space is illustrated in Appendix B. We shall refer to Eq. (1.5), somewhat improperly, as the Englert equation, since it

describes the internal flux in the original Englert solution [19], though on a space with a different topology.
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Just as in [17, 18, 20], the torus T3 was chosen to be:

T3 ≃ R
3

Λcubic

, (1.7)

where Λcubic is the cubic lattice, which endowed Beltrami equation with the discrete symmetry provided by

the point group of such a lattice, namely the octahedral group O24, in the same way in [16] the torus T7 was

chosen to be:

T7 ≃ R
7

Λroot
, (1.8)

where Λroot is a root lattice of a suitable Lie algebra, prescribed to admit a point group isomorphic to the

simple group PSL(2, 7) of order 168. The main motivation for such an a priori choice performed in [16]

was the embedding PSL(2, 7) ֒→ G2(−14) ⊂ SO(7) which appeared to be promising in view of the possible

existence of Killing spinors for the corresponding M2-brane solution. In any case just as it happens that

Beltrami equation is covariant with respect to the O24 group, the adopted point group endows Englert

equation with a PSL(2, 7)-symmetry.

In this paper we adopt a substantially new approach to the problem of constructing solutions of this kind.

It is based on a deeper understanding of the significance of the group PSL(2, 7), entering in a different role

as the automorphism group of the Fano plane and, as such, as a subgroup of the Weyl group of E7(7) [21].

This allows for the construction of novel M2-brane solutions with non constant fluxes. The main point

of the present work is the realization that the PSL(2, 7)-symmetry of the Englert equation is much less a

matter of choice than it appeared to be in the approach of [16]. Indeed, as we explain in section 4, which

is a full fledged revisitation of the theory of the PSL(2, 7) group, this latter, in its role as automorphism

group of the Fano plane, provides a systematic group-theoretical construction of the solutions to the Englert

equation on a flat space. These can be written in terms of elementary solutions, each defined by seven

(a septuple of) triples of integers {n1, n2, n3}, ni ∈ {1, 2, 3, 4, 5, 6, 7}, n1 < n2 < n3, corresponding to the

vertices of a Fano plane (which define a so-called Steiner triple system), combined with a suitably defined

complementary septuple. The elementary solutions are characterized by the property that the non-vanishing

internal components Y[3] of the 3-form field A[3] are only defined by the triplets of integers in the two

septuples. The automorphism group PSL(2, 7) of the Fano plane used for this construction is chosen to be

the point group of the torus-lattice as well as the underlying symmetry group of the final solutions. Its action

on the d = 11 fields (and in particular on the internal components of the 3-form) can be inferred as follows.

The 35 components Yi jk , i, j, k = 1, . . . , 7, of Y[3] on the seven-torus are in one-to-one correspondence with

weights of the 35-dimensional representation of SO(7) ⊂ SL(7,R) according to:

dxi ∧ dx j ∧ dxk ⇔ i
j
k

⇔ w35 ∈ Λweight
a6

, (1.9)

where xi are the torus coordinates, Λ
weight
a6

denotes the weight lattice of the a6 Lie algebra and w35 a weight

of the 35-dimensional representation. The automorphism group PSL(2, 7) of the chosen Fano plane, being a

subgroup of the Weyl group of a6, acts in terms of permutations on the seven values of the internal indices,
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with respect to which the 35 weights {w35} split into an orbit of length 7 plus another of length 28. This

embedding of PSL(2, 7) into SL(7,R) is different from the crystallographic embedding considered in [16].

Such observation provides an intrinsic group theoretical algorithm to construct solutions of Englert equation.

In [16] some solutions of the Englert equation were constructed using the obvious uplifting to 7-

dimensions of the technique utilized in [17, 18, 20] to construct solutions to Beltrami equation, namely the

Fourier expansion of the field Y[3] and the restriction of the considered momenta to orbits of the PSL(2, 7)
in the weight lattice of the a7 Lie algebra. Such constructions were particularly cumbersome since they

produced rather large parameter spaces that had to be organized a posteriori into irreducible representations

of PSL(2, 7) and of its subgroups. Furthermore there was no clear cut strategy for an exhaustive classification.

In this paper, utilizing this new viewpoint and in particular the different inequivalent embedding men-

tioned above, we have been able to classify all solutions according to 424 generating schemes grouped into

8 classes, each class labeled by an invariant signature. This classification is displayed in Table 4. We have

also provided an exhaustive analysis of the residual supersymmetries for the solutions of the first class in

which both the original septuple and the complementary one are of Steiner type (they both have signature

(0, 21, 0) and define two distinct Fano planes). The result of this analysis is summarized in Table (8.16).

It shows that M2-branes with all possible number of supercharges can be obtained from our construction.

The analysis of the remaining seven classes of solutions is postponed to a future publication. Similarly, as

we discuss in the conclusive section 9, we postpone to a future publication of the possible interpretation of

our M2-solutions in various classical contexts of the gauge/gravity correspondence or of the Kaluza-Klein

expansion.

Although the approach followed in the present paper and the results are substantially different from those

of [16], for the sake of completeness we shall recall some general properties of the group PSL(2, 7) which

are illustrated in the same reference.

The paper is organized as follows:

• In section 2 we review the structure of the Ansatz of M2-branes with Englert fluxes.

• In section 3 we study the normal form of Englert three-forms and we introduce the role played by the

group PSL(2, 7).

• In sections 4,5 we revisit the entire theory of the group PSL(2, 7) and of its crystallographic irreducible

representations. In particular we illustrate the difference between the crystallographic irreducible

representation of dimension 7 utilized in [16] and a new crystallographic irreducible representation

of dimension 6 which is the key weapon for our algorithm to construct solutions of Englert equation.

• In section 6 we present the intrinsic group theoretical algorithm to solve Englert equation and we

arrive at the classification of table 4.

• In section 7 we review the criterion, found in [16], for the preservation of N = 2, . . . , 6 residual

supersymmetries in d = 3.

• In section 8 we derive the classification of residual supersymmetries for the solutions of type (0, 21, 0).

• In section 9 we draw our conclusions and we illustrate the perspectives for the interpretation of our

M2-brane solutions.
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• In appendix B we consider the more general case of M2-brane solutions of d = 11 supergravity with

a transverse internal flux and we show that Englert fluxes are a particular subclass in this class.

The reader who is only interested in the construction and study of the new solutions and their supersymmetry,

can skip the more mathematical sections 4, 5.

2 M2-branes with Englert fluxes

In this section we shortly review the structure of M2-brane solutions of d = 11 supergravity with Englert

fluxes that were introduced in [16] and constitute the object of study, from a new viewpoint, of the present

paper.

In order to describe the general form of these solutions with Englert fluxes we need to consider the

effective low energy lagrangian of M-theory, namely d = 11 supergravity for which we utilize the geometric

rheonomic formulation of [22, 23]2. Appendix A provides a dictionary between the normalization used in

the first paper on d = 11 supergravity [25] and those of [22, 23].

2.1 Summary of d = 11 supergravity in the rheonomy framework

The complete set of curvatures defining the relevant Free Differential Algebra is given below ( [22, 23]):

Ta
= DVa − i1

2
ψ ∧ Γa ψ

Rab
= dωab − ωac ∧ ωcb

ρ = Dψ ≡ dψ − 1
4
ωab ∧ Γab ψ

F[4]
= dA[3] − 1

2
ψ ∧ Γab ψ ∧ Va ∧ V b

F[7]
= dA[6] − 15 F[4] ∧ A[3] − 15

2
V a ∧ V b ∧ ψ ∧ Γab ψ ∧ A[3]

−i 1
2
ψ ∧ Γa1...a5

ψ ∧ Va1 ∧ · · · ∧ Va5 (2.1)

There is a unique rheonomic parametrization of the curvatures (2.1) which solves the Bianchi identities and

it is the following one:

Ta
= 0

F[4]
= Fa1...a4

Va1 ∧ · · · ∧ Va4

F[7]
=

1
84

Fa1...a4 V b1 ∧ · · · ∧ V b7 ǫa1...a4b1...b7

ρ = ρa1a2
Va1 ∧ Va2 − i1

3

(
Γa1a2a3ψ ∧ Va4

+
1
8
Γa1...a4m ψ ∧ Vm

)
Fa1...a4

Rab
= Rab

cd V c ∧ V d
+ i ρmn

(
1
2
Γabmn − 2

9
Γmn[a δb]c

+ 2 Γab[m δn]c
)
ψ ∧ V c

+ψ ∧ Γmn ψ Fmnab
+

1
24
ψ ∧ Γabc1...c4 ψ Fc1 ...c4 (2.2)

2For a recent review in modernized notations see [24], Volume II, Chapter 6.
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The expressions (2.2) satisfy the Bianchi.s provided the space–time components of the curvatures satisfy

the following constraints

0 = DmFmc1c2c3
+

1
96
ǫ c1c2c3a1a8 Fa1...a4

Fa5 ...a8
(2.3)

0 = Γabc ρbc (2.4)

Ram
cm = 6 Fac1c2c3 Fbc1c2c3 − 1

2
δa

b Fc1 ...c4 Fc1 ...c4 (2.5)

which are the space–time field equations.

2.2 M2-brane solutions with R+ × T7 in the transverse dimensions

Among all the possible solutions to the field equations (2.3-2.5) we are interested in those that describe

M2-branes of the form described below.

According to the general rules of brane-chemistry (see for instance [24], page 288 and following ones),

we introduce the following d = 11 metric:

ds2
11 = H(y)−

4d̃
9∆

(
dξ µ ⊗ dξν ηµν

)
− H(y)

4d
9∆

(
dyI ⊗ dyJ δI J

)
(2.6)

where:

ξ µ ; µ = 0, 1, 2 (2.7)

are the coordinates on Mink1,2, while:

y
I ; I = 1, 2, . . . , 8 (2.8)

are the coordinates of the 8-dimensional transverse space. Since in d = 11 there is no dilaton we have

∆ = 2
d̃ d

9
= 2

6 × 3

9
= 4 ; d = 3 ; d̃ = 6 (2.9)

and the appropriate M2 Ansatz for the metric becomes (1.4):

ds2
11 = H(y)−

2
3

(
dξ µ ⊗ dξν ηµν

)
− H(y)

1
3

(
dyI ⊗ dyJ δI J

)
(2.10)

Because of the chosen topology of the transverse space, see Eq. (1.3), it is convenient to set:

y
8
= U ∈ R+ ; y

i
= xi ∈ T7 (i = 1, . . . , 7) (2.11)

The next point is to choose an appropriate Ansatz for the three-form A[3]. We set:

A[3]
=

2

H(y) Ω
[3]
+ e−µUY[3] (2.12)
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where:

Ω[3]
=

1
6
ǫµνρ dξ µ ∧ dξν ∧ dξ ρ (2.13)

Y[3]
= Yi jk(x) dxi ∧ dx j ∧ dxk (2.14)

The essential point in the above formula is that the antisymmetric tri-tensor Yi jk(x) depends only on the

coordinates x of the seven-torus T7. The geometry of T7 is defined by a lattice Λ whose point group is the

PSL(2, 7) group to be introduced in the next Sections.

As shown in [16], with the Ansatz (2.12), the non-vanishing components of the 4-form F[4] are the

following ones:

FabcI =
1

12
H(y)−

7
6 ∂I H(y) (2.15)

F8i jk = − µ
4

e−µU H(y)−
2
3 Yi jk (2.16)

Fi jkℓ = H(y)−
2
3 e−µU∂iYjkℓ (2.17)

Then we can easily verify that the Maxwell field equation (2.3) is satisfied provided the following two

differential constraints hold:

�R+×T7 H(y) = µ

4
e−2 µUǫ i jkℓmnr ∂iYjkℓ Ymnr (2.18)

1

4!
ǫ pqri jkℓ ∂iYjkℓ = − µ

4
Ypqr (2.19)

The two equations admit the following index-free rewriting:

�R+×T7 H(y) = −3 µ2

2
e−2 µU ‖ Y ‖2 ≡ J(y) (2.20)

⋆T7 dY[3]
= − µ

4
Y[3] (2.21)

As we see Eq. (2.21) is the generalization to a 7-dimensional torus of Beltrami equation on the three-

dimensional one. It is just Englert equation and in the present work we pursue a new systematic group

theoretical approach to the construction of its solutions and the study of their supersymmetries.

As shown in [16], Einstein equations are also satisfied once Eq.s (2.20-2.21) are satisfied.

As mentioned earlier and shown in detail in Appendix B, these solutions fall in the general class of

M2-branes with self-dual transverse flux.

3 Normal form and the role of PSL(2, 7)

Our approach to a systematic study of the solutions to the Englert equation is to construct elementary

solutions in which the only non-vanishing components Yi jk (the internal part of the 3-form A[3]) are defined

by the normal form of the representation 35 with respect to the action of SO(7). The normal form is defined

7



by the subspace of the representation space V35 = {Yi jk } of least dimension, in which a generic vector in V35

can be rotated by means of an SO(7) transformation. This subspace has 14 parameters since a generic vector

in V35 has a trivial little group in SO(7), so that the number of parameters of a generic element modulo the

action of SO(7) is just 14 = 35− 21. The normal form of Yi jk can be chosen in various ways, some of which

have a special geometric interpretation. It is important to stress that in our solution Yi jk(x) are not constant

and thus in general one cannot recover the most general tensor Yi jk (x) from its restriction to the normal form

through an SO(7) transformation. Nevertheless the normal form will define elementary tensors satisfying

the Englert equation which are the building blocks for our systematic study of its solutions.

As mentioned in the Introduction, the components of Yi jk can be put into one-to-one correspondence

with a the weights of the 35 representation of SL(7,R) group acting linearly on xi. Formally these weights

can be thought of as part of the 63 positive roots of an e7(7) Lie algebra. The latter has a special role in

d = 11 supergravity since it generates the global symmetry group E7(7) of the d = 4 supergravity obtained

from the eleven-dimensional one through toroidal reduction [26]. However, it must be emphasized at this

point that our solutions in general do not admit an effective d = 4 description and that they are covariant

only with respect to the SL(7,R) subgroup of E7(7). The action of SL(7,R) will change the metric on the

torus into a different constant one. The action of the SO(7) subgroup of SL(7,R), leaves the metric δi j on

T7 invariant but transforms the lattice Λ defining it. The latter is left invariant only by its point group which

is a subgroup of SO(7) and which will be chosen to be PSL(2, 7).
Let us denote by αi jk the e7(7) positive roots corresponding to Yi jk . The action of SO(7) on Yi jk can

be fixed by choosing seven non-vanishing components to correspond to a maximal subset of mutually

orthogonal roots α(I), I = 1, . . . , 7 among the the 35 that we named αi jk .3 The normal form is then obtained

by complementing this set of components with an other set of seven parameters, so that the total number of

independent components amounts to 14.

Adopting this viewpoint the normal form is defined by two septuples of parameters, the first of which is,

defined, as we have said by the roots α(I).
Let us recall the main properties of this particular set of seven roots. They define, together with their

negative −α(I), an sl(2)7 subalgebra of e7. Moreover it can be shown that the seven triplets (i, j, k) of indices

defining the α(I) among the αi jk form a so-called Steiner triple system and are in one-to-one correspondence

with the vertices of a Fano plane (see Figure 6.1 for a particular choice of this septuple). It is at this level

that the group PSL(2, 7) enters the game. As we show in the next section 4 entirely devoted to an in depth

discussion of PSL(2, 7), of his subgroups and of its representations, this simple group has a crystallographic

action on the e7 root lattice and actually maps the e7 root system ∆e7 into itself, so that it happens to be a

subgroup of the Weyl[e7] group.

We anticipate that we can have two distinct conjugacy classes of embeddings:

PSL(2, 7) ֒→ Weyl[e7] (3.1)

one based on the 7-dimensional irreducible representation of PSL(2, 7), the other on its 6-dimensional one.

With respect to the former embedding there are no orbits of length 7 in the e7 root lattice and in particular

in the root system ∆e7. With respect to the latter embedding, as discussed below, there are instead orbits of

length 7 and the unique such one that is contained in the subset of 35 positive roots αi jk precisely consists

3With an abuse of notation we use the same letters to label α(I ) and the eight transverse directions to the M2-brane. The

different interpretation of these letters will be clear from the context.
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of the septuple α(I) of mutually orthogonal roots that define the embedding of the sl(2)7 subalgebra into the

e7(7). This embedding of PSL(2, 7) indeed acts as the automorphism group of the Fano plane associated with

this septuple since, as a subgroup of Weyl[a6] = S7, its effect is of permuting the α(I)s.
Hence, as firstly shown in [21], there are 135 inequivalent choices of the septuple of commuting roots

which is the ratio between the order of Weyl[e7] and the order of the product of (Z2)7 (that reverses the sign

of each α(I)), times the order of PSL(2, 7) that permutes the α(I)s in the septuple:

135 =
|Weyl[e7]|

27 × |PSL(2, 7)| =
2903040

27 × 168
. (3.2)

Let us refer to the two conjugacy classes of PSL(2, 7) subgroups within Weyl[e7] as:

PSL(2, 7)7 ⊂ Weyl[e7] ; PSL(2, 7)1+6 ⊂ Weyl[e7] . (3.3)

The reason for this naming, thoroughly explained in section 4, is that the embedding into the Weyl group

occurs via the crystallographic embedding into the point group SO (7,Z)e7 of the root lattice Λr
e7

:

PSL(2, 7)7 ֒→ SO (7,Z)e7 ; PSL(2, 7)1+6 ֒→ SO (7,Z)e7 . (3.4)

By SO (7,R)e7 we denote the standard SO(7) Lie group presented in the basis where the invariant metric

η = Ce7 is the Cartan matrix of the e7 Lie algebra:

L ∈ SO (7,R)e7 ⇔ LT
Ce7 L = Ce7 . (3.5)

The point group of the root lattice SO (7,Z)e7 ⊂ SO (7,R)e7 is the discrete subgroup made by those 7 × 7

matrices L that satisfy (3.5) and have integer valued entries. The two embeddings (3.4) are distinguished by

the fact that the character of the 7 dimensional representation realized by the embedding is the irreducible

character χirr
7
χirr

7χ
irr
7

of the 7 dimensional representation of PSL(2, 7) in the first case, while it is the sum of the

irreducible characters χirr
6
χirr

6
χirr

6
⊕ χirr

1
χirr

1χ
irr
1

in the second:

χχχ [PSL(2, 7)7] = χirr
7χ
irr
7χ
irr
7 ; χχχ [PSL(2, 7)1+6] = χirr

6
χirr

6χ
irr
6 ⊕ χirr

1
χirr

1χ
irr
1 . (3.6)

Choosing the embedding PSL(2, 7)1+6 we obtain that the root lattice of the a6 subalgebra of e7 is left invariant

by the action of PSL(2, 7)1+6. This obviously extends to the weight lattice of the same algebra. It follows that

the set of positive roots of e7 splits into subsets corresponding to irreducible representations of a6 ∼ sl(7,R).
In particular a group of 35 positive roots corresponds to the weights of the 35 irreducible representation of

sl(7,R), the three times antisymmetric, which means the tensor Yi jk . This is the rigorous definition of the

roots αi jk mentioned above.

The 35 dimensional set is invariant under the action of PSL(2, 7)1+6 and splits in two orbits:

35
PSL(2,7)1+6

=⇒ 7A ⊕ 28. (3.7)

The orbit 7A, group theoretically defined in a unique way, provides, as mentioned above, the set of 7 mutually

commuting roots α(I) and, in the correspondence between a7 weights and the triples of indices {i j k} (see
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table 3) a first septuple of Steiner triples. Such system of triples can be characterized by the property that

any two of the seven triplets of indices {i j k} must have only one index in common.

We can easily count the possible number of the septuples 7A measuring the number of conjugate copies

of the group PSL(2, 7)1+6 inside Weyl[a6] ⊂ Weyl[e7]:

# of septuples 7A =
|Weyl[a6]|

27 × |PSL(2, 7)1+6 |
=

7!

27 × 168
= 30. (3.8)

The second step in order to obtain the 14 parameters of the normal form is to adjoin to septuple 7A of

Steiner triples a second septuple 7B which is complementary to the first.

The concept of complementarity is briefly described in the lines below.

Let us denote a set of seven triples of indices {i j k}, 1 ≤ i < j < k ≤ 7, by ®σ:

®σ = {®σI }I=1,...,7 , ®σI = (σ1
I , σ

2
I , σ

3
I ) , 1 ≤ σ1

I < σ2
I < σ3

I ≤ 7 . (3.9)

If P is a permutation of the seven values of the index I labeling the triplets in ®σ, we shall denote the permuted

set of triplets by ®σ · P:

®σ · P = {®σP(I)}I=1,...,7 . (3.10)

Two septuples ®σ and ®γ are complementary or mutually non-local if there exist two permutations P, P′ ∈ S7

such that:

∀I = 1, . . . , 7 : ǫ
iI σ

1
P(I )σ

2
P(I )σ

3
P(I )γ

1
P′(I )γ

2
P′(I )γ

3
P′(I ) , 0 , (3.11)

where I → iI is a mapping of the set {1, 2, 3, 4, 5, 6, 7} into itself which need not be onto. For I = 1, . . . , 7,

the numbers iI are uniquely defined by the condition (3.11).

The selection of a septuple 7B complementary to the septuple 7A can be derived automatically in a group

theoretical way considering the maximal subgroup of order 21 of PSL(2, 7)1+6, denoted G21 (see section

4.7.1). Under the action of G21 we have:

35
PSL(2,7)1+6

=⇒ 7A ⊕ 28
G21
=⇒ 7A ⊕ 7B ⊕ 21 (3.12)

and the septuple 7B is automatically complementary to septuple 7B. How many are the possible choices of

7B for fixed 7A? There is an easy answer: they are as many as the different subgroups G21 ⊂ PSL(2, 7)1+6

in the unique conjugacy class, namely:

# of septuples 7B =
|PSL(2, 7)1+6 |

|G21 |
=

168

21
= 8. (3.13)

With the above preliminary arguments and anticipations we have illustrated the crucial role played by the

group PSL(2, 7) in deriving a normal 14-parameter form of the solution to Englert equation. In particular in

Section 6.1 we shall illustrate how to construct a solution from a couple of complementary septuples ®σ, ®γ,

see Eq. (6.12).

In the next long section we present the theory of PSL(2, 7) in a systematic way, providing a great deal of

relevant constructive details about representations, subgroups, crystallographic action on root lattices and

orbits that, up to our knowledge, are not available in the mathematical literature. After such a preparation
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we will return to the explicit construction of the normal form of the solution to Englert equation in section

6.

The reader who is only interested in the construction of the solutions to the Englert equation and the

study of their supersymmetry can skip the next two mathematical Sections and move directly to Section 6.

4 Theory of the simple group PSL(2, 7)

Since the finite simple group PSL(2, 7) plays a fundamental role in the derivation of the normal form of

solutions to the Englert equation (1.5) we devote the present section and its subsections to the structural

theory of this remarkable group. One of its most relevant properties, which turns out to be quite momentous

for M–theory and was not duely observed in the mathematical literature, is that it is crystallographic in

7-dimensions. It is also crystallographic in 6 dimensions. In both cases the crystallographic representation

corresponds to the irreducible representation of the same dimension predicted by general group theory;

furthermore the lattice that is left invariant by the action of the PSL(2, 7) group is, respectively, the root

lattice Λr
a7

and the root lattice Λr
a6

, having denoted by aℓ the simple complex Lie algebra whose maximal

split real form is sl(ℓ+1,R). Because of duality it follows that also the corresponding weight latticesΛw

a7
and

Λw

a6
are equally preserved by the action of PSL(2, 7) that is provided by integer valued matrices both in the

root and in the weight basis. Since the symmetric Cartan matrices Ca7 and Ca6 are left invariant by PSL(2, 7)
it follows that this latter has a natural irreducible embedding both in SO(7) and in SO(6). Last but not least,

since the root lattice Λr
a7

is a sublattice of the e7 root lattice it follows that PSL(2, 7) is crystallographic with

respect also to this latter and is actually a subgroup of the Weyl group Weyl[e7]. It is just this property what

provides the link of PSL(2, 7) with exceptional field theory and with the solutions of Englert equation.

4.1 Definition of the group PSL(2, 7)

The finite group:

PSL(2, 7) ≡ PSL(2,Z7) (4.1)

is the second smallest simple group after the alternating group A5 which has 60 elements and coincides with

the symmetry group of the regular icosahedron or dodecahedron. PSL(2, 7) has 168 elements: they can be

identified with all the possible 2×2 matrices with determinant one whose entries belong to the finite field Z7,

counting them up to an overall sign. In projective geometry, PSL(2, 7) is classified as a Hurwitz group since

it is the automorphism group of a Hurwitz Riemann surface, namely a surface of genus g with the maximal

number 84 (g − 1) of conformal automorphisms4. The Hurwitz surface pertaining to the Hurwitz group

PSL(2, 7) is the Klein quartic, namely the locus K4 in P2(C) cut out by the following quartic polynomial

constraint on the homogeneous coordinates {x, y, z}:

x3
y + y

3 z + z3 x = 0 (4.2)

Indeed K4 is a genus g = 3 compact Riemann surface and it can be realized as the quotient of the hyperbolic

Poincaré plane H2 by a certain group Γ that acts freely on H2 by isometries.

4Hurwitz’s automorphisms theorem proved in 1893 states that the order |G| of the groupG of orientation-preservingconformal

automorphisms, of a compact Riemann surface of genus g > 1 admits the following upper bound |G| ≤ 84(g − 1)
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The PSL(2, 7) group, which is also isomorphic to GL(3,Z2), has received a lot of attention in Mathematics

and it has important applications in algebra, geometry, and number theory: for instance, besides being

associated with the Klein quartic, PSL(2, 7) is the automorphism group of the Fano plane.

The reason why we consider PSL(2, 7) in this section is associated with another property of this finite

simple group which was proved almost twenty years ago in [27], namely:

PSL(2, 7) ⊂ G2(−14) (4.3)

This means that PSL(2, 7) is a finite subgroup of the compact form of the exceptional Lie group G2 and the

7-dimensional fundamental representation of the latter is irreducible upon restriction to PSL(2, 7).
As we already mentioned the group PSL(2, 7) is crystallographic in d = 7, and in d = 6.

4.2 Structure of PSL(2, 7)

For the reasons outlined above we consider the simple group (4.1) and its crystallographic action in d = 7.

The Hurwitz simple group PSL(2, 7) is abstractly presented as follows5:

PSL(2, 7) =
(
R, S,T ‖ R2

= S3
= T7

= RST = (TSR)4 = e
)

(4.4)

and it has order 168:

| PSL(2, 7) | = 168 (4.5)

For practical convenience we distinguish the abstract description of the group, from its concrete realization

in terms of matrices, by rewriting Eq. (4.4) in terms of abstract generators denoted by the corresponding

greek letters:

PSL(2, 7) =
(
ρ, σ, τ ‖ ρ2

= σ3
= τ7

= ρ.σ.τ = (τ.σ.ρ)4 = ǫ
)

(4.6)

In this way we can give an exhaustive enumeration of all the group elements as words in the three symbols

ρ,σ,τ.

The elements of this simple group are organized in six conjugacy classes according to the scheme

displayed below:

Conjugacy class C1 C2 C3 C4 C5 C6

representative of the class e R S TSR T SR

order of the elements in the class 1 2 3 4 7 7

number of elements in the class 1 21 56 42 24 24

(4.7)

As one sees from the above table (4.7) the group contains elements of order 2, 3, 4 and 7 and there are

two inequivalent conjugacy classes of elements of the highest order. According to the general theory of

finite groups, there are 6 different irreducible representations of dimensions 1, 6, 7, 8, 3, 3, respectively. The

character table of the group PSL(2, 7) can be found in the mathematical literature. It reads as follows:

5In the rest of this section we follow closely the results obtained by the present author in a recent paper [16]
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Representation C1 C2 C3 C4 C5 C6

D1 [PSL(2, 7)] 1 1 1 1 1 1

D6 [PSL(2, 7)] 6 2 0 0 −1 −1

D7 [PSL(2, 7)] 7 −1 1 −1 0 0

D8 [PSL(2, 7)] 8 0 −1 0 1 1

DA3 [PSL(2, 7)] 3 −1 0 1 1
2

(
−1 + i

√
7
)

1
2

(
−1 − i

√
7
)

DB3 [PSL(2, 7)] 3 −1 0 1 1
2

(
−1 − i

√
7
)

1
2

(
−1 + i

√
7
)

(4.8)

Soon we will retrieve it by constructing explicitly all the irreducible representations

4.3 The 7-dimensional irreducible representation

The two representations most relevant for our purposes are the 7 and the 6-dimensional ones. We begin with

the former.

The following three statements are true:

1. The 7-dimensional irreducible representation is crystallographic since all elements γ ∈ PSL(2, 7) are

represented by integer valued matrices D7 (γ) in a basis of vectors that span a lattice, namely the root

lattice Λr
a7

of the a7 simple Lie algebra.

2. The 7-dimensional irreducible representation provides an immersion PSL(2, 7) ֒→ SO(7) since its

elements preserve the symmetric Cartan matrix of A7:

∀γ ∈ PSL(2, 7) : DT
7 (γ) Ca7 D7 (γ) = Ca7

Ci, j = αi · αj (i, j = 1 . . . , 7) (4.9)

defined in terms of the simple roots αi whose standard construction in terms of the unit vectors ǫi of

R
8 is recalled below:

α1 = ǫ1 − ǫ2 ; α2 = ǫ2 − ǫ3 = ; α3 = ǫ3 − ǫ4
α4 = ǫ4 − ǫ5 ; α5 = ǫ5 − ǫ6 = ; α6 = ǫ6 − ǫ7
α7 = ǫ7 − ǫ8

(4.10)

3. Actually the 7-dimensional representation defines an embedding PSL(2, 7) ֒→ G2 ⊂ SO(7) since

there exists a three-index antisymmetric tensor φi jk satisfying the relations of octonionic structure

constants that is preserved by all the matrices D7(γ):

∀γ ∈ PSL(2, 7) : D7(γ)ii′ D7(γ) j j ′ D7(γ)kk ′ φi′ j ′k ′ = φi jk (4.11)
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Let us prove the above statements. It suffices to write the explicit form of the generators R, S and T in

the crystallographic basis of the considered root lattice:

v ∈ Λr
a7

⇔ v = ni αi ni ∈ Z (4.12)

Explicitly if we set:

R7 = R ≡

©
«

0 0 0 0 0 0 −1

0 0 0 0 0 −1 0

0 0 −1 1 0 −1 0

0 −1 0 1 0 −1 0

0 −1 0 1 −1 0 0

0 −1 0 0 0 0 0

−1 0 0 0 0 0 0

ª®®®®®®®®®®®®®¬

S7 = S ≡

©«

0 0 0 0 0 0 −1

1 0 0 0 0 0 −1

1 0 0 −1 1 0 −1

1 0 −1 0 1 0 −1

1 0 −1 0 1 −1 0

1 0 −1 0 0 0 0

1 −1 0 0 0 0 0

ª®®®®®®®®®®®®®
¬

T7 = T ≡

©«

0 0 0 0 0 −1 1

1 0 0 0 0 −1 1

0 1 0 0 0 −1 1

0 0 1 0 0 −1 1

0 0 0 1 0 −1 1

0 0 0 0 1 −1 1

0 0 0 0 0 0 1

ª®®®®®®®®®®®®®
¬

(4.13)

we find that the defining relations of PSL(2, 7) are satisfied:

R2
= S3

= T 7
= RST = (TSR)4 = 17×7 (4.14)

and furthermore we have:

RT Ca7 R = ST Ca7 S = TT Ca7 T = Ca7 (4.15)
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where the explicit form of the a7 Cartan matrix is recalled below:

Ca7 =

©«

2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2

ª®®®®®®®®®®®®®
¬

(4.16)

This proves statements 1) and 2).

In order to prove statement 3) we proceed as follows. In R7 we consider the antisymmetric three-index

tensor φABC that is required to satisfy the algebraic relations of the octonionic structure constants, namely6:

φABM φCDM =

1

18
δAB

CD +
2

3
ΦABCD (4.17)

φABC = −1

6
ǫABCPQRS ΦABCD (4.18)

The subgroup of SO(7) which leaves φABC invariant is, by definition, the compact section G(2,−14) of the

complex G2 Lie group. We mention here two different realizations of the G2-tensor, φABC and ϕABC, that

we utilize in the sequel in relation with two different irreducible representations of PSL(2, 7):

φ1,2,7 =
1
6

ϕ1,2,6 =
1
6

φ1,3,5 =
1
6

ϕ1,3,4 = −1
6

φ1,4,6 =
1
6

ϕ1,5,7 = −1
6

φ2,3,6 =
1
6

ϕ2,3,7 =
1
6

φ2,4,5 = −1
6

ϕ2,4,5 =
1
6

φ3,4,7 =
1
6

ϕ3,5,6 = −1
6

φ5,6,7 = −1
6

ϕ4,6,7 = −1
6

; all other components vanish (4.19)

A particular matrix that transforms the standard orthonormal basis of R7 into the basis of simple roots αi is

6In this equation the indices of the G2-invariant tensor are denoted with capital letter of the Latin alphabet, as it was the case

in the quoted literature on weak G2-structures. In the following we will use lower case latin letters, the upper Latin letters being

reserved for d = 8
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the following one:

M =

©
«

√
2 − 1√

2
0 0 0 0 0

0 − 1√
2

√
2 − 1√

2
0 0 0

0 0 0 − 1√
2

√
2 − 1√

2
0

0 0 0 0 0 − 1√
2

√
2

0 − 1√
2

0 1√
2

0 − 1√
2

0

0 0 0 − 1√
2

0 0 0

0 1√
2

0 0 0 − 1√
2

0

ª®®®®®®®®®®®®®®®¬

(4.20)

since:

MT M = Ca7 (4.21)

Defining the transformed tensor:

ϕ̂i jk ≡
(
M−1

) I

i

(
M−1

) J

j

(
M−1

) K

k
ϕI JK (4.22)

we can explicitly verify that:

ϕ̂i jk = (R) p

i
(R) q

j
(R) r

k ϕ̂pqr

ϕ̂i jk = (S) p

i
(S) q

j
(S) r

k ϕ̂pqr

ϕ̂i jk = (T ) p

i
(T ) q

j
(T ) r

k ϕ̂pqr (4.23)

Hence, being preserved by the three-generators R, S and T , the antisymmetric tensor ϕi jk is preserved by

the entire discrete group PSL(2, 7) which, henceforth, is a subgroup of G(2,−14) ⊂ SO(7), as it was shown

by intrinsic group theoretical arguments in [27]. The other representations of the group PSL(2, 7) were

explicitly constructed about ten years ago by Pierre Ramond and his younger collaborators in [28]. They

are completely specified by giving the matrix form of the three generators ρ, σ, τ satisfying the defining

relations 4.6. For the 6-dimensional representation we will instead use the crystallographic basis provided

by the a6 root lattice.

4.4 The 6-dimensional representation

Introducing the following short-hand notation:

cn = cos

[
2π

7
n

]

sn = sin

[
2π

7
n

]
(4.24)
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in [28] the generators of the group PSL(2, 7) in the 6-dimensional irreducible representation were explicitly

written as it is displayed below:

D[ρ]6 =

©«

c3−1√
2

c2−1√
2

c1−1√
2

c3 − c1 c1 − c2 c2 − c3

c2−1√
2

c1−1√
2

c3−1√
2

c2 − c3 c3 − c1 c1 − c2

c1−1√
2

c3−1√
2

c2−1√
2

c1 − c2 c2 − c3 c3 − c1

c3 − c1 c2 − c3 c1 − c2
c1−1√

2

c2−1√
2

c3−1√
2

c1 − c2 c3 − c1 c2 − c3
c2−1√

2

c3−1√
2

c1−1√
2

c2 − c3 c1 − c2 c3 − c1
c3−1√

2

c1−1√
2

c2−1√
2

ª®®®®®®®®®®®®
¬

D[σ]6 =

©«

(c3−1)ρ2

√
2

(c2−1)ρ4

√
2

(c1−1)ρ√
2

(c3 − c1)ρ3 (c1 − c2)ρ5 (c2 − c3)ρ6

(c2−1)ρ2

√
2

(c1−1)ρ4

√
2

(c3−1)ρ√
2

(c2 − c3)ρ3 (c3 − c1)ρ5 (c1 − c2)ρ6

(c1−1)ρ2

√
2

(c3−1)ρ4

√
2

(c2−1)ρ√
2

(c1 − c2)ρ3 (c2 − c3)ρ5 (c3 − c1)ρ6

(c3 − c1)ρ2 (c2 − c3)ρ4 (c1 − c2)ρ (c1−1)ρ3

√
2

(c2−1)ρ5

√
2

(c3−1)ρ6

√
2

(c1 − c2)ρ2 (c3 − c1)ρ4 (c2 − c3)ρ (c2−1)ρ3

√
2

(c3−1)ρ5

√
2

(c1−1)ρ6

√
2

(c2 − c3)ρ2 (c1 − c2)ρ4 (c3 − c1)ρ (c3−1)ρ3

√
2

(c1−1)ρ5

√
2

(c2−1)ρ6

√
2

ª®®®®®®®®®®®®®
¬

D[τ]6 = (D[ρ]6 · D[σ]6)−1 (4.25)

and where shown to satisfy the required relations (4.6).

We rather introduce the crystallographic basis in a completely analogous way to the case of the 7-

dimensional irreducible representation.

The following two statements are true:

1. The 6-dimensional irreducible representation is crystallographic since all elements γ ∈ PSL(2, 7) are

represented by integer valued matrices D6 (γ) in a basis of vectors that span a lattice, namely the root

lattice Λr
a6

of the a6 simple Lie algebra.

2. The 6-dimensional irreducible representation provides an immersion PSL(2, 7) ֒→ SO(6) since its

elements preserve the symmetric Cartan matrix of a6:

∀γ ∈ PSL(2, 7) : DT
6 (γ) Ca6 D6 (γ) = Ca6

Ci, j = αi · αj (i, j = 1 . . . , 6) (4.26)

defined in terms of the simple roots αi whose standard construction in terms of the unit vectors ǫi of
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R
7 is recalled below:

α1 = ǫ1 − ǫ2 ; α2 = ǫ2 − ǫ3 = ; α3 = ǫ3 − ǫ4
α4 = ǫ4 − ǫ5 ; α5 = ǫ5 − ǫ6 = ; α6 = ǫ6 − ǫ7

(4.27)

Let us prove the above statements. It suffices to write the explicit form of the generators ρ, σ and τ in

the crystallographic basis of the considered root lattice:

v ∈ Λr
a6

⇔ v = ni αi ni ∈ Z (4.28)

Explicitly if we set:

R6 =

©
«

0 −1 1 0 0 0

−1 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 −1

ª®®®®®®®®®®®¬

; S6 =

©
«

−1 1 0 0 0 0

−1 1 0 0 0 −1

−1 1 0 −1 1 −1

−1 0 1 −1 1 −1

−1 0 0 0 1 −1

−1 0 0 0 0 0

ª®®®®®®®®®®®¬

T6 =

©
«

0 0 0 0 −1 1

0 −1 1 0 −1 1

0 −1 0 1 −1 1

0 −1 0 0 0 1

1 −1 0 0 0 1

1 −1 0 0 0 0

ª®®®®®®®®®®®¬

(4.29)

we find that the defining relations of PSL(2, 7) are satisfied:

R2
6 = S3

6 = T7
6 = (T6 S6 R6)4 = 16×6 (4.30)

and furthermore we have:

RT
6 Ca6 R6 = ST

6 Ca6 S6 = TT
6 Ca6 T6 = Ca6 (4.31)
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where the explicit form of the a6 Cartan matrix is recalled below:

Ca6 =

©
«

2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2

ª®®®®®®®®®®®¬

(4.32)

4.5 The 8-dimensional representation

Utilizing the same notations as before in [28] the matrix form of the generators pertaining to the irreducible

8-dimensional representation was given as follows:

D[σ]8 =

©
«

c1 s1 0 0 0 0 0 0

−s1 c1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 c3 s3 0 0 0

0 0 0 −s3 c3 0 0 0

0 0 0 0 0 c2 s2 0

0 0 0 0 0 −s2 c2 0

0 0 0 0 0 0 0 1

ª®®®®®®®®®®®®®®®®¬
D[ρ]8 =

©
«

2 − 2c1 0 2c1 + 2c2 − 4c3 2 − 2c2 0 2 − 2c3 0 2
√

3c1 − 2
√

3c2

0 −2c1 + 4c2 − 2 0 0 2c2 − 4c3 + 2 0 4c1 − 2c3 − 2 0

2c1 + 2c2 − 4c3 0 −c1 + 2c2 − c3 −4c1 + 2c2 + 2c3 0 2c1 − 4c2 + 2c3 0
√

3c1 −
√

3c3

2 − 2c2 0 −4c1 + 2c2 + 2c3 2 − 2c3 0 2 − 2c1 0 2
√

3c2 − 2
√

3c3

0 2c2 − 4c3 + 2 0 0 4c1 − 2c3 − 2 0 2c1 − 4c2 + 2 0

2 − 2c3 0 2c1 − 4c2 + 2c3 2 − 2c1 0 2 − 2c2 0 2
√

3c3 − 2
√

3c1

0 4c1 − 2c3 − 2 0 0 2c1 − 4c2 + 2 0 −2c2 + 4c3 − 2 0

2
√

3c1 − 2
√

3c2 0
√

3c1 −
√

3c3 2
√

3c2 − 2
√

3c3 0 2
√

3c3 − 2
√

3c1 0 c1 − 2c2 + c3

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

D[τ]8 = (D[ρ]8 · D[σ]8)−1 (4.33)
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It remains to be seen whether there exists a crystallographic basis also for this irreducible representation.

We have not explored the matter but we conjecture that if such a basis exists it is that of the simple roots of

a8 leading to an embedding into the e8 Weyl group.

4.6 The 3-dimensional complex representations

Before passing to other items of PSL(2, 7) theory we mention the last two irreducible representations of

this simple group. They are very important in the context of the resolution of C3/Γ singularities and its

relation with the AdS/CFT correspondence (see [29] and [30]). Indeed the two three dimensional irreducible

representations are complex and they are conjugate to each other. They define an embedding:

PSL(2, 7) ֒→ SU(3) (4.34)

so that the resolution of C3/PSL(2, 7) is crepant and defines a Ricci flat Kähler manifold of Calabi Yau type

(non-compact).

To define these two representations it suffices to give the form of the generators for one of them. The

generators of the conjugate representation are the complex conjugates of the same matrices.

Setting:

ψ ≡ e
2iπ
7 (4.35)

we have the following form for the representation 3:

D[ρ]3 =
©
«

i(ψ2−ψ5)√
7

i(ψ−ψ6)√
7

i(ψ4−ψ3)√
7

i(ψ−ψ6)√
7

i(ψ4−ψ3)√
7

i(ψ2−ψ5)√
7

i(ψ4−ψ3)√
7

i(ψ2−ψ5)√
7

i(ψ−ψ6)√
7

ª®®®®¬

D[σ]3 =
©«

i(ψ3−ψ6)√
7

i(ψ3−ψ)√
7

i(ψ−1)√
7

i(ψ2−1)√
7

i(ψ6−ψ5)√
7

i(ψ6−ψ2)√
7

i(ψ5−ψ4)√
7

i(ψ4−1)√
7

i(ψ5−ψ3)√
7

ª®®®®
¬

D[τ]3 =
©
«
−ie

3iπ
14 0 0

0 −ie−
iπ

14 0

0 0 −e−
iπ

7

ª®®®
¬

(4.36)

4.7 The proper subgroups of PSL(2, 7)

The crystallographic nature of the group in d = 7 has already been stressed. We introduce the a7 weight

lattice which, by definition, is just the dual of the root lattice. According with

πππ ∈ Λw
a7

⇔ πππ = ni λ
i : ni ∈ Z (4.37)
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the root lattice is spanned by the simple weights that are implicitly defined by the relations:

λi · αj = δi
j ⇒ λi

=

(
C−1
a7

) i j

αj (4.38)

Since the group PSL(2, 7) is crystallographic on the root lattice, by necessity it is crystallographic also on

the weight lattice. Given the generators of the group PSL(2, 7) in the basis of simple roots we obtain the

same in the basis of simple weights through the following transformation:

Rw = Ca7 R C−1
a7

; Sw = Ca7 S C−1
a7

; Tw = Ca7 T C−1
a7

(4.39)

Explicitly we find:

Rw =

©«

0 0 0 0 0 0 −1

0 0 0 −1 −1 −1 0

0 0 −1 0 0 0 0

0 0 1 1 1 0 0

0 0 0 0 −1 0 0

0 −1 −1 −1 0 0 0

−1 0 0 0 0 0 0

ª®®®®®®®®®®®®®
¬

; Sw =

©«

−1 −1 −1 −1 −1 −1 −1

1 1 1 1 0 0 0

0 0 0 −1 0 0 0

0 0 0 1 1 1 0

0 0 0 0 0 −1 0

0 0 −1 −1 −1 0 0

0 −1 0 0 0 0 0

ª®®®®®®®®®®®®®
¬

Tw =

©«

−1 −1 −1 −1 −1 −1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

ª®®®®®®®®®®®®®
¬

(4.40)

Given the weight basis, which is useful in several constructions, let us continue our survey of the remarkable

simple group PSL(2, 7) by a discussion of its subgroups, none of which, obviously, is normal.

PSL(2, 7) contains maximal subgroups only of index 8 and 7, namely of order 21 and 24. The order

21 subgroup G21 is the unique non-abelian group of that order and abstractly it has the structure of the

semidirect product Z3 ∝ Z7. Up to conjugation there is only one subgroup G21 as we have explicitly verified

with the computer. On the other hand, up to conjugation, there are two different groups of order 24 that are

both isomorphic to the octahedral group O24 ∼ S4.
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4.7.1 The maximal subgroup G21

The group G21 has two generators X and Y that satisfy the following relations:

X3
= Y7

= 1 ; XY = Y2X (4.41)

The organization of the 21 group elements into conjugacy classes is displayed below:

ConjugacyClass C1 C2 C3 C4 C5

representative of the class e Y X2YXY2 YX2 X
order of the elements in the class 1 7 7 3 3

number of elements in the class 1 3 3 7 7

(4.42)

As we see there are five conjugacy classes which implies that there should be five irreducible representations

the square of whose dimensions should sum up to the group order 21. The solution of this problem is:

21 = 12
+ 12
+ 12
+ 32
+ 32 (4.43)

and the corresponding character table is mentioned below:

0 e Y X2YXY2 YX2 X
D1 [G21] 1 1 1 1 1

DX1 [G21] 1 1 1 −(−1)1/3 (−1)2/3

DY1 [G21] 1 1 1 (−1)2/3 −(−1)1/3

DA3 [G21] 3 1
2
i
(
i +

√
7
)

−1
2
i
(
−i +

√
7
)

0 0

DB3 [G21] 3 −1
2
i
(
−i +

√
7
)

1
2
i
(
i +

√
7
)

0 0

(4.44)

In the weight-basis the two generators of the G21 subgroup of PSL(2, 7) can be chosen to be the following

matrices and this fixes our representative of the unique conjugacy class:

X =

©
«

1 1 1 1 1 1 1

0 0 0 0 0 0 −1

0 −1 −1 −1 −1 −1 0

0 1 1 1 0 0 0

0 0 −1 −1 0 0 0

0 0 1 1 1 0 0

0 0 0 −1 −1 0 0

ª®®®®®®®®®®®®®¬

Y =

©
«

0 1 1 0 0 0 0

0 0 0 1 1 1 1

0 0 −1 −1 −1 −1 −1

0 0 1 1 0 0 0

−1 −1 −1 −1 0 0 0

1 1 1 1 1 0 0

0 0 0 0 0 1 0

ª®®®®®®®®®®®®®¬

(4.45)
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The embedding of G21 into PSL(2, 7) can be unambiguously fixed by writing the two generators of the

former as words in the generators of the latter. We have:

Y = ρ · τ · τ · τ · σ · ρ ; X = σ · ρ · σ · ρ · τ · τ (4.46)

Eq.(4.46) allows to restrict any given representation of PSL(2, 7) to its maximal subgroup G21.

4.7.2 The maximal subgroups O24A and O24B

The octahedral group O24 has two generators s and t that satisfy the following relations:

s2 = t3 = (st)4 = 1 (4.47)

The 24 elements are organized in five conjugacy classes according to the scheme displayed below:

Conjugacy Class C1 C2 C3 C4 C5

representative of the class e t stst s st

order of the elements in the class 1 3 2 2 4

number of elements in the class 1 8 3 6 6

(4.48)

The character table where we also mention a standard representative of each conjugacy class is the following

one:

0 e t stst s st

D1 [O24] 1 1 1 1 1

D2 [O24] 1 1 1 −1 −1

D3 [O24] 2 −1 2 0 0

D4 [O24] 3 0 −1 −1 1

D5 [O24] 3 0 −1 1 −1

(4.49)

By computer calculations we have verified that there are just two disjoint conjugacy classes of O24 maximal

subgroups in PSL(2, 7) that we have named A and B, respectively. We have chosen two standard representa-

tives, one for each conjugacy class, that we have named O24A and O24B respectively. To fix these subgroups

it suffices to mention the explicit form of their generators in the weight basis.
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For the group O24A, we chose:

tA =

©«

1 1 1 1 1 1 1

0 0 0 0 0 0 −1

0 −1 −1 −1 −1 −1 0

0 1 1 1 0 0 0

0 0 −1 −1 0 0 0

0 0 1 1 1 0 0

0 0 0 −1 −1 0 0

ª®®®®®®®®®®®®®
¬

sA =

©«

0 0 0 1 1 1 0

0 0 0 0 −1 −1 0

−1 −1 −1 −1 0 0 0

1 1 0 0 0 0 0

0 0 1 1 1 1 1

0 −1 −1 −1 −1 −1 −1

0 1 1 1 1 0 0

ª®®®®®®®®®®®®®
¬

(4.50)

For the group O24B, we chose:

tB =

©
«

1 1 1 1 0 0 0

0 −1 −1 −1 0 0 0

0 1 1 1 1 0 0

0 0 −1 −1 −1 0 0

0 0 1 1 1 1 0

0 0 0 −1 −1 −1 0

0 0 0 1 1 1 1

ª®®®®®®®®®®®®®¬

sB =

©
«

0 0 1 1 1 0 0

−1 −1 −1 −1 −1 0 0

1 1 1 1 1 1 1

0 0 0 0 0 0 −1

0 −1 −1 −1 −1 −1 0

0 1 1 1 0 0 0

0 0 0 −1 0 0 0

ª®®®®®®®®®®®®®¬

(4.51)

Just as in the case of the subgroup G21 we can uniquely fix the embedding of the two octahedral subgroups

into PSL(2, 7) in any given of its representations by writing the two generators of the subgroup as words in

the generators of the bigger group. Explicitly we have:

tA = ρ · σ · ρ · τ · τ · σ · ρ · τ ; sA = τ · τ · σ · ρ · τ · σ · σ
tB = ρ · τ · σ · ρ · τ · τ · σ · ρ · τ ; sB = σ · ρ · τ · σ · ρ · τ (4.52)

4.7.3 The tetrahedral subgroup T12 ⊂ O24

Every octahedral group O24 has, up to O24-conjugation, a unique tetrahedral subgroup T12 whose order is

12. The abstract description of the tetrahedral group is provided by the following presentation in terms of

two generators:

T12 =

(
s, t

��s2
= t3
= (st)3 = 1

)
(4.53)
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The 12 elements are organized into four conjugacy classes as displayed below:

Classes C1 C2 C3 C4

standard representative 1 s t t2s

order of the elements in the conjugacy class 1 2 3 3

number of elements in the conjugacy class 1 3 4 4

(4.54)

We do not display the character table since we will not use it. The two tetrahedral subgroups T12A ⊂ O24A

and T12B ⊂ O24B are not conjugate under the big group PSL(2, 7). Hence we have two conjugacy classes of

tetrahedral subgroups of PSL(2, 7).

4.7.4 The dihedral subgroup Dih3 ⊂ O24

Every octahedral group O24 has a dihedral subgroup Dih3 whose order is 6. The abstract description of the

dihedral group Dih3 is provided by the following presentation in terms of two generators:

Dih3 =

(
A, B

��A3
= B2

= (BA)2 = 1
)

(4.55)

The 6 elements are organized into three conjugacy classes as displayed below:

ConjugacyClasses C1 C2 C3

standard representative of the class 1 A B

order of the elements in the class 1 3 2

number of elements in the class 1 2 3

(4.56)

We do not display the character table since we will not use it. Differently from the case of the tetrahedral

subgroups the two dihedral subgroups Dih3A ⊂ O24A and Dih3B ⊂ O24B turn out to be conjugate under the

big group PSL(2, 7). Actually there is just one PSL(2, 7)-conjugacy class of dihedral subgroups Dih3.

4.8 Enumeration of the possible subgroups and orbits in the a7 and a6 weight lattices

In d = 3 the orbits of the octahedral group acting on the cubic lattice are the vertices of regular geometrical

figures. Since PSL(2, 7) has a crystallographic action on the mentioned 7-dimensional and 6-dimensional

weight lattices, its orbits O in Λw
a7

and Λw
a6

correspond to the analogue of the regular geometrical figures in

d = 7 and in d = 6. Every orbit is in correspondence with a coset G/H where G is the big group and H one

of its possible subgroups. Indeed H is the stability subgroup of an element of the orbit.

Since the maximal subgroups of PSL(2, 7) are of index 7 or 8 we can have subgroups H ⊂ PSL(2, 7) that

are either G21 or O24 or subgroups thereof. Furthermore, as we know, the order |H| of any subgroup H ⊂ G

must be a divisor of |G|. Hence we conclude that

|H| ∈ {1, 2, 3, 4, 6, 7, 8, 12, 21, 24} (4.57)
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Correspondingly we might have PSL(2, 7)-orbits O in the weight lattices Λw
a7,6

, whose length is one of the

following 10 numbers:

ℓO ∈ {168, 84, 56, 42, 28, 24, 21, 14, 8, 7} (4.58)

Combining the information about the possible group orders (4.57) with the information that the maximal

subgroups are of index 8 or 7, we arrive at the following list of possible subgroups H (up to conjugation) of

the group PSL(2, 7):

Order 24) Either H = O24A or H = O24B.

Order 21) The only possibility is H = G21.

Order 12) The only possibilities are H = T12A or H = T12B where T12 is the tetrahedral subgroup of the

octahedral group O24.

Order 8) Either H = Z2 × Z2 × Z2 or H = Z2 × Z4, or H = Dih4 where Dih4 denotes the dihedral subgroup

of index 3 of the octahedral group O24.

Order 7) The only possibility is Z7.

Order 6) Either H = Z2 × Z3 or H = Dih3, where Dih3 denotes the dihedral subgroup of index 4 of the

octahedral group O24.

Order 4) Either H = Z2 × Z2 or H = Z4.

Order 3) The only possibility is H = Z3

Order 2) The only possibility is H = Z2.

Quite curiously and inspiringly the various possibilities are realized in a partially mutually exclusive pattern

in 7 and 6 dimensions as recalled in the following two subsections and summarized in table 1.

4.8.1 Synopsis of the PSL(2, 7) orbits in the weight lattice Λw
a7

In [16], the author presented the results, obtained by means of computer calculations, on the orbits of the

considered simple group acting on the a7 weight lattice. They are briefly summarized below:

1. Orbits of length 8 (one parameternnn; stability subgroup Hs
= G21)

2. Orbits of length 14 (two types A & B) (one parameter nnn; stability subgroup Hs
= T12A,B)

3. Orbits of length 28 (one parameter nnn ; stability subgroup Hs
= Dih3)

4. Orbits of length 42 (one parameter nnn; stability subgroup Hs
= Z4) )

5. Orbits of length 56 (three parameters n,m,pn,m,pn,m,p; stability subgroup Hs
= Z3)

6. Orbits of length 84 (three parameters n,m,pn,m,pn,m,p; stability subgroup Hs
= Z2)

7. Generic orbits of length 168 (seven parameters ; stability subgroup Hs
= 1)
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Table 1: Summary of the PSL(2, 7) orbits of vectors existing in the a7 and a6 weight lattices. All possible

lengths enumerated in Eq. (4.58) are realized, except for ℓ = 24, yet not at the same time in d = 7 and

d = 6. Most of the lower length orbits corresponding to the largest stability subgroups are realized in either

one of the two crystallographic irreducible representations, d = 7 or d = 6

Orbit length Subgroup d=7 d=6

7 O24A No Yes

7 O24B No Yes

8 G21 Yes No

14 T12A Yes No

14 T12B Yes No

21 Dih4 No Yes

24 Z7 No No

28 Dih3 Yes Yes

42 Z4 Yes No

56 Z3 Yes No

84 Z2 Yes Yes

168 Id Yes Yes

Also in this case the above list is in some sense the 6-dimensional analogue of Platonic solids. It is only

in some sense, since it is a complete classification for the group PSL(2, 7), yet we are not aware of a

classification of the other crystallographic subgroups of SO(6), if any.

4.8.2 Synopsis of the PSL(2, 7) orbits in the weight lattice Λw
a6

Complementing the work done in [16], we obtained, also by means of computer calculations, the orbits of

PSL(2, 7) acting through its irreducible 6-dimensional representation on the a6 weight lattice. They are

briefly summarized below:

1. Orbits of length 7 (one parameter n; stability subgroup Hs
= O24A)

2. Orbits of length 7 (one parameter n; stability subgroup Hs
= O24B)

3. Orbits of length 28 (one parameter n ; stability subgroup Hs
= Dih3)

4. Orbits of length 21 (two parameters m, n; stability subgroup Hs
= Dih3)

5. Orbits of length 84 (four parameters n,m,p,q; stability subgroup Hs
= Z2)

6. Generic orbits of length 168 (six parameters ; stability subgroup Hs
= 1)
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Also in this case the above list is in some sense the 6-dimensional analogue of Platonic solids. It is only

in some sense, since it is a complete classification for the group PSL(2, 7), yet we are not aware of a

classification of the other crystallographic subgroups of SO(6), if any.

5 Embedding of the group PSL(2, 7) into e7(7)

Above we considered the simple group PSL(2, 7) showing that it acts crystallographically on Λr
a7,6

and,

consequently, also on the dual weight lattices Λw
a7,6

. In view of our goals pursued within the context of

exceptional field theory we show next how the action of PSL(2, 7), can be extended to the root and weight

lattices of the exceptional Lie algebra e7.

5.1 Embedding of PSL(2, 7) into Weyl[e7]

Let us consider the Dynkin diagrams of the three Lie algebras e7, a7 and a6.

e7
✐

α7

✐

α6

✐

α4

✐α5

✐

α3

✐

α2

✐

α1

(5.1)

a7
✐

β7

✐

β6

✐

β5

✐

β4

✐

β3

✐

β2

✐

β1

(5.2)

a6
✐

γ6

✐

γ5

✐

γ4

✐

γ3

✐

γ2

✐

γ1

(5.3)

The Lie algebras a7 has the same rank as e7 and the former is regularly embedded into the latter, having

the same Cartan subalgebra. Indeed given any set of simple roots αi fulfilling the relations imposed by the

Dynkin diagram (5.1), we immediately construct a set of simple roots β j fulfilling the relations imposed by
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the Dinkin diagram (5.2) by setting:

β1 = α2 + 2 α3 + 3 α4 + 2 α5 + 2 α6 + 2 α7

β2 = α1

β3 = α2

β4 = α3

β5 = α4

β6 = α6

β7 = α7 (5.4)

As one notices the a7 simple roots are integer valued linear combinations of the e7 simple roots, hence they

all belong to the e7 root lattice Λr
e7

. It follows that Λr
a7

is a sublattice of the former:

Λr
a7

⊂ Λr
e7

(5.5)

From Eq. (5.4) we immediately read off the matrix that performs the change of basis of PSL(2, 7) group

elements from the basis βi of a7 simple roots to the basis αi of e7 simple roots. It is the following one:

ΠΠΠ =

©
«

0 1 0 0 0 0 0

1 0 1 0 0 0 0

2 0 0 1 0 0 0

3 0 0 0 1 0 0

2 0 0 0 0 0 0

2 0 0 0 0 1 0

1 0 0 0 0 0 1

ª®®®®®®®®®®®®®¬

(5.6)

Setting:

Rr
e7
= ΠΠΠ RΠΠΠ−1 ; Sr

e7
= ΠΠΠ SΠΠΠ−1 ; Tr

e7
= ΠΠΠ T ΠΠΠ−1 (5.7)

where R,S,T are the generators of the irreducible representation of PSL(2, 7) in the a7 root basis, we obtain

the generators of the same representation in the e7 root basis. The explicit form of these 7 × 7 matrices is
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given below:

Tr
e7
=

©«

0 0 0 0 1 −1 1

1 0 0 0 1 −2 2

0 1 0 0 1 −3 3

0 0 1 0 1 −4 4

0 0 0 0 1 −2 2

0 0 0 1 0 −3 3

0 0 0 0 0 −1 2

ª®®®®®®®®®®®®®
¬

; Sr
e7
=

©«

0 0 0 0 1 0 −1

0 0 −1 1 1 0 −2

0 −1 0 1 1 0 −3

0 −1 0 1 2 −1 −3

0 0 0 0 1 0 −2

0 −1 0 0 2 0 −2

−1 0 0 0 1 0 −1

ª®®®®®®®®®®®®®
¬

(5.8)

Rr
e7
=

©
«

0 0 0 0 1 −1 0

0 −1 1 0 1 −1 −1

−1 0 1 0 1 −1 −2

−1 0 1 −1 2 0 −3

0 0 0 0 1 0 −2

−1 0 0 0 1 0 −2

0 0 0 0 0 0 −1

ª®®®®®®®®®®®®®
¬

(5.9)

We can now easily verify that PSL(2, 7) is crystallographic with respect to the e7-root lattice. It suffices to

check that the above generators satisfy:

(
Tr
e7

)T
Ce7 Tr

e7
=

(
Sr
e7

)T
Ce7 Sr

e7
=

(
Rr
e7

)T
Ce7 Rr

e7
= Ce7 (5.10)

where:

Ce7 =

©
«

2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 −1 0

0 0 0 −1 2 0 0

0 0 0 −1 0 2 −1

0 0 0 0 0 −1 2

ª®®®®®®®®®®®®®
¬

(5.11)

is the Cartan matrix of e7.

This construction guarantees that via its 7-dimensional irreducible representation the group PSL(2, 7) is

embedded into the Weyl group of e7. So that we can write:

PSL(2, 7)
Irrep 7
֒→ Weyl [a7] ⊂ Weyl [e7] (5.12)
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5.2 The second embedding of PSL(2, 7) into Weyl[e7]

There is another embedding of the PSL(2, 7) group into Weyl [e7] which is governed by the crystallographic

6-dimensional representation and which turns out to be the relevant one to construct solutions of Englert

equations utilizing exceptional field theory:

PSL(2, 7)
Irrep 6
֒→ Weyl [a6] ⊂ Weyl [e7] (5.13)

To understand this second embedding let us compare the Dynkin diagram of e7, in Eq. (5.1) with that of a6
in Eq. (5.3). It is clear that the Lie algebra a6 is also regularly embedded in e7 since it suffices to identify

the simple roots of the former with a subset of the simple roots of the latter:

γ1,2,3,4 = α1,2,3,4 ; γ5 = α6 ; γ6 = α7 (5.14)

It follows that the root lattice Λr
a6

of a6 is a sublattice of Λr
e7

. Indeed we have:

v ∈ Λr
a6

⊂ Λr
e6

⇔ v = vi α
i with v5 = 0 and v1,2,3,4,6,7 ∈ Z (5.15)

What we need is an orthogonal decomposition of the root lattice of e7 into the root lattice a6 plus its

one-dimensional complement:

Λr
e7

⊃ Λr
a6
⊕ Λr

1 (5.16)

Orthogonality is obviously meant with respect to the Cartan matrix Ce7 . Imposing the condition that a vector

w ∈ Λr
1

should have vanishing scalar product with any vector v ∈ Λr
a6

:

0 = (v ,w) ≡ vi w j C
i j
e7

(5.17)

we immediately find the solution. The sublattice Λr
1

is spanned by all vectors of the form

w
i
= {3m, 6m, 9m, 12m, 7m, 8m, 4m} ; m ∈ Z (5.18)

It is convenient to use a permutation and rename the simple root α5 as the last one α7, so that the first six

roots span the a6 root lattice. This is done by the matrix:

P ≡

©«

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 1 0 0

ª®®®®®®®®®®®®®
¬

(5.19)
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In the permuted basis of simple roots the e7 Cartan matrix becomes:

Ĉe7 = (P−1)T Ce7 P−1
=

©«

2 −1 0 0 0 0 0

−1 2 −1 0 0 0 0

0 −1 2 −1 0 0 0

0 0 −1 2 −1 0 −1

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 0

0 0 0 −1 0 0 2

ª®®®®®®®®®®®®®
¬

(5.20)

In this basis the orthogonal decomposition (5.16) of the e7 root lattice is represented as follows:

v ∈ Λr
a6

⇔ v = {v1, v2, v3, v4, v5, v6, 0} vi ∈ Z
w ∈ Λr

1 ⇔ {3m, 6m, 9m, 12m, 8m, 4m, 7m} m ∈ Z (5.21)

Using this basis we can introduce the embedding of the 6-dimensional crystallographic representation of

the PSL(2, 7) into the point group of the e7 root lattice. We write the following form of the three generators

of the considered group:

G ≡ {ρ, σ, τ} =
{
Rr

6+1 , Sr
6+1 , Tr

6+1

}
(5.22)

where

Rr
6+1 =

©«

0 −1 1 0 0 0 0

−1 0 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 1 −1 0

0 0 0 0 0 0 1

ª®®®®®®®®®®®®®
¬

Sr
6+1 =

©
«

−1 1 0 0 0 0 0

−1 1 0 0 0 −1 1

−1 1 0 −1 1 −1 2

−1 0 1 −1 1 −1 2

−1 0 0 0 1 −1 1

−1 0 0 0 0 0 1

0 0 0 0 0 0 1

ª®®®®®®®®®®®®®¬
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Tr
6+1 =

©«

0 0 0 0 −1 1 1

0 −1 1 0 −1 1 1

0 −1 0 1 −1 1 1

0 −1 0 0 0 1 2

1 −1 0 0 0 1 1

1 −1 0 0 0 0 1

0 0 0 0 0 0 1

ª®®®®®®®®®®®®®
¬

(5.23)

which have the following properties:

1) The defining relations of PSL(2, 7) displayed in Eq. (4.6) are satisfied.

2) The generators preserve the Cartan matrix of e7:

GT
i Ĉe7 Gi = Ĉe7 for i = ρ, σ, τ (5.24)

3) The generators preserve the splitting (5.21) of the root lattice, namely they map any vector belonging

to the sublattice Λr
a6

into a vector belonging to the same sublattice and leave invariant any vector

belonging to Λr
1

v ∈ Λr
a6

⇒ Gi v ∈ Λr
a6

for i = ρ, σ, τ

w ∈ Λr
1 ⇒ Gi w = w for i = ρ, σ, τ (5.25)

4) The first 6×6 blocks of the 7-dimensional matricesGi are, respectively, the matrices R6, S6, T6 displayed in

Eq.s (4.29) and generating the irreducible 6-dimensional crystallographic representation of PSL(2, 7)
that maps the a6 root lattice into itself.

5.2.1 Change of basis

Once the embedding of the 6-dimensional representation of PSL(2, 7) has been done in one basis it can be

transformed to any other basis. We are interested in the weight basis of the a7-lattice; hence we introduce

the following product of transformation matrices:

M = P ·ΠΠΠ · C−1
a7

(5.26)

where the first factor brings back to the standard labeling of e7 roots, as in Eq. (5.1), the second converts to

the a7 root lattice and the last converts from the root to the a7 weight lattice. Setting:

Rw
6+1 = M

−1 Rr
6+1M

Sw
6+1 = M

−1 Sr
6+1M

Tw
6+1 = M

−1 Tr
6+1M (5.27)
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we obtain:

Rr
6+1 =

©«

1 1 1 0 0 0 0

0 0 −1 0 0 0 0

0 −1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 1

0 0 0 0 0 0 −1

ª®®®®®®®®®®®®®
¬

Sr
6+1 =

©«

1 1 0 0 0 0 0

0 0 1 1 1 1 1

0 0 0 0 0 −1 −1

0 0 0 −1 −1 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1 0

0 −1 −1 −1 −1 −1 0

ª®®®®®®®®®®®®®¬

Tw
6+1 =

©
«

1 1 1 1 1 1 0

0 0 0 −1 −1 −1 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 −1 −1 −1 −1 0 0

0 1 1 1 1 1 1

0 0 −1 −1 −1 −1 −1

ª®®®®®®®®®®®®®¬

(5.28)

Naming, respectively, Rw
6

, Sw
6

and Tw
6

the lower 6 × 6 blocks of the above three matrices (they are separated

by lines in Eq.s (5.28) we obtain the three generators of the 6-dimensional representation of PSL(2, 7) which

is crystallographic with respect to the weight lattice Λw

a6
. In the a7 weight basis the invariant sublattice is

spanned by the vectors of the following form:

w = M−1 {3m, 6m, 9m, 12m, 8m, 4m, 7m} = {4m, 0, 0, 0, 0, 0, 0} (5.29)

and the group PSL(2, 7) generated by the 7 × 7 matrices (5.28) leave the orthogonal complement (5.29)

invariant.
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6 Constructing the elementary solution

We come next to the construction of solutions to Englert equation utilizing, as building blocks, the minimal

solutions whose structure is governed by Eq. (3.7) that we presently retrieve.To this effect, having constructed

the explicit form of the two isomorphic groups PSL(2, 7)7 and PSL(2, 7)1+6 we let them act on the complete

e7 root system ∆126 containing 126 roots and we observe how this latter splits into orbits.

PSL(2, 7)7-case We consider first the case where PSL(2, 7) is embedded into Weyl[e7] through its seven-

dimensional irreducible representation. Under the action of this group we find the following four orbits:

∆126 = O14A ⊕ O14B ⊕ O42 ⊕ O56 (6.1)

whose explicit content is displayed below:

O14A = {11, 33, 34, 40, 41, 47, 57}neg

⋃
{11, 33, 34, 40, 41, 47, 57}pos (6.2)

O14B = {19, 21, 30, 42, 43, 52, 54}neg

⋃
{19, 21, 30, 42, 43, 52, 54}pos (6.3)

O42 = {5, 16, 24, 25, 26, 29, 31, 35, 36, 37, 38, 39, 44, 45, 46, 48, 49, 50, 51, 53, 59}neg⋃
{5, 16, 24, 25, 26, 29, 31, 35, 36, 37, 38, 39, 44, 45, 46, 48, 49, 50, 51, 53, 59}pos (6.4)

O56 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 27, 28, 32, 55, 56, 58, 60, 61, 62, 63}neg⋃
{1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 27, 28, 32, 55, 56, 58, 60, 61, 62, 63}pos

(6.5)

In the above equations we have utilized the following notation: the numbers from 1 to 63 refer to the positive

roots as listed in table 2. The suffix pos/neg indicates whether the roots in the brackets are the positive ones

or their negatives enumerated in the same order.

The key point is that no subset of purely positive roots is left invariant by the group PSL(2, 7)7. This

shows that this embedding is inconvenient in order to utilize the group PSL(2, 7)7 as a classifier for fields

Yi jk . Indeed in the compactification of M-theory on a T7 torus the massless fields are in correspondence

with the positive roots.

PSL(2, 7)1+6-case If we embed PSL(2, 7) into Weyl[e7] through its six-dimensional irreducible represen-

tation, the scenario of orbits changes considerably. Under the action of PSL(2, 7)1+6 the set of 126 e7 roots

splits into the following orbits:

∆126 = O+7A ⊕ O−
7A ⊕ O+7C ⊕ O−

7C ⊕ O+28 ⊕ O−
28 ⊕ O42 (6.6)
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1 {1, 0, 0, 0, 0, 0, 0}
2 {0, 1, 0, 0, 0, 0, 0}
3 {0, 0, 1, 0, 0, 0, 0}
4 {0, 0, 0, 1, 0, 0, 0}
5 {0, 0, 0, 0, 1, 0, 0}
6 {0, 0, 0, 0, 0, 1, 0}
7 {0, 0, 0, 0, 0, 0, 1}
8 {1, 1, 0, 0, 0, 0, 0}
9 {0, 1, 1, 0, 0, 0, 0}
10 {0, 0, 1, 1, 0, 0, 0}
11 {0, 0, 0, 1, 1, 0, 0}
12 {0, 0, 0, 1, 0, 1, 0}
13 {0, 0, 0, 0, 0, 1, 1}
14 {1, 1, 1, 0, 0, 0, 0}
15 {0, 1, 1, 1, 0, 0, 0}
16 {0, 0, 1, 1, 1, 0, 0}
17 {0, 0, 1, 1, 0, 1, 0}
18 {0, 0, 0, 1, 0, 1, 1}
19 {0, 0, 0, 1, 1, 1, 0}
20 {1, 1, 1, 1, 0, 0, 0}
21 {0, 1, 1, 1, 1, 0, 0}
22 {0, 1, 1, 1, 0, 1, 0}
23 {0, 0, 1, 1, 0, 1, 1}
24 {0, 0, 1, 1, 1, 1, 0}
25 {0, 0, 0, 1, 1, 1, 1}
26 {1, 1, 1, 1, 1, 0, 0}
27 {1, 1, 1, 1, 0, 1, 0}
28 {0, 1, 1, 1, 0, 1, 1}
29 {0, 1, 1, 1, 1, 1, 0}
30 {0, 0, 1, 1, 1, 1, 1}
31 {0, 0, 1, 2, 1, 1, 0}
32 {1, 1, 1, 1, 0, 1, 1}

33 {1, 1, 1, 1, 1, 1, 0}
34 {0, 1, 1, 1, 1, 1, 1}
35 {0, 1, 1, 2, 1, 1, 0}
36 {0, 0, 1, 2, 1, 1, 1}
37 {1, 1, 1, 1, 1, 1, 1}
38 {1, 1, 1, 2, 1, 1, 0}
39 {0, 1, 1, 2, 1, 1, 1}
40 {0, 1, 2, 2, 1, 1, 0}
41 {0, 0, 1, 2, 1, 2, 1}
42 {1, 1, 1, 2, 1, 1, 1}
43 {1, 1, 2, 2, 1, 1, 0}
44 {0, 1, 1, 2, 1, 2, 1}
45 {0, 1, 2, 2, 1, 1, 1}
46 {1, 1, 1, 2, 1, 2, 1}
47 {1, 1, 2, 2, 1, 1, 1}
48 {1, 2, 2, 2, 1, 1, 0}
49 {0, 1, 2, 2, 1, 2, 1}
50 {1, 1, 2, 2, 1, 2, 1}
51 {1, 2, 2, 2, 1, 1, 1}
52 {0, 1, 2, 3, 1, 2, 1}
53 {1, 1, 2, 3, 1, 2, 1}
54 {1, 2, 2, 2, 1, 2, 1}
55 {0, 1, 2, 3, 2, 2, 1}
56 {1, 1, 2, 3, 2, 2, 1}
57 {1, 2, 2, 3, 1, 2, 1}
58 {1, 2, 2, 3, 2, 2, 1}
59 {1, 2, 3, 3, 1, 2, 1}
60 {1, 2, 3, 3, 2, 2, 1}
61 {1, 2, 3, 4, 2, 2, 1}
62 {1, 2, 3, 4, 2, 3, 1}
63 {1, 2, 3, 4, 2, 3, 2}

Table 2: Enumeration of the 63 positive roots of e7 displayed in the simple root basis.
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where:

O±
7A = {5, 31, 42, 44, 45, 48, 50} pos

neg
(6.7)

O±
7C = {55, 56, 58, 60, 61, 62, 63} pos

neg
(6.8)

O±
28 =

{11, 16, 19, 21, 24, 25, 26, 29, 30, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 46, 47, 49, 51, 52, 53, 54, 57, 59} pos
neg

(6.9)

O42 = {1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 27, 28, 32}pos⋃
{1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 22, 23, 27, 28, 32}neg (6.10)

where the notation for the roots is the same as that utilized before.

The group theoretical and physical interpretation of the above splitting is clear. The orbit of 42 roots is

made by the roots of a6, that is to say of the Lie algebra of the subgroup SL(7,R) ⊂ E7(7) parameterizing

through the coset
SL(7,R)
SO(7) the metrics on the T7-torus. The orbit O+

7C
is characterized, as it can be seen from

table 2, by the fact that all its elements have n5 = 2, namely their grading with respect to the root α5 (see

Eq. (5.1)) is 2. Projecting these vectors onto the fundamental weights of a6 they turn out to be the weights

of the fundamental defining representation of SL(7,R). On the other hand the roots in the two orbits O+
7A

and O+
7A

are characterized by the fact that their grading with respect to α5 is 1 (see table 2). Projecting

these 35 roots on the fundamental weights of a6 we find the weights of the 35-dimensional representation

enumerated in table 3 and there put into one–to–one correspondence with the components of a three–time

antisymmetric tensor, namely with a triple of different integer numbers in the range 1, 2, 3, 4, 5, 6, 7. This

antisymmetric tensor is Yi jk , namely the 3-form defined over the 7-torus that is supposed to satisfy Englert

equation. Summarizing we have:

35 = O+7A ⊕ O+28 (6.11)

which is equation (3.7).

As we already stressed this is the starting point in the construction of minimal solutions

6.1 The Minimal Solutions

Let us now illustrate step by step how to construct a set of solutions starting from a normal form of Yi jk in

which seven components correspond to a Steiner triple system. The solutions will fit orbits with respect to

the PSL(2, 7) invariance group of this septuple. To this end we introduce the relevant notation.

A septuple is conveniently characterized in terms of a distinctive signature (n0, n1, n2) which is defined

as follows: nℓ, ℓ = 0, 1, 2, is the number of couples of triplets which have ℓ indices in common. The Steiner

triples have signature (0, 21, 0).
The automorphism group of a septuple is the subgroup of the permutation group S7 acting on the internal

indices i, j, k, which leaves the set of seven triplets invariant, though changing the order. PSL(2, 7) is the
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Enumeration Triple Corresponding weight

1 {1, 2, 3} {0, 0, 1, 0, 0, 0}
2 {1, 2, 4} {0, 1,−1, 1, 0, 0}
3 {1, 2, 5} {0, 1, 0,−1, 1, 0}
4 {1, 2, 6} {0, 1, 0, 0,−1, 1}
5 {1, 2, 7} {0, 1, 0, 0, 0,−1}
6 {1, 3, 4} {1,−1, 0, 1, 0, 0}
7 {1, 3, 5} {1,−1, 1,−1, 1, 0}
8 {1, 3, 6} {1,−1, 1, 0,−1, 1}
9 {1, 3, 7} {1,−1, 1, 0, 0,−1}
10 {1, 4, 5} {1, 0,−1, 0, 1, 0}
11 {1, 4, 6} {1, 0,−1, 1,−1, 1}
12 {1, 4, 7} {1, 0,−1, 1, 0,−1}
13 {1, 5, 6} {1, 0, 0,−1, 0, 1}
14 {1, 5, 7} {1, 0, 0,−1, 1,−1}
15 {1, 6, 7} {1, 0, 0, 0,−1, 0}
16 {2, 3, 4} {−1, 0, 0, 1, 0, 0}
17 {2, 3, 5} {−1, 0, 1,−1, 1, 0}
18 {2, 3, 6} {−1, 0, 1, 0,−1, 1}

Enumeration Triple Corresponding weight

19 {2, 3, 7} {−1, 0, 1, 0, 0,−1}
20 {2, 4, 5} {−1, 1,−1, 0, 1, 0}
21 {2, 4, 6} {−1, 1,−1, 1,−1, 1}
22 {2, 4, 7} {−1, 1,−1, 1, 0,−1}
23 {2, 5, 6} {−1, 1, 0,−1, 0, 1}
24 {2, 5, 7} {−1, 1, 0,−1, 1,−1}
25 {2, 6, 7} {−1, 1, 0, 0,−1, 0}
26 {3, 4, 5} {0,−1, 0, 0, 1, 0}
27 {3, 4, 6} {0,−1, 0, 1,−1, 1}
28 {3, 4, 7} {0,−1, 0, 1, 0,−1}
29 {3, 5, 6} {0,−1, 1,−1, 0, 1}
30 {3, 5, 7} {0,−1, 1,−1, 1,−1}
31 {3, 6, 7} {0,−1, 1, 0,−1, 0}
32 {4, 5, 6} {0, 0,−1, 0, 0, 1}
33 {4, 5, 7} {0, 0,−1, 0, 1,−1}
34 {4, 6, 7} {0, 0,−1, 1,−1, 0}
35 {5, 6, 7} {0, 0, 0,−1, 0, 0}

Table 3: In this table we enumerate the 35 weights of the irreducible representation of a6 corresponding to

an antisymmetric tensor Yi jk in d = 7. We associate each weight vector to the corresponding triple {i, j, k}
of indices.

automorphism group of the Fano plane and thus of the Steiner system defining the multiplication table of

the octonions =⇒ PSL(2, 7) ⊂ G2 ⊂ SO(7). Below we represent the Fano plane with identification of its

vertices with the seven triplets
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C (146)

The construction of the solutions to the Englert equation proceeds as follows.

1. We consider the case in which one of the two septuples, say ®σ, defines the embedding of an sl(2)7
group inside E7(7) through the set of positive roots αi jk = α®σI

. As pointed out earlier, this system of

triples is of Steiner type and defines the group PSL(2, 7) with respect to which we construct the orbits

of the solutions.

2. Then we choose the second set of 7 parameters of the minimal solution by choosing a septuple ®γ which

is complementary to ®σ. We shall classify in the sequel the independent choices of such septuples;

3. Given the couple of complementary septuples ®σ and ®γ, we construct a solution Y (γσ) through the
formula:

Y
(γσ)
®σP(I )

(xiI ) =
(

fI cos(µxiI ) + gI sin(µxiI )
)
,

Y
(γσ)
®γP′(I )

(xiI ) = εI

(
fI sin(µxiI ) − gI cos(µxiI )

)
, I = 1, . . . , 7 , (6.12)

with εI = ǫ
iI σ

1
P(I )σ

2
P(I )σ

3
P(I )γ

1
P′(I )γ

2
P′(I )γ

3
P′(I ) .

4. Being the Englert equation linear, a linear combination of solutions Y (σγ) corresponding to different

choices of complementary ®σ and ®γ, is still a solution.

Given an elementary solution Y (γσ) of the form (6.12), we note that it sources the warp factor by a term

which does not depend on the internal coordinates xi since:

1

6
(Y (γσ) · Y (γσ)) = Y

(γσ)
®σP(I )

Y
(γσ)
®σP(I )
+ Y

(γσ)
®γP′(I )

Y
(γσ)
®γP′(I )
=

7∑
I=1

( f 2
I + g

2
I ) , (6.13)

and therefore:

H = 1 − 9

4
e−2µU

7∑
I=1

( f 2
I + g

2
I ). (6.14)
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Notice that for this kind of solution H = H(U), i.e. H does not depend on the torus coordinates xi.

This is reminiscent of what happens for the 2-brane solution of seven-dimensional minimal supergravity,

studied in [18], when the internal 1-form flux, which satisfies the Arnold-Beltrami equation on a 3-torus,

corresponds to the so-called ABC solution. Combining elementary solutions, the warp factor acquires a

non-trivial dependence on xi.

Classifying the second septuple. The first septuple can be identified with the orbit 7A in the decomposition

(3.7) of the 35 roots αi jk with respect to the action of the corresponding PSL(2, 7)1+6 automorphism group.

The automorphism group of the second septuple will intersect PSL(2, 7)1+6 in a subgroup H of the latter. We

classify the second septuple by the possible choices of H in PSL(2, 7)1+6. The condition on this subgroup is

that the decomposition of the 28 orbit in (3.7) with respect to it should contain an order-7 orbit 7B, which

is mutually non-local with respect to 7A. The septuple 7B may also result from a combination of smaller

H-orbits. We considered the possible simple subgroups H classified in section 4.8 and found the following

results:

• H = O24A and O24B. The 28 decomposes as:

28 → 12 + 12 + 4 . (6.15)

This case is not relevant to our analysis since the above decomposition contains no order-7 orbit 7B;

• H = T12A and T12B. The 28 decomposes as:

28 → 12 + 6 + 6 + 4 . (6.16)

Also this decomposition contains no orbit 7B;

• H = Dih3. The 28 decomposes as:

28 → 3 + 3 + 3 + 6 + 6 + 6 + 1 . (6.17)

In this case we checked that no-one of the combinations of orbits on the right hand side, with seven

elements realized either as 3 + 3 + 1 or as 6 + 1, is mutually non-local with respect to 7A;

• H = G21. The 28 decomposes as:

28 → 7 + 21 . (6.18)

The order-7 orbit in the decomposition is mutually non-local with respect to 7A and thus is a viable

septuple 7B for constructing a minimal solution. Moreover this 7B is of Steiner type;

• H = Z7. The 28 decomposes as:

28 → 7 + 7 + 7 + 7 . (6.19)

All the four order-7 orbits in the decomposition are mutually non-local with respect to 7A. One is of

Steiner type and coincides with the one in (6.18), being Z7 a subgroup of G21. The other three are not

of Steiner type and have signature (7, 7, 7). Therefore all these four orbits are viable choices for 7B;
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Table 4: Multiplicities of the elementary solutions based on pair of septuples 7A ⊕ 7B with fixed signature

for the second septuple. In the table we mention the invariance group of the pair of septuples

Aut sign. mult. n. coord.s

G21 (0, 21, 0) 8 7

Z7 (7, 7, 7) 24 7

Z3 (6, 9, 6) 56 7

Z3 (3, 15, 3) 56 7

Z3 (0, 15, 6) 112 4

Z3 (0, 18, 3) 56 4

Z3 (3, 12, 6) 112 4

Total number 424

• H = Z3. The 28 decomposes as:

28 → 1 + 9 × 3 . (6.20)

Also this decomposition contains septuples, realized as 1 + 3 + 3, which are mutually non-local with

respect to 7A. Some are of Steiner type and coincide with the one in (6.18), being Z3 a subgroup of

G21, for isomorphic choices of G21 inside PSL(2, 7). The decomposition also features non-Steiner

septuples with signatures (3, 15, 3), (6, 9, 6), (0, 15, 6), (0, 18, 3), (3, 12, 6). The last three classes of 7B

are distinguished from the first two in that the coordinates complementary to 7A and 7B are not 7 but

4. This means that the corresponding minimal solution would only depend on 4 coordinates and the

mapping I → iI is not onto.

Summarizing, we found viable septuples 7B only when the group H is either G21 or one of its subgroups.

Then we counted the possible septuples 7B for various isomorphic choices of H in PSL(2, 7) and found the

multiplicities displayed in table 4. The total number of independent minimal solutions is then 424. Only

144 = 8 + 56 + 56 + 8

of these solutions depending on all the 7 coordinates. Among these latter, only 8 consists of two Steiner

systems. Notice that in general the solutions do not preserve any supersymmetry. However, for particular

choices of the parameters the solutions can admit N = 1, 2, 3, 4, 5, 6 supersymmetries. This is quite different

from the original Englert solution, which does not preserve any supersymmetry. In the next sections we

recall the criterion for preservation of supersymmetries in the context of these M2-brane solutions that was

derived in [16] and we apply it systematically to the solutions of type (0, 21, 0) obtaining just only from this

sector a rich spectrum of possibilities encompassing all available values of N . The analysis of the remaining

solutions is postponed to a future publications.
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1st sept. 1st sept. 1st sept. 1st sept. 1st sept. 1st sept. 1st sept. 1st sept.

1 2 7

1 3 5

1 4 6

2 3 6

2 4 5

3 4 7

5 6 7

1 2 7

1 3 5

1 4 6

2 3 6

2 4 5

3 4 7

5 6 7

1 2 7

1 3 5

1 4 6

2 3 6

2 4 5

3 4 7

5 6 7

1 2 7

1 3 5

1 4 6

2 3 6

2 4 5

3 4 7

5 6 7

1 2 7

1 3 5

1 4 6

2 3 6

2 4 5

3 4 7

5 6 7

1 2 7

1 3 5

1 4 6

2 3 6

2 4 5

3 4 7

5 6 7

1 2 7

1 3 5

1 4 6

2 3 6

2 4 5

3 4 7

5 6 7

1 2 7

1 3 5

1 4 6

2 3 6

2 4 5

3 4 7

5 6 7

2nd sept. 2nd sept. 2nd sept. 2nd sept. 2nd sept. 2nd sept. 2nd sept. 2nd sept.

1 2 5

1 3 4

1 6 7

2 3 7

2 4 6

3 5 6

4 5 7

1 2 4

1 3 7

1 5 6

2 3 5

2 6 7

3 4 6

4 5 7

1 2 6

1 3 4

1 5 7

2 3 5

2 4 7

3 6 7

4 5 6

1 2 4

1 3 6

1 5 7

2 3 7

2 5 6

3 4 5

4 6 7

1 2 6

1 3 7

1 4 5

2 3 4

2 5 7

3 5 6

4 6 7

1 2 3

1 4 5

1 6 7

2 4 7

2 5 6

3 4 6

3 5 7

1 2 5

1 3 6

1 4 7

2 3 4

2 6 7

3 5 7

4 5 6

1 2 3

1 4 7

1 5 6

2 4 6

2 5 7

3 4 5

3 6 7

Table 5: The eight pairs of mutually non local Steiner septuples produced by the orbits of the 8 different

conjugate copies of subgroups G21
I ⊂ PSL(2, 7)1+6 (I = 1, . . . , 8).

7 The Killing spinor equation of M2-branes with Englert fluxes

As announced we review here the discussion of the Killing spinor equation presented in [16].

In order to analyze the structure of the Killing spinor equation in the background of the M2-branes with

Englert fluxes, we need a basis of gamma matrices that is well-adapted to the splitting of the 11-dimensional

manifold mentioned in Eq. (1.3).

Such a well adapted basis is provided by the following nested hierarchy.

7.1 Gamma matrices

At the bottom of the hierarchy we have the Pauli matrices.

Pauli matrices. We use the following conventions:

σ1 =

(
0 1

1 0

)
; σ2 =

(
0 −i

i 0

)
; σ3 =

(
1 0

0 −1

)
; (7.1)
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Gamma matrices on the d = 3 world-volume. Next we construct the set of 2×2 gamma matrices in

d = 3 in the following way{
γa, γb

}
= 2ηab ; γ = {σ2, iσ1, iσ3} , a, b = 1, 2, 3 . (7.2)

Gamma matrices in d = 7 In d = 7 we choose gamma matrices that are real and antisymmetric and

fulfill the following Clifford algebra: {
τi, τj

}
= −2δi j , i, j = 1, . . . , 7 . (7.3)

The explicit basis utilized is that one where we express the τ-matrices in terms of φi jk , namely of the

G2-invariant three-tensor:

(τi) jk = φi jk

(τi) j8 = δi j ; (τi)8 j = −δi j (7.4)

The explicit form of the φi jk tensor is given in Eq. (4.19) and it is the one well-adapted to the immersion of

the discrete group which acts crystallographically on T7 into the compact G2 Lie group, namely according

to the canonical immersion PSL(2, 7) −→ G2(−14).

Gamma matrices in d = 8 Because of our splitting 11 = 3 ⊕ 1 ⊕ 7 we need also the gamma matrices in

d = 8 corresponding to the transverse space to the M2-brane, namely R+ ⊗ T7. We choose the following

Clifford algebra:

{TI,TJ} = −2δI J , I, J = 1, . . . , 8 , (7.5)

and we utilize the following explicit realization:

Ti = σ1 ⊗ τi

T8 = iσ2 ⊗ 1118×8

T9 = σ3 ⊗ 1118×8 (7.6)

The last matrix is the d = 8 chirality operator which plays an important role in the discussion of the Killing

spinor equation.

Gamma matrices in d = 11 At the top of the hierarchy we have the d = 11 gamma matrices, obeying the

following Clifford algebra

{Γa, Γb} = 2ηab , a, b = 0, . . . , 10 . (7.7)

For them we utilize the following explicit realization:

Γa = γa ⊗ T9

ΓI = 1112×2 ⊗ TI (7.8)
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With these choices the charge conjugation matrix, takes the following form:

C = iσ2 ⊗ 1112×2 ⊗ 1118×8

C ΓaC−1
= −Γa

T (7.9)

Equipped with this set of properly chosen gamma matrices we can turn to the investigation of the Killing

spinor equation.

7.2 The tensor structure of the Killing spinor equation

The rheonomic solution of the d = 11 Bianchi identities (see Eq. (2.2)) allows us to write the Killing spinor

equation in the following general form:

Dξ − i

3
Γ

abcV dFabcdξ −
i

24
ΓabcdfF

abcdV f ξ = 0 (7.10)

where

Dξ ≡ dξ − 1

4
ωabΓabξ (7.11)

is the Lorentz covariant differential in d = 11.

Equation (7.10) can be usefully rewritten as follows:

∇ξ ≡ dξ +Ωξ = 0 (7.12)

where Ω is a generalized connection in the 32–dimensional spinor space, defined as follows:

Ω ≡ ΘL + Θ
[F]
1
+ Θ

[F]
2

(7.13)

In the above equation we have introduced the following definitions:

ΘL ≡ −1

4
ωabΓab

Θ
[F]
1

≡ − i

3
ΓabcV dFabcd

Θ
[F]
2

≡ − i

24
ΓabcdfF

abcdV f (7.14)

Next let us make another splitting of the overall generalized connection:

Ω = ΩH +ΩY (7.15)

where ΩH depends only on the (inhomogeneous)-harmonic function H and it is obtained from Ω by setting

Yi jk → 0. Instead, the other part ΩY , is just the difference and it depends linearly on Yi jk
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7.2.1 M2-branes without Englert fluxes: tensor structure of ΩH

As shown in [16], by introducing the following operators:

V ◦ γ = Vaγa (7.16)

P± =

1

2
(11116 ± T9) (7.17)

∂H ◦ T =

1

3
H− 7

6 ∂I HT I (7.18)

V ⋄ ∂H ◦ T = − 1

12
H− 7

6 V[I∂J]HT IJ (7.19)

dH =

1

6
H− 7

6

8∑
I=1

∂I HV I (7.20)

we get that the H-part of the generalized connection has the following tensor structure:

ΩH = V ◦ γ ⊗ ∂H ◦ T P− +111211121112 ⊗ V ⋄ ∂H ◦ T P− + 1112 ⊗ dH T9 (7.21)

From equation (7.21) one readily derives the form of the Killing spinors for pure M2-brane solutions.

Writing the 32 component Killing spinor as a tensor product:

ξ = ǫ ⊗ χ (7.22)

we find that, in the absence of Y-fields, the Killing spinor equation is satisfied provided:

T9χ = χ ⇒ P−χ = 0 (7.23)

χ = H− 1
6 χ0 (7.24)

where H is the (inhomogeneous)-harmonic function appearing in the metric (2.6) and χ0 is a constant

spinor with commuting components. Indeed, in view of our 2-brane interpretation of these backgrounds,

we assume that the two–component spinors ǫ are the anticommuting objects.

Using the tensor structure of the d = 8 T-matrices we set:

χ = κ ⊗ λ (7.25)

where κ is a two component spinor:

κ =

(
κ1

κ2

)
(7.26)

with commuting components, while λ is an eight–component spinor:

λ = {λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8} (7.27)

also with commuting components.
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In this language the most general 32–component spinor has the form:

ξ = ǫ ⊗ κ ⊗ λ (7.28)

and the general solution for the Killing spinor at Yi jk = 0 is obtained by setting:

κ2 = 0 ; κ1 = H− 1
6 (7.29)

This shows that the M2-branes without Englert-fluxes preserve 16 supersymmetries, namely 1
2

of the total

SUSY.

7.2.2 M2-branes with Englert fluxes: tensor structure ofΩY

We come next to analyze the structure of the Y-part of the connection ΩY .

We begin by introducing two d = 7 operators constructed with the Englert fieldYi jk, the flat 8-dimensional

vielbein V̂ I ≡ dyI and the τ-matrices:

B ≡ τi jk Yi jk ; T = V̂ iτi (7.30)

in [16] it was shown that ΩY can be written as follows:

ΩY = i
1

12
µe−UµH−2/3 ×[

V ◦ γ
(

2B 0

0 0

)
+ 111 ⊗

(
V̂0B 0

0 0

)
+

1

2
111 ⊗

(
0 3BT

−TB 0

)]

(7.31)

Eq. (7.31) reveals the mechanism behind the preservation of supersymmetry by M2-branes with Englert

fluxes. Writing the candidate Killing spinor in the tensor product form (7.28) we see that the connectionΩY

annihilates it if κ =
©«

H
−1

6

0

ª®
¬

as we already established from consideration of the H-part of the connection

and if the 8-component λ is a null-vector of B:

B λ = 0 (7.32)

This is the only possibility to integrate the Killing spinor equation. Indeed the term with V◦γ which mixes

the internal coordinateswith the world volume ones has to vanish since it cannot be compensated in any

other way. This implies Eq. (7.32). The magic thing is that the precise values of the coefficients provided

by the rheonomic solution of Bianchi identities in d = 11, produce the structure in Eq. (7.31). In this way

the condition (7.32) suffices to annihilate also the action of the other terms in the connection.

In conclusion M2-branes with Englert fluxes preserve part of the Killing spinors existing in the case of

Y = 0 if and only if the operator B has a non trivial Null-Space, namely if the Rank of B is < 8. Every λ

satisfying (7.32) corresponds to a preserved supersymmetry.
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In Appendix B the above conditions on the matrix B for the solution to preserve an amount of supersym-

metry are shown to be a special case of the general supersymmetry conditions worked out in the literature

on M2-branes with self-dual fluxes.

8 Supersymmetry of the solutions of type (0, 21, 0)

In this section we present the results we have obtained for the supersymmetry of solutions of type (0, 21, 0),
mentioned in table 4.

According to the previously explained rules for the construction of minimal solutions we have derived

each of the eight 14-parameter solutions for the three-form Y obtained by pairing the standard septuple 7A

with one of the eight different septuples 7I
B

displayed in table 5. Let us name them Y14
I

, I = 1, . . . , 8. Since

Englert equation is linear, the sum of these solutions is also a solution:

Ŷ =

8∑
I=1

Y14
I (8.1)

which apparently depends on 8 × 14 = 112 parameters. Actually the independent combinations of differen-

tials dxi ∧ dx j ∧ dxk with the trigonometric functions cos(µxℓ) and sin(µxℓ) that is produced in this sum are

not 112 but rather 56, since each combination appears twice. Renaming δα, α = 1, . . . , 56 the coefficients

of the independent combinations Bα (they are listed in table 6), we have obtained a general solution of the

following form:

Y56 (xxx |δδδ) =
56∑
α=1

δα Bα (8.2)
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B1 cos(µx4)dx1 ∧ dx2 ∧ dx3

B2 sin(µx4)dx1 ∧ dx2 ∧ dx3

B3 cos(µx3)dx1 ∧ dx2 ∧ dx4

B4 sin(µx3)dx1 ∧ dx2 ∧ dx4

B5 cos(µx6)dx1 ∧ dx2 ∧ dx5

B6 sin(µx6)dx1 ∧ dx2 ∧ dx5

B7 cos(µx5)dx1 ∧ dx2 ∧ dx6

B8 sin(µx5)dx1 ∧ dx2 ∧ dx6

B9 cos(µx3)dx1 ∧ dx2 ∧ dx7

B10 cos(µx4)dx1 ∧ dx2 ∧ dx7

B11 cos(µx5)dx1 ∧ dx2 ∧ dx7

B12 cos(µx6)dx1 ∧ dx2 ∧ dx7

B13 sin(µx3)dx1 ∧ dx2 ∧ dx7

B14 sin(µx4)dx1 ∧ dx2 ∧ dx7

B15 sin(µx5)dx1 ∧ dx2 ∧ dx7

B16 sin(µx6)dx1 ∧ dx2 ∧ dx7

B17 cos(µx2)dx1 ∧ dx3 ∧ dx4

B18 sin(µx2)dx1 ∧ dx3 ∧ dx4

B19 cos(µx2)dx1 ∧ dx3 ∧ dx5

B20 cos(µx4)dx1 ∧ dx3 ∧ dx5

B21 cos(µx6)dx1 ∧ dx3 ∧ dx5

B22 cos(µx7)dx1 ∧ dx3 ∧ dx5

B23 sin(µx2)dx1 ∧ dx3 ∧ dx5

B24 sin(µx4)dx1 ∧ dx3 ∧ dx5

B25 sin(µx6)dx1 ∧ dx3 ∧ dx5

B26 sin(µx7)dx1 ∧ dx3 ∧ dx5

B27 cos(µx7)dx1 ∧ dx3 ∧ dx6

B28 sin(µx7)dx1 ∧ dx3 ∧ dx6

B29 cos(µx6)dx1 ∧ dx3 ∧ dx7

B30 sin(µx6)dx1 ∧ dx3 ∧ dx7

B31 cos(µx7)dx1 ∧ dx4 ∧ dx5

B32 sin(µx7)dx1 ∧ dx4 ∧ dx5

B33 cos(µx2)dx1 ∧ dx4 ∧ dx6

B34 cos(µx3)dx1 ∧ dx4 ∧ dx6

B35 cos(µx5)dx1 ∧ dx4 ∧ dx6

B36 cos(µx7)dx1 ∧ dx4 ∧ dx6

B37 sin(µx2)dx1 ∧ dx4 ∧ dx6

B38 sin(µx3)dx1 ∧ dx4 ∧ dx6

B39 sin(µx5)dx1 ∧ dx4 ∧ dx6

B40 sin(µx7)dx1 ∧ dx4 ∧ dx6

B41 cos(µx5)dx1 ∧ dx4 ∧ dx7

B42 sin(µx5)dx1 ∧ dx4 ∧ dx7

B43 cos(µx2)dx1 ∧ dx5 ∧ dx6

B44 sin(µx2)dx1 ∧ dx5 ∧ dx6

B45 cos(µx4)dx1 ∧ dx5 ∧ dx7

B46 sin(µx4)dx1 ∧ dx5 ∧ dx7

B47 cos(µx3)dx1 ∧ dx6 ∧ dx7

B48 sin(µx3)dx1 ∧ dx6 ∧ dx7

B49 cos(µx1)dx2 ∧ dx3 ∧ dx4

B50 sin(µx1)dx2 ∧ dx3 ∧ dx4

B51 cos(µx7)dx2 ∧ dx3 ∧ dx5

B52 sin(µx7)dx2 ∧ dx3 ∧ dx5

B53 cos(µx1)dx2 ∧ dx3 ∧ dx6

B54 cos(µx4)dx2 ∧ dx3 ∧ dx6

B55 cos(µx5)dx2 ∧ dx3 ∧ dx6

B56 cos(µx7)dx2 ∧ dx3 ∧ dx6

Table 6: List of the addends Bα in the general solution of Englert equation corresponding to septuples of

signature (0, 21, 0).

The action of the group PSL(2, 7) on the Englert form Y56(xxx |δδδ) is generated by the action of the group

on the seven coordinates xi which is only by means of permutations. The explicit form of this action which
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is consistent with the action on the 35 representation considered as weights of the a6 Lie algebra, according

with the conversion rule of table 3, is that provided by the following identification of the three generators:

R ı {x1 → x3, x2 → x2, x3 → x1, x4 → x4, x5 → x5, x6 → x7, x7 → x6}
S ı {x1 → x7, x2 → x1, x3 → x4, x4 → x5, x5 → x3, x6 → x6, x7 → x2}
T ı {x1 → x5, x2 → x7, x3 → x2, x4 → x3, x5 → x4, x6 → x1, x7 → x6}

(8.3)

Let us name g7 ∈ PSL(2, 7) any element of the group in the 7-dimensional representation generated by the

transformations (8.3). Since the basis forms Bα are permuted among themselves by this action it follows

that g7 ∈ PSL(2, 7) induces a corresponding linear transformation g56 on the 56 parameters δα according

with:

Y56 (g7xxx |δδδ) = Y56 (xxx |g56δδδ) (8.4)

In this way we obtain a 56-dimensional representation of the group PSL(2, 7) group of which we can consider

the decomposition into irreducible representations. We obtain:

56
PSL(2,7)
=⇒ 4 D7 + 2 D8 + 2 DA3 + 2 DB3 (8.5)

This clearly means that there are in this sector no Englert fields that are invariant under the full PSL(2, 7)
group, since no singlets do appear in the above decomposition. Calculating instead the decomposition of the

same representation under the maximal subgroup G21 ⊂ PSL(2, 7) we obtain the following decomposition:

56
G21
=⇒ 4 D1 + 8 DA3 + 8DB3 + 2 DX1 + 2 DY1 (8.6)

This means that there exists a 4-parameter solution of Englert equation that is invariant with respect to

the full group G21. As we are going to see a 2-parameter subspace of this solution preserves also N = 1

supersymmetry.

In order to study residual supersymmetry of the considered solutions we have proceeded as follows.

Naming Y56
i jk

(xxx |δδδ) the components of the form (8.2) we have constructed the corresponding symmetric 8× 8

matrix B:

B [δδδ, xxx] = τi jkY56
i jk (xxx |δδδ) (8.7)

The condition of N = 1 supersymmetry is provided by requiring that, independently from the point xxx, one

should have:

B [δδδ, xxx]I,8 = 0 ; I = 1, . . . , 8 (8.8)

This yields 14 linear conditions on the 56 parameters δδδ. We can view this as an orthogonal splitting of the

56-dimensional parameter space M56 of the following type:

M56
= MN=1 ⊕M⊥

N=1 (8.9)

dimMN=1 = 42 (8.10)

dimM⊥
N=1 = 14 (8.11)

The 42-dimensional subspace MN=1 is the space of N = 1 supersymmetric Englert solutions. We can
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inquire what is the subgroup G ⊂ PSL(2, 7) that preserves the splitting (8.9), namely:

G : MN=1 −→ MN=1 ; G : M⊥
N=1 −→ M⊥

N=1 (8.12)

By explicit calculation we find that G ∼ G21, namely it is one of the eight conjugate copies of G21 contained

in PSL(2, 7). We already know from Eq. (8.6) that with respect to this group there are invariant Englert

solutions and indeed we find that the invariant subspace:

Minv
N=1 ⊂ MN=1 (8.13)

of those Englert fields that preserve N = 1 supersymmetry and are invariant under the full group G21

stabilizing the space MN=1 has dimension:

dimMinv
N=1 = 2 (8.14)

In other words there is a 2-parameter G21-invariant solution of Englert equation that preserves N = 1

supersymmetry.

The scan of various supersymmetries was performed along these same lines defining:

δδδ ∈ MN ⇔ B [δδδ, xxx]I,9−K = 0 ; I = 1, . . . , 8 ; K = 1, . . . , N (8.15)

The result of this scan are summarized in the table here below:

SUSY Stability subgroup Order dim of dim of dim of Max inv. Order

of MN of G Minv
N

MN M⊥
N

of N sol of Γ

N G ⊂ PSL(2, 7) |G | ninv
N

nN n⊥
N

Γ ⊂ G |Γ|
1 G21 21 2 42 14 G21 21

2 Dih3 6 2 30 26 Dih3 6

3 Z3 3 8 20 36 Z3 3

4 T12 12 4 12 44 Z3 ⊂ T12 3

5 Z3 3 2 6 50 Z3 3

6 Dih3 6 2 2 54 Z3 ⊂ Dih3 3

7 PSL(2, 7) 168 0 0 56 PSL(2, 7) 168

(8.16)

Let us comment on the notation. The names of the subgroups G are those used in the previous sections

and need no explanation. By definition we name Γ ⊂ G the subgroup with respect to which the space MN

contains singlets. Except for the cases N = 4, 6 the subgroup Γ coincides with the full group G.

Table (8.16) suffices to show that we have a rich collection of solutions to Englert equation solutions

leading to exact M2-brane solutions of d = 11 supergravity endowed with prescribed N = N = 1, 2, 3, 4, 5, 6

supersymmetries and possessing also a non trivial group Γ of discrete symmetries. The complete analysis

of all the 424 solutions classified in previous sections is postponed to a future publication.
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9 Conclusions and outlook

In this paper we have achieved an exhaustive classification of all M2-brane solutions of d = 11 supergravity

of the type described in equations (2.6),(2.12), (2.20-2.21). The key item in this classification of M2-branes

is the exhaustive classification of solutions to Englert equation on a 7-torus which is precisely what we have

obtained utilizing the properties of the discrete group PSL(2, 7). We have also shown that this rich collection

of solutions possesses equally rich subclasses with three-dimensional supersymmetries of all types from

N = 1 to N = 6. These exact solutions are of a genuinely new type, so far never considered in M-theory.

The open problem is that of the possible interpretation of our new solutions in the following contexts:

1. The conformal gauge/gravity correspondence in the case a suitable change of coordinates revealed an

asymptotic factorization of the d = 11 space of the following form:

M11

asymptotically−→ AdS4 × SE7 (9.1)

SE7 denoting some Sasaki-Einstein 7-manifold.

2. The domain-wall/quantum field theory correspondence if by means of some other suitable change of

coordinates we succeeded in achieving domain wall configurations.

3. Effective four-dimensional gauged supergravity description if suitable conditions on the parameters

were revealed for which our solutions admit a well-defined d = 4 limit.

Independently of the above listed possibilities a mandatory analysis of the physical content of our new

class of M-theory solutions is the systematic derivation of their Kaluza-Klein spectrum. Indeed seven of

the eleven dimensions are chosen to be those corresponding to a compact 7-torus and an expansion in the

corresponding normal modes is well-defined and natural. We plan to perform such analysis in a forthcoming

future publication.

Last but not least let us remark that one key algebraic item of our constructions is the discovery that not

only the 7-dimensional irreducible representation of PSL(2, 7) is crystallographic with respect to the a7 and

e7 root lattices, but also the 6-dimensional one is crystallographic with respect to the a6 lattice. An appealing

conjecture is that also the 8-dimensional irreducible representation might be crystallographic with respect

to the a8 and e8 root lattices. This might lead to interesting consequences for E(8,8)/SO(16) sigma model

representing supergravity degrees of freedom in three dimensions.
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A Main Formulas of d = 11 Supergravity and Conventions

In this Appendix we recall the main formulas of d = 11 supergravity [25] and give the dictionary relating the

relevant quantities in the formalism of the original paper to those of the rheonomic Free-Differential Algebra
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formulation [22] that were utilized in [16] as well as in the present paper. The former will be distinguished

from the latter by a tilde, when different. The d = 11 supergravity bosonic fields consist in the metric ĝµ̂ν̂

and the 3-form field Ãµ̂ν̂ ρ̂ and the bosonic action reads

ê−1L = −1

4
R̃ − 1

48
F̃µ̂ν̂ ρ̂σ̂F̃ µ̂ν̂ ρ̂σ̂

+

2

ê (12)4 ǫ
µ̂1 ... µ̂11 F̃µ̂1 ... µ̂4

F̃µ̂5 ... µ̂8
Ãµ̂9 µ̂10 µ̂11

, (A.1)

where ê ≡
√
|det(ĝµ̂ν̂)|, µ̂, ν̂, · · · = 0, . . . , 10. We use the “mostly minus” notation and ǫ01... 10 = ǫ

01... 10
= +1.

The Einstein equation and the field equation for the 3-form read:

R̃µ̂ν̂ = −1

3
F̃µ̂µ̂1 µ̂2 µ̂3

F̃ν̂
µ̂1 µ̂2 µ̂3

+

1

36
ĝµ̂ν̂ F̃µ̂1 µ̂2 µ̂3 µ̂4

F̃ µ̂1 µ̂2 µ̂3 µ̂4 ,

∂µ̂

(
ê F̃ µ̂ν̂ ρ̂σ̂

)
= − 3

(12)3 ǫ
ν̂ ρ̂σ̂ µ̂1 ... µ̂8 F̃µ̂1 ... µ̂4

F̃µ̂5 ... µ̂8
. (A.2)

Below we give the dictionary between this notation and that of [16], in which the relevant quantities are

denoted by untilded symbols:

R̃µ̂ν̂ = −2 Rµ̂ν̂ ,

F̃µ̂ν̂ ρ̂σ̂ = 4 ∂[µ̂ Ãν̂ ρ̂σ̂] = 6 Fµ̂ν̂ ρ̂σ̂ = 6 ∂[µ̂Aν̂ ρ̂σ̂]

Ãν̂ ρ̂σ̂ =
3

2
Aν̂ ρ̂σ̂

F̃[4]
= dÃ[3]

=

1

4
F[4]
=

1

4
dA[3] , (A.3)

where we have defined:

F̃[4] ≡ 1

4!
F̃µ̂ν̂ ρ̂σ̂ dx µ̂ ∧ · · · ∧ dxσ̂ ,

Ã[3] ≡ 1

3!
Ãµ̂ν̂ ρ̂ dx µ̂ ∧ dx ν̂ ∧ dx ρ̂ ,

F[4] ≡ Fµ̂ν̂ ρ̂σ̂ dx µ̂ ∧ · · · ∧ dxσ̂ ,

A[3] ≡ Aµ̂ν̂ ρ̂ dx µ̂ ∧ dx ν̂ ∧ dx ρ̂ . (A.4)

We also introduce the 6-form Ã[6] dual to Ã[3] by Legendre transforming the d = 11 action. Its 7-form field

strength reads:

F̃[7]
= dÃ[6]

+ F̃[4] ∧ Ã[3]
=

∗F̃[4] . (A.5)

In components:

F̃[7]
=

1

7!
F̃µ̂1 ... µ̂7

dx µ̂1 ∧ · · · ∧ dx µ̂7 ,

F̃µ̂1 ... µ̂7
= 7 ∂[µ̂1

Ãµ̂2 ... µ̂7] + 35 F̃[µ̂1 ... µ̂4
Ãµ̂5 ... µ̂7] =

e

4!
ǫµ̂1 ... µ̂7 µ̂8... µ̂11

F̃ µ̂8 ... µ̂11 . (A.6)
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As for the fermionic sector, the gamma matrices Γ̃ µ̂ in [25] differ by an overall sign from those in the present

paper Γ µ̂:

Γ̃
µ̂
= −Γ µ̂ , (A.7)

while the gravitino field is the same in the two notations. The supersymmetry variation of the latter field

therefore reads:

δΨµ̂ = Dµ̂ǫ +
i

144

(
Γ̃ µ̂1 µ̂2 µ̂3 µ̂4

µ̂ − 8 Γ̃ µ̂1 µ̂2 µ̂3δ
µ̂4

µ̂

)
Ψ F̃µ̂1 µ̂2 µ̂3 µ̂4

=

= Dµ̂ǫ −
i

24

(
Γ µ̂1 µ̂2 µ̂3 µ̂4

µ̂ − 8 Γ µ̂1 µ̂2 µ̂3δ
µ̂4

µ̂

)
Ψ Fµ̂1 µ̂2 µ̂3 µ̂4

. (A.8)

B M2-Brane Solutions with Transverse Flux

The M2-brane solutions considered in the present work are part of a general class of solutions characterized

by the presence of a self-dual 4-form flux along the transverse eight-dimensional space [12–15]. The Ansatz

for the d = 11 metric is the one given in Eq. (1.4) while the 3-form field has the following general expression:

A[3]
=

2

H(y) Ω
[3]
+ Å[3](y) , (B.1)

where H(y) is a function of the eight transverse coordinates y
I and Å[3](y) is a 3-form in the transverse

space. The 4-form field strength reads:

F[4]
= dA[3]

= − 2

H(y)2 ∂IH dyI ∧Ω[3]
+ F̊[4](y) , (B.2)

where

F̊[4]
= dÅ[3]

= F̊(y)I JK L dyI ∧ dyJ ∧ dyK ∧ dyL .

We require F̊[4] to be self-dual in the transverse Euclidean space: 7

⋆8 F̊[4]
= F̊[4] . (B.3)

Plugging the above Ansatz in the field equations we find for H(y)

�8H = −3 F̊I JK L F̊ I JK L , (B.4)

where �8 is the d’Alembertian in the flat transverse space: �8H ≡ ∂I∂I H.

Supersymmetry. Substituting the above Ansatz in the Killing spinor equation:

Dµ̂ξ −
i

24

(
Γ
µ̂1 µ̂2 µ̂3 µ̂4

µ̂ − 8 Γ µ̂1 µ̂2 µ̂3δ
µ̂4

µ̂

)
ξ Fµ̂1 µ̂2 µ̂3 µ̂4

= 0 , (B.5)

7Had we chosen the M2-brane with the opposite charge with respect to A[3], we should have taken F̊[4] to be anti-self-dual.
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and writing ξ = ǫ ⊗ χ, as in (7.22), after some algebra, one finds the following conditions:

P− χ = 0 , F̊I JK L T I JK L χ = 0 , F̊I1 ...I4
T I1...I4 TI χ = 0 , (B.6)

where P− ≡ 1
2
(116 − T9). One can show, following [12], that the above conditions can be recast in the

following equivalent form:

P− χ = 0 , F̊I JK L T JK L χ = 0 . (B.7)

The self-duality condition of F̊ further simplifies equations (B.6) since

F̊I JK L T I JK L
= F̊I JK L T I JK L

P+ . (B.8)

Therefore, choosing χ so that P−χ = 0, the last of Eq.s (B.6) is automatically satisfied, and the supersym-

metry conditions reduce to:

P− χ = 0 , F̊I JK L T I JK L χ = 0 . (B.9)

The existence of solutions to the above equations depends on the detailed structure of F̊I JK L. As we have

shown, the form of the self-dual flux in the class of solutions considered here does allow for solutions

with different degrees of supersymmetry. Let us show below how the Englert equation implements the

self-duality condition (B.3) for the class of solutions discussed in the present work.

M2-branes with Englert fluxes. These solutions are obtained by choosing the transverse space of the

form R+ × T7, splitting (yI) = (xi, U) and further specializing the Ansatz (B.1) by choosing the inner

components of the 3-form as follows:

Å[3]
= e−µU Yi jk(x) dxi ∧ dx j ∧ dxk , (B.10)

where i, j, k = 1, . . . , 7. The self-duality condition (B.1) then reduces to the Englert equation in Yi jk .

Formally this amounts to a Scherk-Schwarz reduction [31] from the Euclidean eight-dimensional trans-

verse space to the seven-torus and the original self-duality condition reduces to the “self-duality” in odd-

dimensions of [32].

As far as the supersymmetry conditions (B.9) are concerned, if we further split χ = κ⊗λ, as in Eq. (7.25),

where now σ3κ = κ, condition P−χ = 0 is satisfied, being T9 = σ3 ⊗ 18. The last of equations (B.9) now

boils down to:

0 = F̊0i jk T0i jk χ ∝ κ ⊗ Bλ ⇔ Bλ = 0 , (B.11)

where B ≡ τi jk Yi jk . We then retrieve the equation (7.32), whose solutions have been studied in the present

work.
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