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1 Introduction

Since the birth of the AdS/CFT correspondence it has been natural to identify the gauge

theory interpretation, if any, of supergravity solutions that are asymptotically AdS. For the

AdS5 × S5 vacuum of IIB supergravity, a particularly simple class of deformations can be

found by switching on the dilaton φ and the RR axion χ. For instance, the D-instanton in

Euclidean AdS5×S5 is of this type and can be regarded as the near horizon of a D3/D(−1)-

intersection [1]. This solution is suggested to be the dual to specific (supersymmetric)
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instantons in N = 4 SYM theory [2]. This conjecture has survived many non-trivial

checks [3–6], which were reviewed in [7]. The simplest checks involved the matching of

the on-shell actions, the charges, the supersymmetries, the moduli-spaces as well as the

computation of the holographic one-point functions 〈TrF 2〉 and 〈TrFF̃ 〉, see [1, 8–10].

One can wonder how much of this matching is fixed by the conformal supersymmetry.

Hence it is interesting to break supersymmetry and study non-SUSY instantons. This is

much easier from the gravity side than from the field theory side, and simple non-extremal

instanton solutions in Euclidean AdS5×S5 are indeed easily constructed [11] (see also [12]).

They can be organised according to the ratio of their charge Q to the on-shell action S:

the solution is named ‘over-extremal’ when S < Q, ‘under-extremal’ when S > Q. The

geometry of the over-extremal solution is a two-sided AdS wormhole. These wormholes are

examples of the well-know Euclidean axionic wormholes of [13–15] whose understanding is

still unclear. A problematic feature of the two-sided axion wormhole in AdS5 × S5 is an

unphysical singularity in the axion-dilaton scalar profiles (that cancel out in the energy-

momentum tensor). Indeed, a naive computation [11] that ignores the subtleties of having

two boundaries, indicates that the would-be solution violates the BPS bound in the dual

field theory since:

〈TrF 2〉 < 〈TrFF̃ 〉 , (1.1)

which is inconsistent. It is natural to conjecture that the inconsistent operator values (1.1)

are a consequence of the singularity in the scalar fields and hence the solution is discarded.

The under-extremal solutions have a “spike-like” singularity in the bulk, which is

identified with the position of the D-instanton. Such solutions, when embedded in flat

space, can be seen as non-extremal black holes reduced over time, and hence might be

physical. The holographic one-point functions now imply that these could be dual to

non-self dual YM instantons satisfying:

〈TrF 2〉 > 〈TrFF̃ 〉 . (1.2)

A concrete suggestion for the holographic dual description was made in [16]: the instantons

correspond to the addition of an anti-self-dual SU(2) instanton Aµ in the colormatrix which

has for the rest order N self-dual SU(2) instantons Aµ on mutually commuting blocks

as follows:

ASU(N)
µ =


A

SU(2)
µ 0 . . . 0

0 A
SU(2)
µ 0

...
. . .

0 A
SU(2)
µ

 . (1.3)

For all solutions described above the axion and dilaton only depend on the AdS5 coor-

dinates such that they can be derived from the following simple truncation of 5-dimensional

maximal SO(6)-gauged supergravity:

S = − 1

2κ25

∫ √
|g5|

(
R5 −

1

2
(∂φ)2 − 1

2
εebφ(∂χ)2 − Λ

)
, (1.4)
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where Λ < 0 is the cosmological constant and ε = +1 in Lorentzian signature but ε = −1

in Euclidean signature. The dilaton coupling b is furthermore fixed to be b = 2. It was

pointed out in [17] that when b ≤
√

3/2 the Euclidean wormholes would have a regular

axion-dilaton profile. Only if such a dilaton coupling could be found in string theory

(or any other UV complete gravity theory) should one try to understand the meaning of

these wormholes. It was furthermore suggested in [17] that such small dilaton couplings

b could be obtained in theories with more involved sigma models that contain multiple

axion-dilaton pairs. Indeed a concrete example was recently found in [18]. It turns out

sufficient to consider AdS5 × S5/Zk with k > 1. Then the AdS moduli space Mmoduli has

been computed to be Mmoduli = SU(1, k)/S[U(1)×U(k)] [19, 20]. This means that there

should be a consistent truncation down to the following action

S = − 1

2κ25

∫ √
|g5|

(
R5 −

1

2
Gij∂ΦI∂ΦJ − Λ

)
, (1.5)

with the ΦI coordinates on Mmoduli and GIJ its canonical metric. In Euclidean signature

one instead finds a Wick-rotated version of the sigma model. The Wick-rotation of the

sigma model is neither unique nor fixed by Euclidean supersymmetry, but given the higher-

dimensional and holographic interpretation of the scalars it was shown to be [18]:

Wick-rotation:
SU(1, k)

S[U(1)×U(k)]
=⇒ SL(k + 1,R)

GL(k,R)
. (1.6)

This coset allows then consistent truncations to axion-dilaton Lagrangians of the form (1.4)

with b = 1 giving regular axion wormholes [18]. This prompts the question of their holo-

graphic meaning, which is still unclear, see for instance [17, 21]. Given this explicit embed-

ding in string theory it should be possible to settle the question whether these wormholes

contribute as saddle points in the path integral [22].

We consider it natural to first understand the extremal instantons in AdS5 × S5/Zk

before the more intricate cases of under- and over-extremal solutions. The goal of this

paper is therefore:

1. To construct all solutions explicitly, by solving the geodesic equations on SL(k+1,R)
GL(k,R) ;

2. To study the supersymmetry properties of the extremal solutions;

3. To compute the on-shell action in terms of quantised charges.

Remarkably, it is possible to find the closed expression for all geodesics for arbitrary k,

in contrast with earlier studies, in the context of black holes, where the expressions for the

scalars become highly complicated and are easily filling several pages for a single scalar field.

The rest of this paper is organised as follows. In the next section 2 we explain the exact

relation between geodesics on the moduli-space and instanton solutions and we provide the

explicit solutions in the case of AdS5 × S5/Zk. In section 3 we compute the on-shell

action of the instantons by first Hodge dualising all axionic scalars. The supersymmetry

analysis of the extremal solutions is discussed in section 4. A brief discussion of the non-

extremal solutions is given in section 5 and a summary of our results with a discussion on
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future applications can be found in section 6. We have also added various appendices with

technicalities required to carry out the computations.

2 Instantons on AdS5 × S5/Zk

2.1 General framework

As explained in the introduction, the instanton solutions in Euclidean AdS5 × S5/Zk are

expected to be solutions of 5D gauged supergravity obtained from compactifying Euclidean

IIB supergravity on S5/Zk. The description of that gauged supergravity can be found

in [19]. The proof that maximal D = 5 supergravity with gauge group SO(6) is a consistent

truncation of Type IIB theory on AdS5 × S5 was recently given in [23, 24]. As far as the

orbifolded case is concerned, the corresponding five-dimensional description in terms of

a suitable gauged half-maximal supergravity is only conjectured. Here we only need the

consistency of the truncation down to the moduli space, i.e. the truncation to the exactly

massless sector of the gauged supergravity. Within that truncation, the bosonic 5d action

is given by (1.5)

S = − 1

2κ25

∫ √
|g5|

(
R5 −

1

2
GIJ∂ΦI∂ΦJ − Λ

)
, (2.1)

where GIJ is the metric on the moduli space Mmoduli and Λ = −12/`2. In Lorentzian

signature, Mmoduli = SU(1, k)/U(k) [19, 20], whereas in Euclidean signature Mmoduli is a

Wick-rotated version of the same manifold [18]

Mmoduli =
SL(k + 1,R)

GL(k,R)
. (2.2)

Euclidean supersymmetry is consistent with different Wick-rotations and to fix the above

choice the following procedure was followed in [18]: the moduli-space is holographically

dual to the conformal manifold (space of marginal couplings) of the necklace quiver gauge

theories with k nodes. The marginal coouplings are k complexified couplings, of which the

real parts correspond to θ-angles and hence get Wick-rotated with an i-factor. The scalars

that are dual to these θ angles should be scalars that enjoy a (classical) shift symmetry

(axions). The manifold

Mmoduli =
SU(1, k)

U(k)
, (2.3)

has exactly k Abelian isometries that act as shifts of k real scalars. This fixes the Wick-

rotation uniquely.

If we restrict to instanton solutions with spherical symmetry, the metric Ansatz is

given by

ds25 = f(r)2dr2 + a(r)2dΩ2
4 , (2.4)

and the moduli only depend on r. It is well-known for such system the scalar field equations

of motion reduce to geodesic equations on Mmoduli and the Einstein equations of motion

decouple from the scalar fields into a universal form, [18, 25]. In the gauge f = a4, r is an

affine parametrization of the geodesics such that

GIJ φ̇
I φ̇J = c , (2.5)
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where φ̇ = dφ/dr. The metric can be determined completely in terms of this number c

from the “Hamiltonian constraint” equation

ȧ2

f2
=

c

24
a−6 +

a2

l2
+ 1 . (2.6)

When c = 0 the metric is just pure Euclidean AdS. This is due to the vanishing of the

total energy momentum of the scalar fields, which is possible because of the indefinite

sigma model metric. The scalar fields in that case trace out lightlike geodesics and the

instantons are called extremal.

When c > 0 the instantons are sub-extremal and the metric has a spike-like singularity

at r = 0 and asymptotes to AdS [11].

When c < 0 the instantons are called super-extremal and the geometry describes a

smooth two-sided wormhole that asymptotes to AdS on both sides [11, 12, 17]. Despite

the smooth geometry, the scalar fields on the simplest sigma models tend to have singular

scalar fields, whose singularities cancel against each other in the energy-momentum tensor.

Such wormholes are considered unphysical [11, 17]. The first attempts to embed smooth

solutions into AdS/CFT were described in [17], whereas recently a very explicit and con-

crete embedding was found inside AdS5×S5/Zk when k > 1 [18]. That observation was the

inspiration for this work, although the main goal of this paper is to understand the extremal

instantons. Some details of the non-extremal instantons are contained here as well.

The extremal instantons can straightforwardly be extended to non-spherical solutions

as follows. The affine geodesic coordinate τ equals r in the gauge choice f = a4 and it is

obvious to check that r is a harmonic function. In a different gauge, it remains of course

true that the affine coordinate τ(r) equals a spherically-symmetric harmonic function on

Euclidean AdS5

∂r(f
−1a4∂rτ(r)) = 0 . (2.7)

When c = 0 the scalars do not backreact on the metric and as a consequence the replace-

ment φi(τ) → φi(H) with H the most general harmonic function on Euclidean AdS5 still

solves all equations of motion.1 The most general harmonic function H with a single center

can be written in terms of the SO(1, 5) invariant function:

F (z, ~x) =

√
[(z0 − z)2 + (~x− ~x0)2][(z0 + z)2 + (~x− ~x0)2]

2z
, (2.8)

where Euclidean Poincaré coordinates are used.2 Now H can be written as:

H(z, ~x) = αF−3

((
1− 2F 2

z20

)√
1 +

F 2

z20

)
+ β , (2.9)

with α, β constants.3 The singularity of the harmonic at z = z0, ~x = ~x0 can be interpreted

as the position of the instanton and is free to chose. So the whole of Euclidean AdS5 is

1This observation is identical to the situation with extremal Reissner-Nordström black holes, where the

spherically symmetric solution can easily be extended in terms of general harmonic functions.
2In these coordinates the metric is given by ds2 = `2

z2

(
dz2 + d~x2

)
.

3We fix α and β such that for the spherically symmetric harmonic we simply have H = r in the gauge

f = a4, see appendix A.
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part of the instanton moduli space. The specific choice z0 = `, ~x0 = 0 can be thought of

as the original spherically-symmetric solution, where H ∼ τ . The most general solution

now consists of taking arbitrary superpositions of harmonics with singularities at different

places. These can be thought of as multi-centered instantons.

2.2 The geodesic curves

To construct the explicit geodesic curves we introduce the following 2k real coordinates on

the moduli space:

U, a, ζi, ζ̃i , (2.10)

where i = 1 . . . k − 1. These coordinates were described in detail in [18] and form the

natural coordinates in a so-called solvable basis on the coset. The metric on the moduli

space can be written as:

ds2 = 4dU2 − e−4UN 2 + 2e−2U
k−1∑
i=1

[(dζi)2 − (dζ̃i)
2] , (2.11)

where the one-form N is defined as follows

N ≡ da+ ZMCMNdZN , (2.12)

with ZM ≡ (ζi, ζ̃i) and CMN the symplectic matrix.4 In contrast, the metric on the moduli

space of Lorentzian AdS which (somewhat confusingly) has Euclidean signature, and can

trivially be obtained from the above metric by flipping the negative signs in front of N 2

and (dζ̃i)
2.

The geodesic solutions can most easily be constructed using the exponential map:

M = M(0) exp(2Qτ) , (2.13)

with Q an element of the Lie algebra of the coset, τ the affine coordinate and M a matrix,

build from the coset representative L (for us in solvable gauge). The details are left for the

appendices B, C, D.

Geodesics through the origin have M(0) = 1 and are somewhat simpler. Surprisingly

these exponential matrices can be completely dissected to get the explicit expressions for

the separate scalar fields (2.10). In the appendices we have laid out the details of this

construction and merely state the result here for the extremal solutions:

U =
1

2
log

[
1

(1− τp0) (1− τm0)

]
, (2.14)

ζi = −τ
(

pi√
2 (1− τp0)

+
mi√

2 (1− τm0)

)
, (2.15)

ζ̃i = −τ
(

pi√
2 (1− τp0)

− mi√
2 (1− τm0)

)
, (2.16)

a = − 1

(1− τp0)
+

1

(1− τm0)
, (2.17)

4Explicitly we have CMN =

(
0 1

−1 0

)
in block notation.

– 6 –



J
H
E
P
0
3
(
2
0
1
8
)
0
9
1

where i = 1, . . . , k − 1. There are 2k integration constants pα,mβ with α, β = 0 . . . k − 1

that obey

~m · ~p = 0. (2.18)

This condition implies that the Noether charge matrix Q is nilpotent. As we explain in

the appendices there are two kinds of solutions: degree 2 (Q2 = 0) and degree 3 (Q3 = 0)

geodesics.

For the simple case k = 1 we show in appendix D how we reproduce the known

D-instanton solutions.

2.3 Geodesic orbits and normal forms

The general solution is described by geodesics whose initial point at radial infinity is dif-

ferent from the origin O of the moduli space, and is defined by generic values of the scalar

fields. These geodesics are obtained by acting on the ones originating in O by means of

shift-like isometry transformations:

U → U + U(0) ,

ζ̃ → ζ̃eU(0) + ζ̃(0) ,

ζ → ζeU(0) + ζ(0) ,

a→ ae2U(0) + ζζ̃(0)eU(0) − ζ̃ζ(0)eU(0) + a(0) . (2.19)

The above transformations are isometries in SL(k+1,R) that act transitively on the coset.

Once the isometry is fixed that brings a general geodesics curve to a curve through the

origin, there is still the freedom to play with the isotropy group that rotates the velocity

vector in the origin. This allows us to bring the charge matrix Q (C.6) to its normal form.

We will do this by fixing the action of SO(k) on the Noether charge: we can reduce ~p to

~p = (p0, 0, . . . , 0) and using the “little group” SO(k − 1) of ~p we can rotate ~m to the form

~m = (m0,m1, 0, . . . , 0). The various orbits of solutions discussed above correspond to the

following choice of parameters:

Q3 = 0 : m0 = 0, m1 6= 0, p0 6= 0 , (2.20)

Q2 = 0 : p0 = 0 or ~m = ~0 . (2.21)

The conclusion is that all lightlike geodesics can be obtained by acting with isometries of

the AdS moduli space on geodesics with these simple charges.

3 The on-shell actions

3.1 Hodge duality

To compute the on-shell action for the instantons one cannot use the sigma-model ac-

tion (1.5) since it vanishes.5 Instead a total derivative is needed to define action that has

5The infinite contribution from the cosmological constant is canceled by holographic renormalisation

(see for instance [11]).
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the correct value on the solution. For the case of a single axion-dilaton pair (1.4) it was

argued in [13] that a term proportional to ∂(χ exp(bφ)∂χ) needs to be added and this total

derivative provides the full on-shell action. This proposal has been shown correct, at least

in the AdS/CFT context, where this prescription made the D(−1) on-shell action match

exactly with the on-shell action of the dual YM instantons [8].

A simple way to argue for that specific boundary term comes from Hodge-dualising

the axion to a 3-form potential B3 with 4-form fieldstrength H4 = dB. The action in terms

of the Hodge dual is given by:

S = − 1

2κ25

∫ √
|g5|

(
R5 −

1

2
(∂φ)2 − 1

2(4!)
e−bφHµ1...µ4H

µ1...µ4 − Λ

)
. (3.1)

Note that there is no flipped sign of the kinetic term here, neither in Euclidean nor in

Lorentzian signature. If the path integral is considered in terms of this Hodge dual field

configuration it is easy to argue that performing Hodge duality by adding Lagrange mul-

tipliers provides the action (1.5) plus the required total derivative [11]. In other words,

using the Hodge dual action directly provides the correct answer for the on-shell action.

We now apply the same logic to our more sophisticated sigma model: we will Hodge

dualise all axions and use the resulting action (without boundary terms) to compute the

on-shell action. The proper way to Hodge dualise proceeds via adding Lagrange multipliers

that are 3-form potentials C3. To Hodge dualise we need to make the shift symmetries

manifest by using ã ≡ a− ζi ζ̃i instead of a:

N = dã+ 2ζidζ̃i . (3.2)

Now ã and the ζ̃i appear explicitly shift-symmetric and can be dualised to 3-forms. From

the EOM, the conserved 4-form field strengths are

H0 = ?e−4UN , (3.3)

Hi = ?
(
e−4UN ζi + e−2Udζ̃i

)
, (3.4)

with i = 1, . . . , k − 1. These are the Hodge duals to the magnetic 1-form fieldstrengths

F1 = dã and Fi = dζ̃i. We now use Legendre transformations in order to dualise the

action. The reason for presenting these details is that this procedure generates the required

boundary term that leads to a finite instanton action.

We start from the sigma model action (1.5). To perform the Legendre transform one

replaces dã → F0 and dζ̃i → Fi and regards F0, Fi as auxiliary 1-form fields. Next we

add Lagrange multiplier terms so to obtain the following action:

S′ = Sgrav +
1

2κ25

∫
2 dU ∧ ?dU + e−2U dζi ∧ ?dζi − e−2U Fi ∧ ?Fi

− e−4U

2
(F0 + 2 ζi Fi) ∧ ?(F0 + 2 ζi Fi)− 2Hi ∧ (dζ̃i − Fi)−H0 ∧ (dã− F0) , (3.5)

where sum over repeated index i is understood and form-notation was used.6 Extremiz-

ing (3.5) with respect to H0, Hi we find dζ̃i = Fi, dã = F0 and we are back to the original

6ω(p) ∧ ?ω(p) = (−1)(D−p)p 1
p!
ωµ1...µpω

µ1...µp , ? ? ω(p) = (−1)(D−p)p ω(p), where in our case D = 5.

– 8 –
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Lagrangian (1.5). Extremizing, on the other hand, with respect to ã, ζ̃i we find:

dHi = dH0 = 0 ⇒ Hi = dCi , H0 = dC0 . (3.6)

Finally extremizing with respect to Fi and F0, we end up with the dual action modulo

boundary terms from H0 ∧ dã, 2Hi ∧ dζ̃i:

S′ = S(dual) + S(bdry) , (3.7)

where7

S(dual) =− 1

2κ25

∫
√
g

(
R−2(∂U)2− 1

2

1

4!
e4UH2

0−e−2U
(∑

i

(
∂ζi
)2− 1

4!
e4UG2

i

))
, (3.8)

S(bdry) =− 1

2κ25

∫
dLB , LB = 2Hi ζ̃i+H0 ã , (3.9)

where we defined the combination Gi ≡ Hi − ζiH0.

3.2 On-shell action as a boundary integral

In the previous section we have dualized the axions ã, ζ̃i into 3-forms. From (3.7) and the

vanishing of on-shell sigma model action (S′), we infer that

S(dual) = −S(bdry) . (3.10)

Hence if the dual action is considered as fundamental, because it has no unusual signs of

kinetic terms, we deduce

Son−shell = −S(bdry) , (3.11)

which means we simply have to evaluate a boundary term and there is no need to integrate.

Since the on-shell action has also an imaginary component we will from here on write

S
(real)
on−shell = −S(bdry) . (3.12)

To evaluate the above boundary term, we use the expressions of Hi, H0 in terms of

the Noether currents associated with the shifts in ζ̃i, ã to arrive at:

S
(bdry)
solution = − 1

2κ25

∫
∂EAdS5

LB , (3.13)

with

LB = e−4U (a+ ζ̃i ζ
i) ∗ (da+ ζi dζ̃i − ζ̃i dζi) + 2 e−2U ζ̃i ∗ dζ̃i . (3.14)

Hence we find:

S
(bdry)
solution = −Vol(S4)

2κ25

[
Π(τ =∞)−Π(τ = 0)

]
, (3.15)

where

Π(τ) = e−4U (a+ ζ̃i ζ
i) (ȧ+ ζi

˙̃
ζi − ζ̃i ζ̇i) + 2 e−2U ζ̃i

˙̃
ζi . (3.16)

7If ω(p) is a p-form, we define ω2
(p) = ω(p)µ1...µp ω(p)

µ1...µp .
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Note that, in our choice of parametrization of the geodesic, radial infinity (“the UV”)

corresponds to τ = 0, which is where the dual boundary theory lives, whereas the “IR” is

towards τ =∞.

Regular solutions require p0 and m0 to have the same sign and by carefully evaluating

the expression (3.15), one finds the following, manifestly positive action:

S
(real)
on−shell =

Vol(S4)

2κ25

[
|(m0 + p0)|

(
1 +

1

2

[
k−1∑
i=1

m2
i

m2
0

+

k−1∑
i=1

p2i
p20

])]
. (3.17)

Supersymmetric solutions have all pα = (p0, pi) or all mα = (m0, mi) equal to zero. If we

consider the case all pi to vanish, the on-shell action becomes:

S
(real)
on−shell =

Vol(S4)

2κ25

1

|m0|

(
m2

0 +
1

2

k−1∑
i=1

m2
i

)
. (3.18)

3.3 Imaginary part of the action and charge quantisation

Now we turn to the imaginary part of the action, based on the appendix of [11]. The path

integral quantisation entails that for every scalar that is shift symmetric (and which will be

dualised) one simply adds its boundary value times the axion charge. The axion charges

are easily computed:

q0 = Vol(S4)−1
∫
S4

H0 = e−2U(0)(m0 − p0) , (3.19)

qi = Vol(S4)−1
∫
S4

Hi =
e−U(0)

√
2

(mi − pi) + e−2U(0)(m0 − p0)ζi(0) . (3.20)

The boundary in this context means the physical boundary (i.e. UV) of the Euclidean AdS

space and corresponds to τ = 0. So we have

Simaginary
on-shell =

Vol(S4)

2κ25

iã(0) q0 + 2i
∑
j

ζ̃j(0) qj

 , (3.21)

or, written differently using previous notation,

Simaginary
on-shell = i

Vol(S4)

2κ25
Π(0) . (3.22)

As opposed to the real part of the on-shell action, the imaginary part is not invariant

under shifts of the axion. The shift invariance of the real part is due to the subtraction

Π(∞)− Π(0). For geodesics through the origin this contribution is zero. The field theory

dual interpretation of the imaginary part is the well known iθTrF ∧ F contribution and

the dual θ’s are nothing but the boundary values of the axions. So if they all vanish, as is

the case of geodesics through the origin, the imaginary action vanishes.

In AdS5 × S5 there was a match between the real part of the on-shell action of the

supergravity and the dual gauge instanton. But also, following the above procedure, a

match between the imaginary pieces is achieved (see for instance [11]).
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The axion charges should be quantised and the exact quantisation condition depends

on the fundamental domain of the moduli space. In other words, it depends on the identi-

fication of the axion to itself:

ã = ã+ L0 , ζ̃i = ζ̃i + Li , (3.23)

where L0 and Li are the lengths of the axion-circles. What these constants L should be

depends on the microscopic theory. So either one starts off with the 10D string theory and

analyses the dimensional reduction over S5/Zk to identify the 10D origin of the axions, or

one uses the detailed map between the moduli and the dual gauge couplings of the quiver.

We leave this for future investigation and for now just state the quantisation in terms

of the circle lengths. For instance, following the recent discussion in [26], we simply use

that the boundary action (3.9) should shift as 2πn, with n integer, under the shifts of the

axions (3.23). This implies the following quantisation rules

q0 = e−2U(0)(m0 − p0) = n0
κ25

Vol(S4)

2π

L0
,

qi =
e−U(0)

√
2

(mi − pi) + e−2U(0)(m0 − p0)ζi(0) = ni
κ25

2Vol(S4)

2π

Li
, (3.24)

with n0, ni ∈ Z.

4 Supersymmetry

We now consider the supersymmetry properties of the extremal solutions in (2.14)–(2.17).

To this end we Wick-rotate the solutions to complex solutions of Lorentzian N = 4, D = 5

gauged theory, for which we know the supersymmetry transformation rules [20, 27]. The

Wick-rotated extremal solutions are trivially obtained from (2.14)–(2.17) by multipling a

and ζ̃ ′s with an i. Now τ is a harmonic function on AdS5. Those solutions, in spite of

being complex, solve the geodesic equations on SU(1, k)/U(k) and thus the field equations

of the Lorentzian N = 4, D = 5 gauged supergravity.

We now review the relevant features of this theory and the embedding of the moduli

space SU(1, k)/U(k) inside the corresponding scalar manifold.

4.1 Half-maximal gauged supergravity

Half-maximal supergravity in 4 + 1 dimensions has a scalar manifold of the following gen-

eral form:

Mscal = SO(1, 1)× SO(5, n)

SO(5)× SO(n)
. (4.1)

We denote by Σ the scalar parametrizing the SO(1, 1)-factor and by VMN the coset repre-

sentative of the latter factor in the fundamental representation of SO(5, n) and thus satisfies

the condition:

VMPVNQ ηPQ = VMmVNm − VMaVNa = ηMN , (4.2)

where

ηMN ≡ diag(+1,+1,+1,+1,+1,−1, . . . ,−1) , (4.3)

and we have written P, Q = (m, a), m = 1, . . . , 5 , a = 6, . . . , n+ 5.
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We now closely follow [20]. The most general gauging of the theory is defined by an

embedding tensor which consists of the SO(5, n)-tensors, ξM , ξMN and fMNP , satisfying

suitable linear and quadratic constraints [27]. For the case of interest we can restrict to

ξM = 0 and then the remaining tensors satisfy

ξMN = −ξNM , ξMQ fQNP = 0 ,

fMNP = f[MNP ] , fRM [NfPQ]
R = 0 . (4.4)

The gauge generators T0, TM are defined, in the fundamental representation of SO(5, n), as

(T0)N
P = ξN

P , (TM )N
P = fMN

P , (4.5)

and close the algebra:

[T0, TM ] = 0 , [TM , TN ] = −fMN
P TP . (4.6)

We further specialize the two tensors to have the following non-zero entries:

ξ12 = ξ67 = · · · = ξ2`+4,2`+5 , ` = 1, . . . , k ,

f345 , fa′b′c′ , a′, b′, c′ = 2k + 6, . . . , n+ 5 . (4.7)

The number k corresponds to the order of the orbifold group Zk. We leave the further

specifications of the gauge group for later, after we have introduced the supersymmetry

transformations.

To write the fermion transformation rules it is also useful to introduce the SO(5)

gamma-matrices (Γm)i
j , i, j = 1, . . . , 4, whose explicit form can be found in appendix E.

In particular we define

VMij = VMm (Γm)ij , (4.8)

and the anti-symmetric matrix

Ωij = (Γ4Γ2)ij , (4.9)

whose details are also laid out in appendix E.

The supersymmetry transformations for the four gravitini ψiµ, the four spin-1/2

fermions χi and the gaugini λia are given by [20, 27]

δψµi = Dµεi +
i√
6

ΩijA
jk
1 Γµεk + . . . , (4.10)

δχi = −
√

3

2
iΣ−1DµΣ Γµεi +

√
2Akj2 εk + . . . , (4.11)

δλai = iΩjk V−1MaDµVijM Γµεk +
√

2Aa kj2 εk + . . . , (4.12)

where εj are the usual four supersymmetry parameters and the . . . indicate terms involving

the vector field strengths. Here Γµ denote the space-time gamma-matrices (not to be
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mistaken with the SO(5) matrices Γm). The fermion shift matrices Ajk1 , Akj2 and Aa kj2

entering these transformations are defined as

Aij1 = − 1√
3

Σ2ΩklV ikMV
jl
Nξ

MN − 4

3
√

6
Σ−1V ikMV

jl
NV

P
klf

MN
P , (4.13)

Aij2 =
1√
3

Σ2ΩklV ikMV
jl
Nξ

MN − 2

3
√

6
Σ−1V ikMV

jl
NV

P
klf

MN
P +

3

2
√

6
Σ−1V ijMξ

M , (4.14)

Aa ij2 = − 1√
2

Σ2VaMV
ij
N ξ

MN +
1√
2

Σ−1ΩklVaMV ikN V
jl
P f

MNP −
√

2

8
Σ−1VaMξMΩij . (4.15)

In terms of these tensors, the scalar potential is then given by

1

4
ΩijV = Ωkl

(
Aa ik2 Aa jl2 +Aik2 A

jl
2 −A

ik
1 A

jl
1

)
. (4.16)

The vanishing of the supersymmetry transformations in (4.10)–(4.12) in the AdS5 back-

ground, where all supercharges are unbroken, entails

〈Aij2 〉 = 〈Aa ij2 〉 = 0 , (4.17)

〈Aij1 A1 kj〉 =
1

4
|µ|2δik . (4.18)

These constraints were solved in [20] where general conditions on the gauging parameters,

compatible with the existence of the AdS5 vacuum, were defined. These conditions are

solved by the choice (4.7), with

ξ12 =

√
2

Σ3
f345 , (4.19)

where in the vacuum we can fix Σ = 1. We choose the gauge group G to have the following

general form

G = U(1)× SU(2)×Hc , (4.20)

where we could take for instance Hc = SU(2) by choosing n = 2k + 3 and fa′b′c′ = f εa′b′c′ ,

although the particular choice of Hc will not be relevant to our discussion.8

4.2 Instanton Killing spinor equations

We now compute the supersymmetry variations of the fermion fields on the instanton

backgrounds. Since only moduli scalars are switched on, the fermion shift tensors still sat-

isfy (4.17)–(4.18). In particular the A2-tensors vanish. The only new terms in the fermion

supersymmetry transformation rules, with respect to the vacuum case, are those involving

the space-time derivatives of the scalar fields and of the supersymmetry parameters. The

dependences are with respect to τ . As indicated before, from here onwards, the variable

τ is allowed to be any harmonic on AdS5 and so is not necessarily the radially symmetric

harmonic.

8To be more concrete, one can show that the orbifold compactification leads to the gauging SU(2) ×
SU(2)×U(1) when k = 2 and to SU(2)×U(1) when k > 2 [19].
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Supersymmetry requires that supersymmetry parameters εi exist such that

Dµεi +
i√
6

ΩijA
jk
1 Γµεk = 0 , (4.21)

Ωjk V−1MaDµVijM Γµεk = 0 . (4.22)

We seek for a solution of the above equations of the form εi = g(τ)i
j ε̊ j , where ε̊ i are the

four Killing spinors of the vacuum. We have fixed Σ = 1, so that the variation of the

dilatinos does not imply any new condition.

Let us first solve equation (4.22). The matrix V entering its right-hand-side is evaluated

on the solution, which depends on the space-time coordinates only through the harmonic

function τ . Therefore, denoting by Γ the following space-time dependent matrix

Γ ≡ Γµ ∂µτ , (4.23)

equation (4.22) can be recast in the form

Ωjk V−1MaV̇ijM Γ εk = 0 . (4.24)

Note that the composite connection Qµ of the scalar manifold does not contribute to the

covariant derivative in (4.22) since Qµ ia = 0. Equation (4.24) further simplifies if we notice

that Γ is a non-singular matrix, so that the condition can be written as follows:

Na
i
k εk ≡ Ωjk V−1MaV̇ijM εk = 0 . (4.25)

This equation implies that the matrices Na = (Na
i
k) must be singular and have a common

null vector. The determinants of these matrices are found to be:

det(N2i+4) = det(N2i+5) ∝ m2
i p

2
i

(1− τ p0)2(1− τ m0)2
, i = 1, . . . , k − 1 ,

det(Na) = 0 , a = 5 + 2k, . . . , n+ 5 . (4.26)

The vanishing of the above determinants implies that mipi = 0 for each i (> 0). From the

nilpotency condition ~p · ~m = 0, it further follows that m0p0 = 0. This condition then also

implies the vanishing of det(N4+2k) and det(N5+2k) such that:

det(Na) = 0 ⇒ mαpα = 0 , ∀α = 0, . . . , k − 1 . (4.27)

Note that one can always find representatives of the nilpotent orbits of Q for which

mαpα = 0, ∀α. We observe that the matrices Na evaluated on these extremal representa-

tives, are all nilpotent and, as we illustrate below, have a definite grading with respect to

the matrix D:

D =


0 −1

2 0 0

−1
2 0 0 0

0 0 0 1
2

0 0 1
2 0

 = − i
2

Γ1Γ2 , (4.28)

which allows us to better understand the supersymmetry properties of the solution.
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4.3 Q3 = 0 orbit

For the orbit with Q3 = 0 and Q2 6= 0 both vectors ~m and ~p are non-vanishing. Then

the Na matrices are all nilpotent but without common null vector. For instance, taking

p1 = 0, m2 = 0 but m1 6= 0 and p2 6= 0, we find:

N8 ∝ N+ ≡


0 0 −1 1

0 0 1 −1

−1 −1 0 0

−1 −1 0 0

 = − (Γ1 + iΓ2) , (4.29)

N6 ∝ N− ≡


0 0 −1 −1

0 0 −1 −1

−1 1 0 0

1 −1 0 0

 = − (Γ1 − iΓ2) = (Ω)T N8Ω . (4.30)

One can verify that the following commutation relations hold

[D, N±] = ±N± . (4.31)

The above nilpotent matrices annihilate no common non-vanishing vector and the cor-

responding solutions are not supersymmetric. Since the isometries of the scalar mani-

fold commute with supersymmetry we deduce that this must be true for the whole orbit.

Nonetheless we demonstrate this explicitly, for the sake of completeness, by analyzing the

grading-structure of the N-matrices in section 4.5.

4.4 Q2 = 0 orbit

As far as the Q2 = 0 orbit is concerned, in which either ~p = 0 or ~m = 0, all the shift

matrices have the same grading and thus annihilate the same 2-parameter spinor. More

details of this can be found in the next subsection, but for now it suffices to know that

equation (4.22) can be solved completely since their is a common kernel for the shift

matrices. To show that the solutions are indeed 1/2-BPS, we have to solve the gravitino

Killing spinor equation (4.21).

The right-hand-side, in terms of εi = g(τ)i
j ε̊j , reads:

Dµεi +
i√
6

ΩijA
jk
1 Γµεk =

(
(∂µgg−1)i

j +Qµij
)
εj + gi

`

[
δj`

(
∂µ +

1

4
ωab, µ Γab

)
+

i√
6

Ω`kA
kj
1 Γµ

]
ε̊j = 0 , (4.32)

provided we choose gi
j so that it commutes with A1 i

j . In the above equation Qµij is

the pull-back on the background of the R-symmetry connection on the scalar manifold.

The terms in square brackets vanish being the gravitino Killing spinor equations for the

vacuum. We are left with the following condition for the matrix g:(
∂µgg−1)i

j +Qµij
)
εj = 0 ⇔ ∂µτ

(
(ġg−1)i

j +Qij
)
εj = 0 , (4.33)
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where we have used the fact that both gi
j and the scalar fields only depend on space-time

through the harmonic function τ , defining Qij so that: Qµij = ∂µτ Qij . We find that Qij

is proportional to the matrix D defined above:

Qij = −2
(m0 − p0)

(1− τ m0)(1− τ p0)
Di

j . (4.34)

Notice that the above matrix is non-compact and thus it is not in USp(4) since the Wick-

rotated solution on which we compute the connection is complex.9 We can find a matrix

gi
j satisfying the equation:

(ġg−1)i
j +Qij = 0 . (4.35)

It suffices to take

g = eh(τ)D , (4.36)

where h(τ) is:

h(τ) = 2

∫
(m0 − p0)

(1− τ m0)(1− τ p0)
dτ . (4.37)

In deriving Equation (4.32) we also used the property that A1 i
j commutes with gi

j , which

follows from eq. (4.36) and the property that, on our background,

A1 i
j ∝ Di

j .

We conclude that the gravitino Killing spinor equations (4.21) are solved by suitably choos-

ing the space-time dependence of the two solutions of the (4.22) equations. This implies

that the Q2 = 0 orbit consists of 1/2-BPS solutions.

4.5 Further details of the Killing spinor analysis

In this section we study the structure of the Na in some more detail.

The shift matrices Na in the extremal solution are al proportional to the nilpotent

matrices N± (defined in (4.29)–(4.30)) with coefficients depending on the charges. To

show this it is useful to define the following matrices:

N i
± = N(2i+4) ∓ iN(2i+5) , i = 1, . . . , k − 1 ,

N 0
± = N(2k+4) ∓ iN(2k+5) , (4.38)

and the functions:

ξ+ =

√
(1− τ m0)(1− τ p0)

(1− τ p0)2
, ξ− =

√
(1− τ m0)(1− τ p0)

(1− τ m0)2
. (4.39)

Then the explicit form of the shift matrices Na is:

N j
+ = pjξ+N+ , (4.40)

N j
− = mjξ−N− , (4.41)

9Indeed, in the Euclidean version of the gauged supergravity, the R-symmetry group is non-compact.
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if j = 1, . . . , k − 1 and

N 0
+ =

[
p0

√
(1− τ p0)
(1− τ m0)

ξ+ +
τ2 (m0 − p0)

2(1− τ m0)(1− τ p0)
~p · ~m

]
N+ , (4.42)

N 0
− =

[
m0

√
(1− τ m0)

(1− τ p0)
ξ− −

τ2 (m0 − p0)
2(1− τ m0)(1− τ p0)

~p · ~m

]
N− . (4.43)

By definition the matrices N j
± are nilpotent with grading[

D,Nα
±
]

= ±Nα
± , α = 0, . . . , k − 1 . (4.44)

For non-extremal solutions the Na are expressed through (4.38) as non-nilpotent com-

binations of these matrices. Once the nilpotency condition on Q is imposed in (4.42)

and (4.43), and in particular mαpα = 0, ∀α, however, all N i
+ and N i

− matrices are pro-

portional to piξ+N+ and miξ−N−, respectively and, as it follows from (4.38), the Na

themselves become nilpotent.

From the above equations it is clear that if the solution is in the Q3 = 0 orbit, the

matrices Na are proportional, for different values of a, to matrices N i
± with different grad-

ings and thus they can not have a common non-vanishing eigenvector with zero eigenvalue.

In the example given earlier, if p1 = 0 and m2 = 0, but m1 6= 0 and p2 6= 0, we see that

N6 = iN7 ∝ N− and N8 = iN9 ∝ N+.

Finally, we comment on the geometrical meaning of the matrix D. The gauge group

breaks the USp(4) R-symmetry group into U(1) × SU(2), which commutes with the gen-

erators of SU(1, k) inside SO(5, n), since the moduli are singlets with respect to it. From

equation (B.4) we see that the generators of SU(1, k) are embedded in the fundamental

representation of SO(5, n) as matrices with non-trivial entries in the rows and columns

labelled by the values m̃ = 1, 2, ã = 1, . . . , 2k of the indices m = 1, . . . , 5 and a = 1, . . . , n.

The U(1) gauge generator J0 in the same representation of SO(5, n) reads [20]:

J0 = diag(ε, 03,

k︷ ︸︸ ︷
ε, . . . , ε, 0n−2k) , ε =

(
0 1

−1 0

)
. (4.45)

On the other hand the matrix D = −iΓ1Γ2/2 is the spinorial representation of a generator

D which, in the fundamental representation of SO(5, n), has the following block-diagonal

form:

D = i diag(ε, 03, 02k, 0n−2k) . (4.46)

This matrix can be written as follows

D =
i

k + 1
J0 + J , (4.47)

where i J is the Kähler U(1)-generator of the moduli space SU(1, k)/S[U(1)×U(k)], so

that J is the pseudo-Kähler O(1, 1)-generator of the Wick-rotated space SL(1 + k)/GL(k).

The explicit form of J in the fundamental representation of SL(1 + k) is given in eq. (C.2).

Equation (4.47) implies that D differs from J by a matrix which is proportional to J0
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and which therefore commutes with SL(1 + k). In particular D and J have the same

eigenmatrices N±α , see appendix C. Alternatively iD can be viewed as the projection of J0
on the subspace corresponding to the 5, and labelled by the index m, of the R-symmetry

group. This explains why the matrix A1 i
j , which should commute with the gauge group

generators, is proportional in the background to the projection on the corresponding R-

symmetry representation, of J0, and thus, in the Euclidean theory, to D. With respect to

D the spinorial representation of the Euclidean R-symmetry group decomposes as follows:

4→ 2+ 1
2

+ 2− 1
2
, (4.48)

where 2 is the spinor representation of the SU(2) group commuting with D.

The grading structure relative to D, which we found for the shift matrices Na in the

extremal case, reflects the general structure of the Noether charge matrix Q as expressed

in (C.6) in terms of the N±α nilpotent matrices. In particular in the Q2 orbit Q has a

definite grading with respect to J , and thus to D, and this amounts to the fact that the

Na tensors have all the same gradings with respect to D.

In the Q2 = 0 orbit the Killing spinors are defined by the 2+ 1
2

representation if ~m = 0

and by the 2− 1
2

representation if ~p = 0.

5 Non-extremal solutions

The extremal instantons described sofar correspond to lightlike geodesics (GIJ φ̇
I φ̇J = 0).

In this section we turn to non-extremal instantons which therefore are defined by a non-

zero geodesic velocity squared GIJ φ̇
I φ̇J = c 6= 0 . We explained already in section 2 that

the sign of c determines the qualitative features of the instantons.

If c > 0 the solutions are under-extremal and correspond to a deformed EAdS metric

that has a spike-like singularity in the middle. That singularity can potentially be inter-

preted as the position of the instanton and if so, we speculate the singularity gets resolved

in full string theory.10

If c < 0 the metric is a smooth double-sided Euclidean wormhole and the corresponding

instanton could be called “over-extremal”. Its existence is sometimes argued via the Weak

Gravity Conjecture [30, 31]. Typically such wormhole solutions have singular scalar field

profiles that are considered unphysical. Interestingly, a subset of the family of the geodesics

of the sigma models considered here were recently shown to be fully regular [18] and this

can be explicitly verified from the expressions we present below.

It is the aim of this section to provide the explicit expressions for the geodesics, discuss

their orbit structure under the global symmetry group and to compute their on-shell action.

For the latter we can use the boundary integral (3.13) on the condition that the solution is

regular in the bulk. This is problematic for the c > 0 solutions. But we adopt the pragmatic

10One feature of these solutions is that they can be rotated using the global symmetry SU(1, k) into a

solution without axion fields. Such solutions can be consistently Wick-rotated to real solutions in Lorentzian

AdS where they describe analogs of the singular flow found long time ago by Gubser [28]. Unfortunately

no clear holographic dual to that flow exists and it is yet unclear whether the singularity is physical since

it does not pass some simple criteria [29].
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attitude that the singularity will be resolved in full string theory such that we do not pick

up a contribution in the on-shell action from the singular region. This approach at least

gave sensible results in flat space with a single axion-dilaton pair [16], where the on-shell

action of the c > 0 instanton correctly matched the mass of a non-extremal Reissner-

Nordström black hole obtained from “oxidising” the instaton over the time-direction. For

the wormholes c < 0 the boundary formula now needs to evaluated at the left and right

boundary of the wormhole and both contributions come with a relative minus sign.

5.1 The general solutions

One can readily check that the exponential of the charge matrix Q (C.6) is given by

exp(2τQ) = 1 +
1

µ2
Q2(cosh(2µτ)− 1) +

1

µ
Q sinh(2µτ) , (5.1)

where, µ =
√
|~m · ~p| and c = 4µ2 > 0. If c = −4µ2 < 0 we simply replace µ→ i µ.

Considering the right hand side of (C.4) as in (5.1), we obtain the following general

solution for ~m · ~p > 0

U =
1

2
log

[
µ2

(m0 sinh (µτ)− µ cosh (µτ)) (p0 sinh (µτ)− µ cosh (µτ))

]
, (5.2)

ζi =
1√
2

[
mi

m0 − µ coth (µτ)
+

pi
p0 − µ coth (µτ)

]
, (5.3)

ζ̃i =
1√
2

[
− mi

m0 − µ coth (µτ)
+

pi
p0 − µ coth (µτ)

]
, (5.4)

a = − m0

m0 − µ coth (µτ)
+

p0
p0 − µ coth (µτ)

, (5.5)

where i = 1, . . . , k − 1, as before.

If ~m · ~p < 0 the solution can be rewritten in the following form:

U =
1

2
log

[
µ2

(m0 sin (µτ)− µ cos (µτ)) (p0 sin (µτ)− µ cos (µτ))

]
, (5.6)

ζi =
1√
2

[
mi

m0 − µ cotg (µτ)
+

pi
p0 − µ cotg (µτ)

]
, (5.7)

ζ̃i =
1√
2

[
− mi

m0 − µ cotg (µτ)
+

pi
p0 − µ cotg (µτ)

]
, (5.8)

a = − m0

m0 − µ cotg (µτ)
+

p0
p0 − µ cotg (µτ)

. (5.9)

Similar to the lightlike geodesic curves, we can use global shift-like symmetries (2.19) to

find the general curve that does not pass through the origin at τ = 0. We can also rotate

the solutions through the origin into simple “generating solutions” desribed by the normal

form of Q under SO(k). This gives us the orbit structure. As before this implies that

~p = (p0, 0, . . . , 0) and ~m = (m0,m1, 0, . . . , 0). There is now only one orbit for each sign of c:

c > 0 : p0m0 > 0 ,

c < 0 : p0m0 < 0 . (5.10)
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5.2 On-shell action

We now compute the on-shell action for the non-extremal solutions with c > 0. We evaluate

the boundary action using the formula (3.13), and find:

Sreal
on−shell =

Vol(S4)

2κ25

1

m̂2
0p̂

2
0

Abs

[
(m̂0 + p̂0)

2

k−1∑
i=1

(m̂0 pi − p̂0mi)
2 − µ m̂0p̂0(m0 − p0)

]
,

(5.11)

where we have defined:

m̂0 = m0 − µ , p̂0 = p0 − µ , µ =
√
~m · ~p . (5.12)

The reader can verify that in the extremal limit µ → 0, the expression (5.11) reduces to

the corresponding formula for the extremal case.

In case c < 0, the on-shell action is similar but now involves the subtraction of the

boundary term Π on the left and on the right side of the wormhole and we leave a detailed

discussion of these on-shell actions for a separate work [22].

6 Discussion

Let us summarize the results of this paper. We have argued that instanton solutions of

IIB supergravity in Euclidean AdS5 × S5/Zk are completely characterized by the geodesic

curves in the moduli space of the Euclidean vacuum, Mmoduli = SL(k + 1,R)/GL(k,R),

which is a suitable Wick-rotation of the moduli-space of the Lorentzian vacuum: Mmoduli =

SU(1, k)/S[U(1) × U(k)]. We have found the explicit expression for the general geodesic

curve and computed the on-shell action in terms of the charges.

Our main focus was on the extremal instanton solutions given by the lightlike geodesics.

The metric then remains pure Euclidean AdS since the energy-momentum tensor vanishes.

The lightlike geodesics are separated into two classes depending on the nilpotency of the

Noether charge matrix Q. If Q2 = 0 the solutions preserve 8 out of the original 16 super-

charges. The remaining lightlike geodesics have Q3 = 0 and break all supersymmetries.

An obvious question for future research is the map between these instantons and the

instantons of the holographic dual 4D N = 2 necklace quiver theories [19, 32]. Especially

for the supersymmetric solutions it is tempting to expect that a detailed correspondence

should work out and we hope to come back to this in a future work. Some relevant studies

of instantons of the necklace quivers can be found in [33, 34]. If the extremality condition

in the supergravity condition maps to the self-duality of the Yang-Mills field strengths

then our results suggest that the dual quiver gauge theories should have a whole zoo of

non-supersymmetric but self-dual solutions dual to the sugra solutions with Q3 = 0.

Closely related to the gauge theory dual interpretation is the stringy interpretation of

these instantons. Since the massless fields consist of the axio-dilaton in IIB and 2(k − 1)

fields corresponding to the periods of B2 and C2 over the shrinking two-cycles of S5/Zk

(twisted sector) the uplift to 10D should correspond to a mixture of the standard D-

instanton and various fractional D-instantons. The fractional D-instantons can be regarded

– 20 –



J
H
E
P
0
3
(
2
0
1
8
)
0
9
1

as Euclidean F1 and D1 strings wrapping the shrinking cycles. Hence we expect the m0

(p0) charges to originate from D-instantons sources and the mi (pi) charges to originate

from the Euclidean D1’s (F1’s) wrapping the vanishing two-cycles. The fact that the latter

charges can be fractional seems consistent with the fractional contributions m2
i /m0 in the

on-shell action (3.18).

Finally we note that the observation that supergravity instantons are geodesics on the

AdS moduli-space is of course not restricted to AdS5×S5/Zk and this should hold in general.

The holographic correspondence between an AdS moduli space and the conformal manifold

of the dual field theory then suggests the general result that geodesics on the conformal

manifold are in correspondence with instantons of the CFT at large N. If correct, this is

rather intriguing, since it is far from obvious how the solutions of the self-duality equation

should know about the Zamolodchikov metric on the conformal manifold.

Therefore a natural extension of this work would be the investigation of instantons in

Euclidean AdS3 × S3 × T4 or AdS3 × S3 × K3. The dual (D1-D5) CFT’s have conformal

manifolds of the type [35]
SO(4, n)

SO(4)× SO(n)
, (6.1)

with n = 20 for K3. However the analogues supergravity analysis of the AdS moduli spaces

in D > 3 [19, 20, 36–40] has not been carried out in 3D gauged supergravity.
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A A note on parametrizations of EAdS5

The two parametrizations of EAdS5 that we refer to in this work are xµ = (z, ~x),

~x = (x1, . . . , x4), and xµ = (r, φ`), ` = 1, . . . , 4 in which the metric reads:

ds2 =
`2

z2
(
dz2 + |d~x|2

)
=

dr2

1 + r2

`2

+ r2 d2Ω(S4) , (A.1)

where in the radial parametrization (r, φ`), φ` parametrize a 4-sphere S4 of unit radius,

whose line element is denoted by d2Ω(S4). The radial variable r, as a function of z, ~x is

given by:

r(z, ~x) = F (z, ~x) , (A.2)

where F (z, ~x) is given in (2.8) with ~x0 = ~0, z0 = `.

In the radial parametrization, if H(r) is the spherically symmetric harmonic function

in eq. (2.9), we have the following useful formula:√
|g5| grr ∂rH = −3α

√
|g(S4)| , (A.3)
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where |g(S4)| is the determinant of the metric on the unit S4. This relation is useful when

computing the integral over EAdS5 of a Lagrangian density evaluated on solutions which

only depend on H. We conveniently choose α = 1/3.

The boundary of EAdS5 is located at r → ∞ which corresponds to z = 0. The

parameter β in (2.9) is fixed requiring that H = 0 at the boundary.

B The coset construction

We consider the scalar manifold

Mmoduli =
SL (k + 1)

GL (k)
, (B.1)

which is conveniently described in terms of a solvable Lie algebra parametrization, in

which the scalar manifold Mmoduli is globally described as isometric to a solvable group

manifold generated by Solv :Mmoduli ∼ exp(Solv). The scalar fields U, ζi, ζ̃i, a parametrize

respectively the generators H0, Ti, T
i, T• of Solv via the coset representative

L = exp(−aT•) exp(
√

2ZMTM ) exp(2UH0) , (B.2)

where ZM ≡
(
ζi,ζ̃i

)
. The index i runs over 1 . . . k − 1. The solvable generators have the

explicit form

H0 =
1

2
(e1,k+1 + ek+1,k) ,

T
(1)
i = Ti =

1

2
(ei+1,k+1 − ek+1,i+1 − e1,i+1 − ei+1,1) ,

T
(2)
i = T i =

1

2
(e1,i+1 + ek+1,i+1 + ei+1,k+1 − ei+1,1) ,

T• =
1

2
(e1,1 + ek+1,1 − e1,k+1 − ek+1,k+1) .

(B.3)

From the solvable generators in (B.3) one can construct the following 2k non-compact

generators

K0 = H0 ,

K
(1)
i =

1

2

(
T
(1)
i + T

(1)
i

T
)
,

K
(2)
i =

1

2

(
T
(2)
i − T (2)

i

T
)
,

K• =
1

2

(
T• − T•T

)
.

(B.4)

The isometry algebra g = sl(k+ 1) splits into the isotropy algebra H = gl(k) and the coset

space K. The Cartan involution σ leaving H invariant acts as σ(g) = η g η, where η is the

GL (k)-invariant matrix

η =


1 0 · · · 0

0 −1
...

...
. . . 0

0 · · · 0 −1

 . (B.5)
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The matrix M(φ), defined as,

M(φ) = LηL−1η , (B.6)

is manifestly invariant under L→ Lh, where h ∈ GL(k). We also have that

M−1dM = 2σ(L)P σ(L−1) , (B.7)

where P is the vielbein 1-form matrix. Then the metric can be written in the form

GIJ(φ) =
1

2
Tr(M−1∂IMM−1∂JM) , (B.8)

and leads to the expression (2.11).

The explicit embedding of the moduli-space coset (2.3) (or (B.1)) into the bigger

coset (4.1) of half-maximal supergravity is necessary for computing the matrices V used in

the analysis of the Killing-spinor equations. The explicit embedding of the SL(k + 1) Lie

algebra generators, inside SO(5, n) solvable generators is given by

H0 =
1

2
(e1,2k+4+e2,2k+5+e2k+4,1+e2k+5,2) ,

Ti =−1

2
(e1,2i+4+e2,2i+5+e2i+4,1+e2i+5,2−e2i+4,2k+4−e2i+5,2k+5+e2k+4,2i+4+e2k+5,2i+5) ,

−iT i =−1

2
(e1,2i+5−e2,2i+4+e2i+5,1−e2i+4,2+e2i+4,2k+5−e2i+5,2k+4+e2k+4,2i+5−e2k+5,2i+4) ,

−iT• =−1

2
(e1,2−e2,1−e1,2k+5+e2,2k+4+e2k+4,2−e2k+5,1−e2k+4,2k+5+e2k+5,2k+4) , (B.9)

where the −i factors in the left hand sides of the last two equations are due to the fact that

T i, T• are SL(k+1)-generators, so that −i T i, −i T• are the SU(1, k)-generators embedded

in SO(5, n) as described in [20].

C The geodesic charges

The following generators

N±i = −
(
K

(1)
i ±K

(2)
i

)
,

N±0 = N±• = K0±K• ,
(C.1)

are all nilpotent and the corresponding matrices N±α , α = 0, . . . , k−1, have definite gradings

with respect to the SO(1, 1) generator J of the pseudo-Kähler transformations

J =
1

k + 1
diag(−k,+1,+1, . . . ,+1) , (C.2)

which commutes with the sl(k) subalgebra of H. One can indeed verify that

[J, N±α ] = ±N±α . (C.3)

The solution φ̂I(τ) to the geodesic equation, defined by the values of the scalar fields at

radial infinity φ̂I(τ = 0) = φI0 and Noether matrix Q̂, can be written as the solution to the

matrix equation

M(φ̂(τ)) = M(φ0) exp(2 Q̂ τ) , (C.4)
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where φ0 ≡ (φI0). It can be obtained from a geodesic φI(τ) with initial point φI(τ = 0) = 0

and Noether matrix Q through the transformation L0 ≡ L(φ0):

M(φ̂(τ)) = L0M(φ(τ))σ(L0)
−1 , Q̂ = σ(L0)Qσ(L0)

−1 . (C.5)

Let us concentrate on the solution through the origin. The corresponding Noether matrix

belongs to the coset space Q ∈ sl(k+1)	gl(k) and can be expressed as the following linear

combination of the coset generators in (C.1)

Q =

k−1∑
α=0

(
pαN

+
α +mαN

−
α

)
=


0 m1 · · · mk−1 m0

p1 0 · · · 0 0
...

...
. . .

...

pk−1 0 · · · 0 0

p0 0 · · · 0 0

 . (C.6)

The total geodesic velocity squared, is then given by the simple inner-product:

c = 2Tr(Q2) = 4 ~p · ~m , (C.7)

where ~m = (m0, . . . ,mk−1), ~p = (p0, . . . , pk−1) and µ2 ≡ ~p · ~m. The nilpotency condition

for Q is:

Q nilpotent ⇔ ~m · ~p = 0 . (C.8)

In this case there are two nilpotent orbits:

• The orbit of degree 2 (Q2 = 0), obtained when all coefficient p or m are zero. In this

case Q has a definite grading with respect to the pseudo-Kähler generator J :

[J, Q] = Q (~m = 0) ; [J, Q] = −Q (~p = 0) ; (C.9)

• The orbit of degree 3 (Q3 = 0) otherwise.

The grading property of Q in the first class has a bearing as to the supersymmetry prop-

erties of the corresponding solutions, as explained in section 4.

The equation (C.4) admits the general solution presented in the main text in equa-

tions (2.14)–(2.17).

D Some simple solutions

When k = 1 ζi = ζ̃i = 0. If we call φ = −2U and χ = a, to make contact with [11], we find

from (2.14)–(2.17):

eφ = (1− pτ)(1−mτ) , χ =
1

1− τm
− 1

1− τp
. (D.1)

We can either set m = 0 or p = 0. Regularity requires (1 − pτ)(1−mτ) > 0.
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The anti-instanton. Setting m = 0 and

1− pτ = |q−|H ,

where the harmonic function H is the one used in [11], we have

eφ = |q−|H , χ = 1− 1

|q−|H
.

If we define q− = −|q−| and shift χ → χ − 1 + q3
q−

, we end up with the anti-instanton

solution of [11].

The instanton. If we set p = 0,

1−mτ = |q−|H ,

and q− = |q−| > 0 we get:

eφ = |q−| τ , χ =
1

q−H
− 1 .

Shifting χ→ χ+ 1 + q3
q−

we end up with the instanton solution of [11].

E Clifford algebra of SO(5)

The gamma-matrices (Γm)i
j , i, j = 1, . . . , 4, of SO(5) are 4× 4 matrices satisfying:

{Γm, Γn} = Γm Γn + Γn Γm = 2δmn 14 , m, n = 1, . . . , 5 , (E.1)

where 14 is the 4 × 4 identity matrix. The spinorial representation of SO(5) is the fun-

damental representation of USp(4) and features an antisymmetric invariant matrix Ωij ,

which coincides with the charge conjugation matrix Cij , satisfying CΓmC−1 = ΓmT :

Ωij = Cij , Ωij ≡ Ωij . (E.2)

The indices are lowered and raised using Ωij and Ωij , respectively, using the North-West,

South-East convention. In particular we define the matrices:

(Γm)ij = Ωik (Γm)k
j , (E.3)

which satisfy the properties:

(Γm)ij = −(Γm)ji , (Γm)ijΩij = 0 , (Γm)ij = ΩikΩjl(Γm)kl = ((Γm)ij)∗ . (E.4)

The antisymmetric couple [ij] in (Γm)ij labels the representation 5 of USp(4), described

as the antisymmetric, traceless product of two 4 representations, which also coincides with

the fundamental representation of SO(5). The tensor (Γm)ij intertwines between the two

different descriptions of the same representation.
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We choose for them the following explicit representation:

Γ1 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 = σ1 × 12 , Γ2 =


0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 = −σ2 × σ1 ,

Γ3 =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 = −σ2 × σ2 , Γ4 =


0 0 i 0

0 0 0 −i
−i 0 0 0

0 i 0 0

 = −σ2 × σ3 ,

Γ5 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 = σ3 × 12 = +Γ1Γ2Γ3Γ4 , (E.5)

where σx, x = 1, 2, 3, are the usual Pauli matrices. In this basis Ω = (Ωij) = C reads:

Ω = Γ4Γ2 = 12 × iσ2. We refer to appendix A of [20] for the properties of these matrices.
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