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ABSTRACT Microwave resonators are widely adopted as high sensitivity sensors in both applied and funda-
mental metrology, to measure a number of different physical quantities, such as temperature, humidity, pres-
sure, length and material properties. High sensitivity, and thus potential high measurement precision and ac-
curacy, can be achieved by resorting to high-quality-factor (Q) resonators. Nonetheless, in order to accurately
measure a high-Q resonance and obtain low measurement uncertainty, as required by metrology applications,
the entire measurement set-up must be carefully designed. This papers presents an overview of resonance
frequency measurements for metrology applications, illustrating the various aspects and issues to be dealt
with when pursuing highly accurate measurements, as well as of the most relevant achievements in this field.

INDEX TERMS Cavity resonators, microwave metrology, microwave resonance, microwave sensors, whis-
pering gallery resonators.

I. INTRODUCTION
Microwave resonators are key elements for the implementa-
tion of amplifiers, oscillators and filters. Beyond this, they
have found widespread application as highly-sensitive sensors
in industry (e.g., for moisture and displacement sensing appli-
cations [1]–[4]), scientific research and metrology [5]–[9]. In
fact, among all physical quantities, frequency and time can be
measured with exceptional accuracy, thus making microwave
resonances one of the most interesting methods for measur-
ing temperature [10], [11], pressure [8] and humidity [12],
[13], for accurately characterizing permittivity, permeability,
mass, density and water content for a variety of materials [9],
[14] and for detecting foreign particles [15], since the res-
onance frequency of a microwave resonator depends on all
these physical parameters. Moreover, high sensitivity, high
speed, relatively low cost, high adaptability and flexibility
and their non-destructive, non-contact nature are the main
advantages of resonance-based measurements, together with
their ability to take precise measurements within a small
area.

The high sensitivity and thus the potential high precision
and accuracy of resonance-based measurements is related to
the quality factor (Q) of the resonator:

Q = fr

BW
(1)

where fr is the resonance frequency and the bandwidth BW is
defined as the full width at half maximum (FWHM, −3 dB).
The higher Q, the higher the achievable resolution in de-
termining the resonance frequency. Among others, quasi-
spherical cavity resonators (QSRs) and whispering-gallery-
mode dielectric resonators (WGMRs) demonstrated Q fac-
tors in the order of 104 to 106 and thus found application
as primary metrology instruments [8], [10], [16]–[18] and
transfer standards [19] as well as in fundamental metrologi-
cal experiments for the determination of the Boltzmann con-
stant [7], [20] and, nowadays, for the mise en pratique of the
kelvin [21].

The resonance characteristics depend on the resonator’s
structure and geometry and are found by solving Maxwell’s
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FIGURE 1. Measurement set-up for the identification of the complex
resonant frequency of a microwave resonator. From this quantity, other
physical parameters (of the resonator, of its content or of the environment)
can be obtained as shown in Fig. 10.

equations with the resonator boundary conditions. This anal-
ysis leads to the complex resonance frequency

f0 = fr + jgr (2)

where the real part is the resonance frequency fr itself and the
imaginary part

gr = fr

2Q
= BW

2
= � f (3)

is the half-width of the resonance which represents the leaky
term of the solution. For metrology applications high accuracy
is fundamental, often at levels usually not necessary in com-
mon microwave applications, i.e. in the range of few parts-per-
million (ppm) down to few parts-per-billion (ppb). The intrin-
sic high sensitivity and resolution of the resonator alone are
not sufficient to guarantee high measurement accuracies, for
which, as a matter of facts, the accuracy of the entire measure-
ment set-up is a key factor. As depicted in Fig. 1 the resonator
is coupled by means of a microwave antenna to a frequency
swept signal generator that inject power into the resonator, ex-
citing the desired resonant mode/modes. At resonance, more
power is transferred to the resonator, thus, in principle, the
resonance can be characterized either by measuring the power
reflected by the resonator (or S11) or the transmitted power
(or S21). The former exhibits a dip in magnitude at resonance,
while the latter a peak in magnitude. In either cases a tuned
signal receiver locked to the same frequency reference (time
base) of the generator is adopted. However, as detailed later
on, in practice transmission measurements are always pre-
ferred. In principle scalar transmission measurements should
be sufficient to obtain both the real and imaginary parts of the
complex resonance: the former is the frequency at which peak
transmission occurs, while the latter is the span between the
two −3 dB (half-power) frequency points. However, as shown
in the following, in order to achieve a high level of accuracy
with real resonators, parameter extraction from measurement
fitting is practically mandatory.

This papers presents a brief overview of the current and po-
tential exploitation of resonance frequency measurements in

metrology, highlighting the critical and/or challenging aspects
that such applications pose to the measurement setup, the in-
strumentation equipment and the data processing algorithms.
The rest of the paper is organized as follows: Section II recalls
the basics concepts of resonance modes; then, Sections III
and IV discuss the various aspects of resonance measure-
ments; finally, in Section V the main metrology applications
of QSRs and WGMRs are presented.

II. RESONANCE THEORY REVIEW
A resonator is a “closed” structure that confines electromag-
netic (EM) waves within it by means of reflection at bound-
aries and thus naturally resonates at specific frequencies. A
cavity resonator is a metallic enclosure, either hollow or filled
with some dielectric, thus it is the high conductivity of the
metal walls that confines EM waves. A dielectric resonator
is a solid object made of a high-dielectric-constant material,
thus the reflection mechanism relies on an abrupt permittiv-
ity change at its surface. EM waves inside the cavity travel
back and forth interfering each other, therefore, at frequencies
where the resonator dimensions along a certain wave direction
are multiple of half-wavelength, they create standing waves,
leading to large oscillations, and store energy in the resonator.
Whispering-gallery mode resonators, are peculiar dielectric
structures in which confined standing waves are generated
along the equatorial surface thanks to rotational symmetry
along the central axis and total internal reflection mechanism.

Losses in cavity and dielectric resonators are due to, re-
spectively, the finite conductivity of metallic walls and the
dielectric losses. Cavity resonators are typically adopted at
microwave frequencies, where the physical dimensions of the
cavity can be reasonably small and metal losses are limited.
Dielectric resonators are instead typically employed at higher
frequency, where metal losses start to become non-negligible
and higher than dielectric ones.

A resonator is typically a multi-mode structure, show-
ing different resonant frequencies associated to different EM
modes. Moreover, unless particular geometries are adopted
to deliberately create a low-pass behavior, resonance occurs
also at the harmonics of these fundamental frequencies, even
if with weaker oscillation amplitudes.

The simplest resonators are shorted pieces of rectangular
(prism resonator) or circular (cylindrical resonator) waveg-
uides, either metallic or dielectric. Circular geometries are
often preferred in practical applications, as they present lower
machining cost and higher geometrical accuracy, which in
turn gives higher Qs. Metallic waveguides, and thus cavity res-
onators, support only transverse electric (TE) and transverse
magnetic (TM) modes, while in dielectric resonators hybrid
electromagnetic modes (HEM) also exists due to imperfect
boundary conditions, which are however low-Q modes and
thus not of interest for metrology applications [22].

Resonant modes can be found mathematically by solv-
ing the wave equations inside the resonator considering the
boundary conditions. For ideal resonators and simple geome-
tries closed-form solutions are available, however for a very
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accurate resonance model it is necessary to recur to numerical
simulations, usually carried out by means of 3D finite-element
(FEM) solvers.

A. CAVITY RESONATORS
Assuming perfectly conductive walls and homogeneous filling
with a dielectric of permittivity ε and permeability μ, the res-
onance frequencies of rectangular, cylindrical and spherical
resonators can be found analytically [23]. The homogeneous
filling, together with the absence of internal sources, ensures
that the divergence of the electric field is zero, while perfect
conductive walls force zero tangential electric field at the
metallic surface. The simple geometry allows the problem to
be stated in terms of a scalar Helmholtz equation

(∇2 + k2)ψζ = 0 (4)

where ∇2 is the Laplacian operator, ψζ is the scalar potential
associated to the field vectors and k is the wave number. This
is an eigenvalue equation, thus its non-zero solution is an
infinite discrete set of eigenfunctions ψζ associated to the
eigenvalues k2

ζ , where the index ζ is a multi-index given by
a combination of the mode numbers (ζ = mnp). The resonant
frequencies (eigenfrequecies) are given by:

fζ = kζ
2π

√
εμ

(5)

Note that there may be degenerate modes having the same
eigenfrequency for different combinations of the mode
numbers.

1) SPHERICAL AND QUASI-SPHERICAL RESONATORS
Spherical resonators are the most interesting for metrology
applications. Comparing the lowest-order modes of a spher-
ical resonator of radius a with those of a cylindrical and a
cubic resonator of roughly the same volume the former shows
highest quality factor [23]. Moreover, the sphere shape can be
manufactured with an higher degree of accuracy, confirming
the possibility to achieve higher quality factor also when deal-
ing with real resonators.

For a spherical cavity the Laplacian can be expressed in
(r, θ , φ) coordinates and the Helmholtz equation in (4) is
obtained by defining TE and TM modes with respect to r,
i.e. considering concentric spherical waves. The field solution
can be written in terms of sinusoids, Legendre functions and
spherical Bessel functions (and their derivatives). The rela-
tionship between the resonance frequencies and the cavity
radius a is

f TE
mnp = unp

2πa
√
εμ

(6a)

f TM
mnp = u′

np

2πa
√
εμ

(6b)

for TE and TM modes, respectively, where unp and u′
np are

the p-th zeros of the n-th order spherical Bessel function and
of its derivative, respectively. Since resonance frequencies are

FIGURE 2. Transmission profile of a QSR triplet: peak separation can be
visually appreciated even though the separation between the farthest
peaks is within 120 ppm. The three individual resonances can be found
with fitting as reported in Fig. 9.

independent of m, many degenerate modes, at least triplets,
are present in a spherical cavity.

The higher Qs, together with excellent acoustic properties
of spherical resonators (non-degenerate, radially symmetric
and very high Q acoustic resonant modes together with in-
sensitivity to viscous damping at the boundaries [24]) made
them a preferable choice for metrology applications. How-
ever, only in an ideal sphere the three peaks are perfectly
superimposed. In real resonators, instead, they are not coinci-
dent but at the same time too close to be distinguished, hence
the overall effect is a single peak with larger bandwidth. To
overcome this issue, quasi-spherical resonators (QSRs) have
been developed [16]. In a QSR, degenerate modes separation
is intentionally amplified, as shown in Fig. 2, by transforming
the sphere into a triaxial ellipsoid with axes a, a + δa1 and
a + δa2. As analytically shown in [25]–[27], the fractional
splitting is determined by the two parameters δa1, δa2 � 1.
The mean resonance frequency is still given by (6) substituting
the radius a with the equivalent radius aeq as demonstrated
in [28].

2) MICROWAVE CAVITY PERTURBATION
In many cases cavity-resonator-based measurements rely on
the microwave cavity perturbation (MCP) approach [8], [29].
Any variation in the dielectric characteristics of the material
that fills the cavity is translated into a variation of the res-
onance frequency and, if the material is lossy, of the reso-
nance bandwidth (i.e. complex frequency shift). By taking two
subsequent measurements, a first with the empty (unloaded),
cavity and a second after introducing the sample that is object
of the measurement into the resonator (loaded cavity) the
dielectric or physical properties of the sample can be obtained.
The sample can completely fill the cavity, as in gas character-
ization [13], or only a portion of its volume.

Under the assumption of small perturbation, i.e. when per-
turbed and unperturbed fields are approximately the same, the
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relationship between the change in the complex permittivity
and/or permeability of the sample and the complex resonance
frequency can be written as [30], [31]

δ f0

f0
= δ fr

f0
+ j

δgr

f0
≈ −

∫
δε|E |2 + δμ|H |2dV∫
ε|E |2 + μ|H |2dV

(7)

where E and H are the unperturbed electric and magnetic
fields and dV denotes integration on the associated volume.
The MCP assumption holds for small δε and/or δμ or when
the sample has a small volume compared to the cavity and it
is properly placed inside it (at a standing wave maximum and
parallel to the field of interest). With the MCP approach, the
quantity of interest is not the absolute complex frequency but
its drift, obtained from the ratio between the loaded ( f ′

0) and
unloaded ( f0) resonance frequency:

δ f0

f0
= f ′

0

f0
− 1 (8)

B. DIELECTRIC RESONATORS
Dielectric resonators gained interest in microwave oscillators,
filters and antennas design thanks to their reduced dimensions
with respect to waveguide based components. In fact, for the
same resonance frequency, the size of a dielectric resonator
made out of a high-permittivity material is sensibly smaller
than that of an empty cavity, hence lowering weight and cost
and easing ingratiation, while it shows comparable tempera-
ture stability. Moreover, at increasing frequency, metal losses
becomes non-negligible and dielectric resonators outperform
cavity ones also in terms of Q [32]. Beyond this, dielectric
resonances are used to characterize the complex permittivity
and permeability of dielectric materials [33]–[35].

In a dielectric resonator, the open circuit boundary condi-
tions are only approximately satisfied, thus EM fields compo-
nents extend outside the resonator. Due to these non-idealities,
(4) becomes transcendental and must be thus solved numeri-
cally or with approximated approaches, even for simple ge-
ometries. Dielectric resonators of practical interest are cylin-
drical resonators in which the strongest mode is the TE01δ

mode. An approximated formula for its resonance frequency
is given in [32] for an isolated cylindrical resonator. In any
case, dielectric resonators are practically never used as iso-
lated object, but they are either coupled to microstrips (e.g.
in antennas) or enclosed in a metallic shielding cavity. The
resonance frequencies of the cavity and those of the dielectric
resonator interfere each other, and hence must be computed
considering the coupled structure [36].

1) WHISPERING GALLERY MODE RESONATORS
A particular class of microwave resonances occurring in di-
electric resonators is represented by whispering gallery modes
(WGM) [37]. In uniaxial anisotropic dielectric resonators with
round edges (spheres or cylinders, but also disks or rings)
2D EM waves are bounced around the resonator’s equatorial
circumference due to almost-total internal reflection at the
surface (i.e. with negligible reflection losses). Constructive

FIGURE 3. 2D field map of whispering gallery modes (n = 1).

interference arises if after an entire roundtrip a wave comes
back in the same point with the same phase, thus creating a
standing wave. Such standing waves are characterized by large
electromagnetic fields confined very close to the dielectric
surface and extremely high quality factors.

Under the assumption of a 2D dielectric circle of radius a,
the problem can be again stated in terms of a scalar Helmholtz
equation of the form of (4). The boundary conditions are that
the eigenfunctions should be finite everywhere, be continuous
at the edge of the cavity and describe only outgoing waves,
and can be satisfied by a combination of sinusoids, Bessel
and Hankel functions. The characteristic equation is transcen-
dental and thus can only be solved numerically, obtaining
the complex eigenfrequencies fmn. The index m is the order
of both the Bessel and Hankel functions and it is related
to how many times the wave is reflected in one round-trip.
The higher m the more the energy is confined close to the
surface as shown in Fig. 3. The index n, instead, indicates
how many times the mode can oscillate inside the resonator
(toward the center), thus modes that are of practical interest
are only those with n = 1, since for higher n values energy
is not well localized near the boundaries. Thanks to this field
localization and to the total reflection mechanism, which bet-
ter confines modes inside the resonator, WGMs have higher
Qs with respect to most of the other dielectric modes, in
excess of 105 at microwave frequencies and up to 109 for
optical modes [38]. Optical WGMRs are thus widely adopted
to implement photonic integrated circuits (filters, generators,
storage devices), and ultra-low-threshold/single-atom micro-
laser, in interferometry, spectroscopy, quantum electrodynam-
ics and fluorescence studies, as well as for metrology and
sensing applications, in particular biosensors [39]. Neverthe-
less, microwave and millimetre-wave WGMRs, made of low-
loss single crystalline materials (quartz, sapphire, ruby, ect.),
do also show remarkable quality factors finding applications
both in high-performance microwave components and as high
sensitivity sensors for thermometry [11], spectroscopy [40]
and accurate complex permittivity measurements [41].

Independently of the frequency range, the operating prin-
ciple of a WGMR sensors relies on the fact that, due to the
evanescent field outside the cavity, any variation in the sur-
rounding environment (temperature, pressure, chemical com-
position, etc.) is translated into a resonance frequency shift
and/or change in the resonance bandwidth, i.e. in a variation
of the complex resonance frequency. The measurement, in this
case is usually not differential, as in MCP-based sensors, but
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absolute and consists in monitoring the WGM resonance in
time and gathering the desired physical quantity by knowing
its relationship with the observed resonance value. Thanks to
the large Qs of WGMs, even small shifts can be appreciated
and thus a high sensitivity is reached. WGMRs are particu-
larly sensitive to temperature, due to both thermal expansion
and permittivity (and hence refractive index) dependence on
temperature. Considering the ideal case of a 2D disk, we can
write

∂ fr

∂T
= ∂ fr

∂ε⊥
∂ε⊥
∂T

+ ∂ fr

∂ε‖
∂ε‖
∂T

+ ∂ fr

∂a

∂a

∂T
(9)

where ε⊥ and ε‖ are the dielectric permittivities in the radial
and axial direction, respectively, while a is the radius of the
disk, which undergoes thermal expansion. Also in case of
3D structures the thermal expansion along the axial direc-
tion is negligible with respect to that along the radial one,
and (9) is still approximately valid. Moreover, with the typ-
ically adopted dielectrics, the thermal expansion is roughly
one order of magnitude lower than the permittivity change in
temperature, thus its impact on the resonance shift is small.
Temperature sensitivity is at the base of WGM thermometry
(WGMT), but represents an issue in all other sensor appli-
cations. For this reason, in many cases, multi-modal sensing
is used. This technique is based on measuring the frequency
splitting between two coupled modes rather than the reso-
nance frequency of a single one, so that thermal shifts become
a common-mode phenomenon (modes have the same thermal
sensitivity).

An ideal WGMR features perfect rotational symmetry
along a central axis. If this symmetry is perturbed in any
way, the mode splitting phenomenon arises [42]. Due to the
asymmetry, the two counter-propagating standing waves ac-
cumulate sightly different phase shift along each revolution,
thus creating two separated resonance frequencies as shown
in Fig. 4. For resonances in the order of 10 GHz, depending
on the level of asymmetry, the split can easily go from be-
low 1 MHz for quasi-ideal WGMRs, corresponding to less
than 100 ppm, up to more than 10 MHz. In principle, mode
splitting can be intentionally forced to avoid degeneracy as in
QSRs, provided that the introduced asymmetry is controlled.
In [43] this phenomenon was exploited to assess possible
mechanical instabilities of the developed WGMT.

III. RESONANCE MEASUREMENT SET-UP
Microwave resonances are typically extracted from
S-parameter measurements. The basic set-up depicted in
Fig. 1 is still valid, with the only difference that the measured
quantities are not the absolute waves but power ratios
between the reflected or transmitted wave and the incident
one. S-parameter measurements are typically carried out by
means of a vector network analyzer (VNA), which contains
both the signal generator and the receiver. A 2-port VNA
automatically performs a frequency sweep at the input port
and measures, at each frequency step, the incident and

FIGURE 4. Transmission profile of a WGM with forced mode splitting: the
overall spectrum (solid) is given by the superposition of two separate
modes (dash, dot-dash obtained with fitting) with relative separation in
the order of 200 ppm.

reflected waves at both ports, computing the 4 S-parameters
of the network under test [44].

Reflection-based measurements would have the advantage
of requiring just a single antenna and one-port analysis. How-
ever, the reflection dip tends to be very small, while, on the
contrary, the background reflection (out of resonance value
of |S11|) tends to be almost unitary, since antennas are in-
tentionally weakly coupled to avoid overloading the cavity
(see Section III-A). Moreover, reflection measurements are
much more sensitive to the effect of the connecting cables
and would thus require a more accurate calibration of the
measurement system. Despite requiring a second antenna and
a 2-port analysis, transmission measurements are much more
reliable and accurate. In fact. |S21| typically exhibits large
peak magnitudes with respect to background transmission.

From an electrical point of view, the system of Fig. 1 can be
represented by the equivalent circuit of Fig. 5: the signal gen-
erator is a sinusoidal source voltage VS with source impedance
ZS, while the receiver is modeled as a load impedance
ZL. With standard instrumentation ZS = ZL = 50�. The res-
onator, or better, the resonant mode of interest, is modeled
with a series RLC circuit.

ZR = R + j2π f L − j
1

2π f C
= R

[
1 + jQ

(
f

fr
− fr

f

)]

≈ R

[
1 + j2Q

(
f − fr

fr

)]
(10)

where the quality factor Q and resonance frequency fr are

Q = 1

R

√
L

C
and fr = 1√

LC
(11)

Microwaves are coupled to electromagnetic fields inside
the resonator by means of coaxial antennas. Open-circuit
probe antennas and short-circuited loop antennas are the most
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FIGURE 5. Simplified circuit model of a resonance measurement set-up.

widely adopted solution for coupling with the electric field
along the cable axis or with the magnetic field perpendicular
to the loop area, respectively. Complete theories for the ex-
citation of modes in a cavity can be found in [45] and [46].
An antenna can be modeled with an impedance transform-
ing network where the equivalent turns ratio N is represen-
tative of the coupling strength. For loop antennas a finite
self inductance L can be also included. Impedances ZX and
the M RLC circuits in parallel are added to model crosstalk
and unwanted/spurious modes, respectively, as detailed in the
following.

A. RESONATOR AND ANTENNA DESIGN
The microwave resonator is designed resorting to FEM simu-
lations. It should be sized so as to have high Q resonant modes
at suitable frequencies, as well as to be practical for the exper-
iment of interest. Manufacturing cost and tolerances, mechan-
ical stability, cavity sealing, weight and ease of integration of
antennas and/or other connecting or support elements are a
not exhaustive list of all the practical aspects that must be
considered in selecting the most appropriate geometry, size
and assembly of the resonator. Material choice is a key factor
for achieving high performance. For metallic cavities, a highly
conductive material must be selected. Silver and copper show
highest bulk conductivities, however they are subject to aging
and oxidation, which would have a detrimental impact on the
effective surface conductivity. Gold plated copper is thus the
usual choice, which ensures a sub-optimum but fairly good
and stable conductivity. Concerning WGMRs, quartz is the
most commonly adopted material for optical applications. At
microwave frequency, even if ruby has been also considered
in some experiments [47], synthetic sapphire is the material of

FIGURE 6. Example of a measured QSR |S21|: due to the extremely weak
coupling the three resonance peaks are all below −45 dB, with the lowest
one below −60 dB, while transmission background is below −80 dB.

choice thanks to extremely low losses over a wide operating
temperature range [48].

Antenna design and positioning is one of the most critical
points to obtain accurate measurements. Several aspects must
be considered:

1) OVERCOUPLING: “unloaded” cavity resonances in a
strict sense exist only in a mathematical world. In prac-
tice, all the measured cavity resonances are “loaded”
by the presence of the antennas, and thus show loaded
quality factors always lower than the theoretical ones.
To achieve high sensitivity it is thus fundamental to
keep cavity loading as low as possible. This can be
practically accomplished with a sort of “try and error”
minimization approach. The antennas are first pushed
relatively deeply inside the resonator and the obtained
loaded Q is measured. Then the antennas are extracted
in small steps until improvements are observed in the
obtained Qs. This usually leads to very low transmission
peaks, as shown for example in Fig. 6, which represent a
challenge for the receiver in terms of dynamic range. As
a final remark, note that injecting large powers into the
cavity would possibly lead to heating due to microwave
losses. Even if this effect is typically negligible, it can
become an issue when working at cryogenic tempera-
tures [49].

2) CROSSTALK: microwave antennas are radiating ob-
jects, thus some direct power transfer between them
may take place. Such crosstalk effect represent a non-
zero background transmission and it is modeled in Fig. 5
with an impedance ZX ( f ) directly connected between
the input and output ports. Outside the cavity, other pos-
sible sources of direct power leakage between the trans-
mitter and the receiver may be due to electro-magnetic
coupling along the cables or low port isolation within
the VNA.

3) MULTI-MODE EXCITATION: a resonator is inher-
ently a multi-mode structure, hence a number of modes
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FIGURE 7. Example of a measured QSR |S21|: due to antenna positioning,
only one peak is visible while a transmission drop appears due to the
interference of the other two as confirmed by the fitting reported in
Fig. 8(a).

different from the desired one(s) are inevitably excited
by the antennas. All these modes have transmission
tails that fall in the measurement bandwidth and that
interfere each other and with the mode(s) under test.
The observable effect is a non-constant transmission
background possibly showing transmission minima at
some frequency interfering with the peaks, as shown
for example in Fig. 6. Moreover, when more than one
mode is under investigation, as in QSRs, reciprocal
interference of these mode can have similar destruc-
tive effects, as shown for example in Fig. 7. Here the
transmission background is clearly much lower than
the resonance, however, the phase relationship within
the modes in the triplet causes two of the three peaks
to virtually cancel each other out. In both cases it is
clear that manually finding the transmission maxima is
not possible, hence requiring resonance fitting. Mode
interference is determined by the position of the two
antennas, thus moving them can alleviate or exasper-
ate this phenomenon. Although optimum positioning
can be pursued before taking the measurement, both
the resonance shape modification and the complicated
background that result from mode coupling, as well as
crosstalk can, and should, be accounted for by the fitting
procedure, allowing for accurate identification also in
the presence of such non-idealities. Each mode can be
represented by an equivalent RLC circuit in parallel
with the main resonance [50] and coupled to the anten-
nas with its own coupling factor, as shown in Fig. 5.

4) MODE ALTERATION: the presence of the antennas
requires having through holes in the cavity surface, pre-
senting a localized reactive impedance. This, in turn,
alters the standing wave patterns of all the excited
modes, with the practical effect of loading the cavity
and reducing the quality factor and increasing the attain-
able measurement uncertainty. Antennas should thus be

fabricated out of high conductivity materials, keeping
their electrical size and impedance as small as possible
to maintain high Qs. The loading effect of antenna holes
in QSRs was investigated in [51] by treating them as
waveguides. By applying proper correction factors on
the fitted resonances its impact can be limited, but not
eliminated.

B. SIGNAL GENERATION AND ACQUISITION
The characterization of high-Q microwave resonances by di-
rect measurement of fr and gr would require very high fre-
quency resolution to reach ppb-level accuracy. However, as
detailed in Section IV, resonance fitting is always applied
that relaxes the resolution requirement by several order of
magnitudes.

The signal receiver must comply with two main require-
ments: vector measurement capability and high dynamic
range. Typical peak values of |S21| at resonance are in fact
10 dB to 60 dB above transmission background [43]. Thus,
accounting for resonance amplitude variability, a minimum
dynamic range of 60 dB is required. Signal acquisition in
modern VNAs is performed with a superheterodyne receiver
that down-converts the transmitted signal to an intermediate
frequency (IF) suitable for direct analog-to-digital conversion.
This approach allows for harmonic rejection and dynamic
range improvement thanks to the use of highly selective IF
filters (with bandwidths as low as 10 Hz or even 1 Hz in
high-end VNAs) and, eventually, IF amplifiers and digital
filters. The latter reduce the noise floor by eliminating out-
of-band spectral components, while the former amplify the
useful signal both contributing in enhancing the measurement
signal-to-noise ratio (SNR).

VNAs are typically expensive and bulky instruments,
thus may represent a main bottleneck to the application of
resonance-based measurements to industrial metrology. As
demonstrated in [52] and [53], for such application the ca-
pabilities of a VNA are redundant and a portable and low-cost
system can be developed ad-hoc tailored to resonance mea-
surement, based on these considerations:

1) MEASUREMENT TYPE: only the transmission pa-
rameter S21 is required, thus the computation of all other
parameters can be avoided.

2) MEASUREMENT SCALABILITY: object of the mea-
surement are not the absolute values of the transmis-
sion magnitude and phase but the complex resonance
frequency (position of the peak and half-power band-
width), thus S21 can be scaled to any arbitrary complex
normalization constant K (i.e. KS21 can be measured
instead of S21).

3) MEASUREMENT BANDWIDTH: only few modes are
of interest for a specific application, whose approxi-
mate resonance frequencies are known a priori from
theory and/or simulations. Therefore, an ad-hoc system
covering only a limited frequency range can be devel-
oped, avoiding using multiple oscillators as in broad-
band VNAs.
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4) CALIBRATION: high-Q modes require measurements
over a very narrow frequency span (2 MHz to 10 MHz).
This, in practice, makes calibration desirable but not
mandatory, thanks to the capability of the fitting func-
tion to properly model narrow-band transmission back-
grounds (more details are given in Section IV).

On the other hand, vector measurement capability of the
VNA must be retained. Since the imaginary part of the com-
plex frequency is given by the bandwidth, scalar (magnitude)
S21 measurement should be in principle enough, which can
be also obtained with a power meter or a spectrum analyzer.
However, fitting algorithms in the complex frequency domain
require less input points to converge, are faster and, above
all, they are more robust and provide lower fitting uncertainty
(for the same number of points). Moreover, they can better
model the background transmission, particularly important in
absence of calibration.

1) FREQUENCY REFERENCE
To perform a frequency measurement, a frequency reference
is required, i.e. a stable oscillator that generates an accurate
fundamental frequency to synchronize the generator’s and
receiver’s time-bases. This can be either a crystal oscillator
(XO) or an atomic frequency standard (rubidium, cesium, or
hydrogen), depending on the required accuracy. Commercial
VNAs offer the possibility to be locked either to an internal
10 MHz reference, typically a quartz oscillator, or to an ex-
ternal frequency reference, in order to allow for synchroniza-
tion among different instrument and/or frequency accuracy
improvement.

The relative accuracy of the frequency reference is reported
one-to-one to the measured frequency therefore for applica-
tions where the absolute resonance frequency must be known
with a predefined (high) accuracy a high accuracy frequency
reference is mandatory. In case of MCP-based measurements,
the accuracy requirement can be relaxed provided that short-
term stability is good enough to consider both measurements
(unloaded and loaded cavity) affected by approximately the
same frequency error. Short-term stability is indeed rather
good, in the order of some parts per trillion (ppts), for all cited
frequency reference types, as reported in [54]. Long-term
stability, instead, ranges from 0.1 ppb/day and 1 ppm/year
for standard XOs to less than 0.1 ppt/day and 0.1 ppb/year
for atomic standards. Similarly, temperature drifts go from
0.1 ppm/K in XOs, to 0.1 ppb/K in oven controlled crys-
tal oscillators (OCXOs) and down to few ppt/K for cesium
standards. From these number it is possible to conclude that
for MCP-based applications dedicated instrumentation is typ-
ically not required, since the internal VNA reference is suffi-
cient. High-end VNAs reach in fact frequency reference accu-
racy between 1 ppm and 50 ppb, stability between 1 ppm/year
and 0.1 ppm/year and drift between 1 ppm/K and 10 ppb/K.
On the other hand, these values are clearly not compatible
with demanding applications, such as WGMT or refractive
index gas thermometry (RIGT), where an absolute frequency

must be characterized with high accuracy. For such exper-
iments external frequency standards are adopted. Rubidium
standards are preferred, when possible, since they are cheaper
and more compact than cesium ones. They can provide accu-
racies in the order of 50 ppt, which is enough for most reso-
nance measurements applications, but their performance can
be further enhanced if disciplined by a GPS/GNSS receiver,
reaching accuracies comparable to cesium standards, i.e. in
the order of fractions of ppt. Again, frequency reference are
typically expensive and bulky, thus in [53] a compact and low-
cost alternative has been developed, based on the concept of
GPS disciplined oscillator (GPSDO), but applied to a low-cost
OCXO rather than to a high-end standard, achieving accuracy
and stability within 1 ppb.

IV. RESONANCE FITTING
The acquired S21 data are sent to a processing unit to gather
the complex resonance frequency and consequently the phys-
ical quantity of interest (permittivity, temperature, pressure,
etc.). As anticipated, the real and imaginary parts of the com-
plex resonance frequency may in principle be simply obtained
by inspecting |S21| (scalar measurement), finding the peak ( fr)
and the −3 dB frequency (gr) points. However, this approach
has two main drawbacks that make it incompatible with appli-
cations requiring high accuracy:

1) RESOLUTION AND MEASUREMENT SPEED: it
would require a frequency resolution at least equal to
the target accuracy, which means up to the ppb-level
for metrology applications requiring absolute resonance
frequency measurement. Furthermore, in practice, mea-
sured signal is always affected by noise. This directly
limits the accuracy in the identification of the peak,
thus hampering the advantages of having an high Q
and requiring a frequency resolution even higher than
the target accuracy. Even if achieving high resolution
in modern signal generators may be not a big deal,
working with such a high number of frequency points
sensibly increases measurement time, which impacts on
the required short-term stability of the entire set-up and
may hinder the possibility to observe fast fluctuations of
the quantity of interest.

2) BACKGROUND: in multi-mode resonators, i.e. in al-
most any practical case, the resonance frequency is af-
fected by transmission background and mode interfer-
ence. In worst cases, like that depicted in Fig. 7, the peak
and −3 dB points cannot be directly measured at all (see
also Fig. 8(a)). But in many cases, as for example that
in Fig. 2 the measured points differ to some extent from
the actual fr and gr values, as confirmed by resonance
fitting reported in Fig. 9. This can be acceptable only
when low accuracy is enough, but it is not the case
of metrology applications, where accuracies better than
100 ppb are required.

To overcome these issues and achieve accurate frequency
measurement, a relatively small number of frequency points
are acquired over a bandwidth that is much larger than the
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FIGURE 8. Detailed fitting results of the triplet in Fig. 7.

FIGURE 9. Detailed amplitude fitting results of the triplet in Fig. 2.

−3 dB one of a single peak and then fitted to a proper
mathematical model. As a rule of thumb, 200 to 400 points
are a good compromise between fitting accuracy and mea-
surement speed. The measurement bandwidth should be well
representative of the mode or modes of interest, including a
large portion of the tails to properly fit also the transmission
background. Proper choice of the bandwidth is fundamental
but strongly depends on the resonator conditions within a
particular experiment. For example, compare the situation of
Figs. 6 and 2: in the first case the three peaks are much more
separated (more than 2 MHz), which could depend on cavity
sealing, and thus the measurement bandwidth is more than
15 MHz, which means 0.3% relative bandwidth and minimum
frequency step of 75 kHz (15 ppm). In the second case the
whole triplet and tails are within 3 MHz that means instead
0.05% relative bandwidth and 15 kHz minimum resolution,
corresponding to roughly 2 ppm.

Note that, even for less accuracy-demanding applications,
curve fitting is always a preferable approach as it allows to
minimize the number of frequency points to be acquired, and
thus speeds up the measurement procedure.

A. MATHEMATICAL MODEL
One of the first resonance models was introduced in [55] for
acoustic resonances, based on complex Lorentzian functions.
In [56] it was then demonstrated that such a model applies also
to microwave resonances. A transmission peak is modeled
with the following function:

S21 = α f

f 2 − f 2
0

(12)

where α and f0 are the complex parameters to be fitted, the
latter being the complex resonance frequency of interest. The
frequency term at the numerator allows for modeling of asym-
metrical (skewed) resonances. In case of n degenerate modes,
the superposition principle can be used, thus fitting each mode
with (12) and summing them up. In a real resonator, non-zero
background transmission is always present due to cross-talk,
to the tails of neighbor resonance modes and to the effect
of cables and connectors in case of uncalibrated or partially-
calibrated measurements. All these contributions are modeled
with a polynomial background function of the form that adds
up to the Lorentzian(s). Thus the final resonance model of a
n-tuple resonance is:

S21 =
n∑

i=1

αi f

f 2 − f 2
0,i

+
p∑

j=1

β j ( f − fc) j (13)

where fc is the center frequency of the measured range, and
β j are additional complex parameters to be fit besides ai and
f0,i = fr,i + jgr,i. Parameters are fitted through a Lavenberg-
Marquardt algorithm. As suggested in [55] the minimization
algorithm works separately on the sum of the squared residu-
als for the real and imaginary parts of (13).

The order p of the polynomial depends on the width of the
measured frequency range and the amount of cross-talk. A
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TABLE 1 Microwave-Related Uncertainty Contributions in the
Determination of the Resonator Size in the Boltzmann Experiment of [57]

quadratic background proved to be sufficient in MCP-based
measurements with a calibrated VNA [13], while a 4-th order
background was necessary to account for the higher required
accuracy and relatively poor isolation of the adopted low-cost
instrument in the WGMT experiment in [11]. In the RIGT
experiment of [18], instead, a polynomial order as high as 7
was selected to account for background variations over the
measured temperature range. Depending on the specific ex-
periment, additional corrections such as shape and waveguide
corrections reported in [18] and [51] for QSRs, can be sub-
sequently applied to the fitted values to further improve the
measurement.

To highlight the capabilities of the fitting algorithm to re-
cover background and mode mixing effects, Fig. 8(a) details
the results of the fitting of the “bad” triplet of Fig. 7. As can be
noted, in this case two of the three Lorentzian resonances are
very low compared to the other, which represent a worst-case
situation for the fitting algorithm. Nevertheless, the overall
resonance profile was well fitted both in magnitude and phase
as shown in Fig. 8(b) to 8(e). Remarkably, deviations between
the measured and fitted points are within 0.08 dB and 0.6◦. In
Fig. 9, the same results of Fig. 8(a) are reported for the “good”
resonance triplet of Fig. 2. Note that, even if destructive in-
terference among degenerate modes is not present, the actual
(fitted) resonance frequency of the two side resonances does
not coincide with their peak frequency, but differs form the
latter by nearly 2.5 ppm. This confirms the need of resonance
fitting to achieve sub-ppm accuracy.

Despite the high sensitivity of a resonator and the very low
fitting uncertainties that can be achieved, in many practical
cases the final measurement uncertainty is limited by the
set-up non-idealities, such as imperfect cavity polishing or
condensation and the presence of the antenna holes. As an
example, Table 1 reports the microwave-related terms of the
uncertainty budget in the determination of the resonator size
in the Boltzmann experiment of [57]. As can be noted, the un-
certainty related to the fitting algorithm is the lowest, while the
residual error of the waveguide correction [51] and the effect
of an unwanted dielectric layer on the surface lead the highest
contributions (10 times higher than fitting repeatability).

B. BENCH CALIBRATION AND FITTING ISSUES
In many practical cases, VNA calibration up to the actual
resonator’s reference planes results impossible, since coaxial
antennas are typically brazed to the resonator to ensure better

coupling and mechanical stability/repeatability. Moreover in
MCP-based experiments that require opening the resonator to
insert a physical object, this procedure typically vanishes the
validity of calibration, at least close to the cavity. Fortunately,
the background term in the fitting function (13) is capable
of recovering cross-talk effects due to test bench, even with
uncalibrated measurements. The use of calibration, when pos-
sible and up to reference planes as close as possible to the
resonator, is however preferable, in order to relax the order
of the background polynomial, thus reducing the number of
parameters to be fitted.

It is to note, in fact, that even with large polynomial order,
the background function hardly copes with phase rotations
over the measurement range, especially in case of relatively
high background levels, as it is not able to fit both large magni-
tudes and wide phase variation at the same time. Large phase
rotation is the typical effect introduced by microwave cables
whose length is not negligible in the bandwidth of interest,
as was the case of the experiment reported in [58], where the
coaxial cable welded to the cavity were roughly 1 m long. A
possible solution could be time-domain reflectometry, to mea-
sure the electrical length of the cables and correct the mea-
surements accordingly. However, an effective but far simpler
method was proposed in [58] that is to numerically correct
the raw measurements with a phase rotation term found with
minimization of the sum of squares of fit residuals over the
entire frequency range, a function accomplished by the fitting
algorithm itself.

V. RESONANCE BASED METROLOGY
One of the first use of a microwave resonator in a fundamental
metrology experiment is reported in [5] and dates back to the
late ’40s. In this case, a cylindrical cavity was adopted to
determine the speed of light in vacuum with an uncertainty
of 30 ppm. Since then, microwave resonators kept attracting
the metrology community, becoming the reference method
for accurately measure the complex permittivity of dielectric
materials and standards [59] as well as for the characteriza-
tion of pure gases and mixtures, with potential application to
hygrometers and humidity standards [9], [12] and to pressure
standards [8].

After the institution of the International Temperature Scale
of 1990 (ITS-90), quasi spherical resonators gained a major
role in primary thermometry [10], [18], [60], allowing for dis-
covering discrepancies between ITS-90 and thermodynamic
temperatures. QSR-based experiments also played a crucial
role in the determination of the Boltzmann constant [7], [20],
[57] and are now considered paramount for the direct dissem-
ination of the kelvin [21]. More recently, sapphire whispering
gallery thermometry has been also proposed with potential
application as industrial transfer standard [19], [48] but po-
tentially also as interpolating thermometer [11].

Modern metrology applications demand for accuracies in
the determination of the resonance frequency in the order
of few parts per billions. At present, the main limitation is
represented by bench non-idealities, as shown in Table I. On
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FIGURE 10. Dependence of the complex resonance frequency of a
resonator to physical parameters.

the other hand, for the development of practical thermometers
for the dissemination of the kelvin, field portability and cost of
resonance-based thermometers must be enhanced, for which it
is necessary to resort to custom-developed instrumentation.

A. QSR METROLOGICAL APPLICATIONS
The interest for spherical resonators aroused long ago, since
the end of the ‘70s, when their potentialities in providing
accurate measurements of resonance frequencies were first
exploited for acoustic applications. In [24], [61] acoustic res-
onances of radial modes within spherical resonators were ex-
ploited to accurately measure the speed of sound in gases, con-
tributing to the development of the so called primary acoustic
gas thermometry (AGT). In the same papers, the combined
use of acoustic and microwave resonance measurements was
proposed.

Since the middle ’80s, the QSR became a key element in the
majority of those metrological experiments where measure-
ments of length, pressure, dielectric properties and tempera-
ture, have to be related each other with exceptional accuracy,
as in the case of primary thermometry. As shown in Fig. 10,
all these elements are physically related to each other and to
the complex resonance frequency.

As an example, QSRs along with cylindrical resonators
played a fundamental role in the redefinition of the Boltzmann
constant (kB) that was one of the key requirements toward
the definition of the new SI, based on the redefinition of four
base SI units (kilogram, ampere, mole and kelvin), which took
place in May 2019 and that is now considered a milestone
in the history of the global metrology. Despite many primary
thermometry methods have been used for the re-determination
of the Boltzmann constant, AGT has emerged as the most im-
portant one, also by virtue of the simple relationship between
the thermodynamic temperature T and the average kinetic
energy of a molecule and therefore to the speed of sound w0:

kB = w0 M

T γ0NA
(14)

where M represents the average molar mass of the gas, NA

the Avogadro constant, γ0 the heat capacity ratio, which is
exactly 5/3 for a monoatomic gas. Even if this experiment
seems to be purely acoustic, microwaves are fundamental for
the accurate determination of the resonator size and hence
to relate the measured acoustic resonances with the speed of
sound. As an example, in [57] measurements of the resonance
frequency with accuracy of about 100 ppb permitted to obtain
the mean radius of a copper-walled QSR with an extraordinary
relative standard uncertainty of 0.2 ppm, which corresponded,
for the employed resonator, to only 12 nm, allowing for the
determination of the Boltzman constant with a relative un-
certainty as low as 0.7 ppm. The potentialities of microwave
resonances for length measurement is even more impressive
if we consider resolution rather than accuracy: as an example,
in [62] it has been shown that, even resorting to low-cost
instruments, resonance changes as low as few parts per billion
can be detected in copper QSRs, permitting to detect radius
changes even lower than a single atomic layer.

With the new SI and the exact value of the Boltzmann
coming into force, the QSRs has not been retired; conversely,
in the same context, microwave resonances are now becom-
ing fundamental for the realization and dissemination of the
kelvin unit, which is now defined according to (14) as the
change of thermodynamic temperature corresponding to an
exact change of the thermal energy, kBT of 1.380649 ×
10−23 J. The mise en pratique of the kelvin [21] identifies
the AGT as one of the possible methods for its realization
in the SI, with potential relative accuracy in the order of
10 ppm [10].

Along with AGT, polarizing gas thermometry (PGT), where
the the thermodynamic temperature is obtained from either the
dielectric constant of the gas (DCGT [17]) or its refractive in-
dex (RIGT [63]), also gained great interest in the metrological
community. In particular, RIGT also relies in the measurement
of microwave resonances within a QSR. While AGT uses the
acoustic resonances of gas-filled QSRs to determine the speed
of sound, RIGT uses microwave resonances to determine the
speed of light in the same gas. From the gas refractive index
n, the gas density is gathered. Then, through the equation of
state of the gas and the measurement of the gas pressure p,
the thermodynamic temperature T is determined. In RIGT
experiments, dilute gas are exploited together with microwave
frequencies, typically below 14 GHz, at which static polar-
izability of the gas is allowed. This simplifies the relation-
ship between n, p and T , in the form of the Lorentz-Lorenz
equation:

n2 − 1

n2 + 2
= (Aε + Aμ)p

NAkBT
(15)

where Aε and Aμ are the molar electric and magnetic polariz-
abilities of the gas in the limit of zero density. However, for
accurate measurements, higher-order gas non-idealities must
be included in the model [63]. Absolute primary RIGT us-
ing QSRs achieved relative standard uncertainties better than
35 ppm (below 10 ppm at the triple point of neon) [18].
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Besides thermometry applications, the use of QSRs also
permits extremely accurate measurement of the dielectric con-
stant of pure gases or mixtures, enabling the realization of
robust hygrometers and humidity standards, over extended
temperature and pressure ranges [9], [12]. In [49], the skin
conductivity of the copper and its thermal expansion were ac-
curately evaluated from the resonance bandwidth, exploiting
the fact that in a real metal, finite conductivity allows some
current penetration into the walls at microwave frequencies.

Finally, in [13] the permittivity of helium could be deter-
mined with relative uncertainty of 100 ppb by adopting an
ad-hoc developed portable and low-cost instrument, which
allow to measure QSR resonances with accuracy of few tens
of ppb. The adopted QSR (6 cm radius) and the instrument
(KS21-meter) are shown in Fig. 11. The use of field-portable
low-cost instrumentation, instead of bulky laboratory one, ex-
tends the application of QSRs to the industrial field, as an
example, for the measurement of humidity in methane and
natural gas [64].

B. WHISPERING GALLERY MODE THERMOMETRY
To perform calibrations with a high degree of accuracy, indus-
try, commerce and scientific research would require access to
a primary or secondary reference standard, i.e. an accurate,
precise, stable and high-resolution system featuring a well-
defined relationship between a measurable quantity and the
unit of measurement of the physical quantity of interest. Since
such standards are unpractical to be adopted, what it is done
in practice is to adopt transfer standards, i.e. systems that are
able to transfer a measurement parameter maintaining mea-
surement traceability up to the primary standard of interest.
Even if the accuracy of the transfer process can be much better
than the accuracy of the transfer standard itself, the latter is
required to be below few parts in 10−8. Moreover, the standard
must provide high resolution, stability and repeatability.

Currently, the standard platinum resistance thermometer
(SPRT) is the reference transfer standard in the −196 ◦C to
500 ◦C range, for applications where measurement uncer-
tainties below 10 mK are required. As first proposed in [48]
and then demonstrated in [19], whispering-gallery-mode ther-
mometers (WGMTs) are excellent candidates for replacing
SPRTs in the −40 ◦C to 85 ◦C range, overcoming typi-
cal SPRT handling issues in a wide range of applications
and providing potentially higher sensitivity. Nonetheless, the
applicability of WGMTs was limited by the read-out sys-
tem in charge of the resonance measurement, composed of
bulky and expensive laboratory instrument. In [11] a com-
pact but accurate WGMT is reported. The sensing element
is the sapphire loaded cavity designed in [65] and shown
in Fig. 12(a): a 12 mm-diameter spherical sapphire WGMR
suspended in a 24 mm-cylindrical copper cavity with the
highest-temperature-sensitivity mode at 13.6 GHz (Q > 105).
The ad-hoc developed compact and low-cost instrumentation
and data processing set employed, shown in Fig. 12(b) was in-
stead presented in [58]. It is composed of the simplified VNA
already adopted in [13], provided with a frequency extension

FIGURE 11. Set-up for the experiment in [13].

module and a ppb-level accurate and stable frequency refer-
ence, based on a GPSDO. This set-up proved to be capable of
maintaining the ppb-level accuracy in the final determination
of the resonance frequency.

The WGMT was calibrated against a standard industrial
PRT with 5 mK uncertainty, by fitting a cubic polynomial of
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FIGURE 12. Whispering gallery mode thermometer presented in [11].

FIGURE 13. WGMT calibration fit residuals in the 4 ◦C to 19 ◦C range.

the form

f0 = a0 + a1T + a2 T 2 + a3 T 3 (16)

The achieved combined standard uncertainty of 5.1 mK for
a single point proved to be practically limited by this value,
since the WGMT contribution was as low as 0.8 mK. In the
whole −40 ◦C to 85 ◦C range large calibration residuals are
recorded at specific temperature points, due to mechanical

stability of the WGMR inside the cavity and by cavity seal-
ing [43]. However, in narrow range, state-of-the-art perfor-
mance, comparable with the best ITS-90 SPRTs are achieved.
Calibration fit residuals within 400 μK (0 ◦C–20 ◦C), 250 μK
(0 ◦C–20 ◦C) and 60 μK (4 ◦C–19 ◦C) are obtained, the
latter shown in Fig. 13, demonstrating the potential use of the
WGMT as an interpolating thermometer for the dissemination
of the thermodynamic temperature scale.
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