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Abstract— In this paper, the performance of four machine 

learning regressions like Support Vector Machine (SVM), Least 

Square-Support Vector Machine (LS-SVM), Gaussian Process 

Regression (GPR) and Random Forest method (RF) are 

investigated by means of an illustrative example referring to the 

characteristic impedance of a microstrip line in terms of electrical 

and geometrical parameters. The required dataset for training is 

obtained from a set of parametric electromagnetic simulations. 

The performance comparison of the four methods is done in the 

presence and absence of numerical noise and inaccuracies 

affecting the training samples. The results of our comparison 

provide a guidance for the proper method selection to model the 

electromagnetic characteristics of interconnects for high-speed 

signals:  advantages and drawbacks of each of the proposed 

techniques clearly emerge from this analysis. 

Keywords— Microstrip, Support Vector Machine, Least 

Square, Random Forest, Gaussian Regression. 

I. INTRODUCTION 

. 

Machine Learning (ML) techniques and tools are becoming 

increasingly important in industry. For the case of supervised 

learning, these methods can be useful to solve problems for 

which no analytic solutions exist, by relying on a set of 

available input and output observations of a generic system. 

Such data, usually referred as training data, can be used to 

construct an empirical closed form model approximating the 

actual nonlinear behaviour of the system. The power of learning 

algorithms is that the entire process of determining the most 

likely function that explains the data and makes a prediction on 

future data combinations is fully automated. 

In recent years, learning based methods like support vector 

machine (SVM) [1], least-squares support vector machine (LS-

SVM) [2], random forest (RF) [3] and Gaussian process 

regression (GPR) [4] have attracted the extensive attention in 

the electronic and electromagnetic applications, because they 

allow building compact parametric surrogate models of the 

output of a generic nonlinear system response with respect to 

several input parameters [5]. 

In this work, we consider the modelling of the characteristic 

impedance of a microstrip line as a function of 4 parameters as 

an illustrative example to investigate the accuracy and the 

effectiveness of the above ML regressions. It is well-known that 

the final response of a microwave structure is sensitive to its 

geometrical and electrical parameters [6]. In microstrip-based 

apparatus, like filters, couplers etc, the characteristic impedance 

plays an important role in the design procedure, especially for 

interdigital capacitance and stub inductance. Hence, it is 

essential to accurately predict the system characteristics during 

the early design phase. Many analytical equations are 

introduced in the literature for a quick estimation of 

characteristic impedance of a microstrip transmission line [7-8]. 

Although these equations have good accuracy, they require pre-

calculation of effective dielectric constant. Also, these 

expressions are valid only for specified interval of geometrical 

parameters like the ratio of strip width to substrate height. In 

addition, in many of these formulas, the effect of the frequency 

is ignored and the conductor thickness is not taken into account. 

The proposed analysis relies on the dataset available in [9], in 

which a series of simulation results performed in Sonnet's suite 

is considered. The simulation results cover a wide range of 

microstrip parameters such as substrate height, relative 

dielectric permittivity, strip’s width and frequency. Then, the 

mentioned learning algorithms are applied to the training 

dataset to create a suitable model of the characteristic 

impedance. In the following, the test dataset is used to evaluate 

the generated model. Finally, this work ends with a comparison 

among the obtained results. 

II. MACHINE LEARNING REGRESSION APPROACHES 

Let us assume that there is a set of L training samples 𝐷 =
{(𝐱𝑖 , 𝑦𝑖)}𝑖=1,…,𝐿 , where 𝐱𝑖 ∈  ℝ𝑑   and 𝑦𝑖 ∈  ℝ. The goal is to 

find a nonlinear surrogate model such that. 
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(1) 

1)  SVM Regression 

The SVM regression is an advance ML regression which in 

its primal space formulation writes 

( ) ( ),
SVM

M b= +x w φ x

 

(2) 

where 𝝋 is a vector collecting the basic functions, w is a 

vector collecting regression unknowns and b is the bias term, 

respectively. 

For the SVM regression, the regression unknowns are 

estimated by minimizing the so-called ε-intensive loss function 

and by keeping the model (i.e., by minimizing L2 norm of the 

coefficient vector 𝐰). Thanks to the kernel trick, the above 

interpretation of the SVM regression, called primal space 

formulation can be rewritten in its equivalent dual form as 

follows. 
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Where 𝛼𝑖 ,𝛼𝑖
′ ∈ [0, C] are the pertinent Lagrange multipliers 

and b ∈ ℝ is the bias term, whilst K(.,.) is the he kernel function 

defined as. 

( ) ( ) ( ), ,
i j i j

K =x x φ x φ x .

 

(4) 

There are three well-known kernels, i.e. of linear, polynomial 

and Radial Basis Function (RBF) type. In this work, the RBF 

kernel is used. 

2)  LS-SVM Regression 

 

Similar to the SVM regression, the dual space formulation of 

the LS-SVM writes: 
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Where 𝛽𝑖 ∈ ℝ are the regression coefficients, K(·,·): ℝd× d → 

ℝ is the kernel function and b ∈ ℝ is the bias term. The LS-

SVM regression estimates the coefficients 𝛽𝑖  and the bias term 

b by minimizing the squared error between the model 

prediction and the training output and at the same time by 

maximizing the model flatness. Different from the SVM 

regression, the parameters 𝛽𝑖  and b for the LS-SVM regression 

can be estimated using the solution of a “simple” linear system. 

In this work, the RBF kernel will be used for the LS-SVM 

regression. The LS-SVM regression is already implemented in 

MATLAB within LS-SVM Lab Toolbox [10]. 

3)  Gaussian Process Regression 

GPR approach calculates the probability distribution over all 

acceptable functions that fit the data. In GPR, a Gaussian 

process prior is assumed, which can be specified using a mean 

function, μ(x), and covariance function, 𝐾(𝐱, 𝐱′) as follows, 

𝑀𝐺𝑃𝑅(𝑥)~𝐺𝑃(μ(𝐱), 𝐾(𝐱, 𝐱′)) (6) 

For a given set of training samples 𝐷 , the posterior 

distribution 𝑝(𝑦∗|𝐱∗, 𝐷) allows to estimate the output variable 

𝑦(𝐱∗) for any configuration 𝐱∗  of the input parameters. The 

posterior distribution provides as output a normal distribution: 

𝑝(𝑦∗|𝐱∗ , 𝐷)~
1
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Where 

1

* *

T
K K y

−
=

 

(8) 

2 1

* ** **

T
K K K K

−
= −

 

(9) 

And μ∗  and 𝜎∗
2   are the posterior mean and variance, 

respectively. Also, K is the covariance matrix evaluated on the 

training input and 𝐾∗ = 𝐾(𝐱𝑖 , 𝐱∗)  for 𝑖 = 1, … , 𝐿 , 𝐾∗∗ =
𝐾(𝐱∗ , 𝐱∗). Under some assumptions, a model based on the GPR 

can provide a reliable prediction for the actual value of the 

output. Also, the GPR approach is able to deal with noisy data 

[4]. 

4)  Random Forest Regression 

Random forest algorithms are frequently used in machine 

learning applications. The main advantage of RFs is improving 

the computing efficiency and prediction. The RF is a supervised 

learning algorithm that consists of many decision trees and 

nodes. Also, it uses the concept of multiple random trees being 

generated with training dataset. A decision tree consists of a set 

of nodes connected each other nodes through the branches, thus 

creating  graphs oriented in descending direction that starts 

from a single root node and ends in a series of leaf nodes. It 

should be noted that in random forest regression, an adaptive 

algorithm can be useful for determining the unknown weights 

[3]. 

In literature [11], it is shown that LS-SVM, SVM and GPR 

provide an accurate model and are robust against the noise. 

Also, all four algorithms can be trained with a limited set of 

training samples. The SVM, LS-SVM and RF can handle a 

large number of input variables and have large variability but 

only GPR provides reliable information on its prediction 

accuracy. 

III. APPLICATION EXAMPLE 

This section presents the performance of the four above-

mentioned algorithms for the characteristic impedance 

calculation of a microstrip structure. The dataset in [9] is 

considered. It consists of 20,440 samples obtained via a set of 

full-wave simulations with Sonnet software in a bandwidth 

from 1 GHz to 10 GHz, in which the substrate height 𝐻, the 

relative permittivity 𝜀𝑟  and the trace width 𝑊 of the microstrip 

are varying uniformly such as: 0.25 mm ≤ H ≤ 3.175 mm, 1 ≤ 

εr ≤ 7, 0.2 mm ≤ W ≤ 5. The above dataset has been split into 

the training and test set.  

So, for each frequency, a subset of L training samples is 

randomly selected. Also, to investigate the robustness of the 

introduced algorithms to noisy data, the training samples are 

corrupted by a Gaussian noise as follows: 

( ) ( ) ( )
,  
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y y =  +x x

 

(10) 

Where 𝜁𝑛 ~ 𝑁(0, 𝜎𝑛
2) is a Gaussian variable with 𝜎𝑛  = 0.6. 

Figures (1) to (3) show the scatter plots providing the 

correlation between the prediction of the proposed four 

algorithms with respect to the actual values of the characteristic 

impedance in the presence and absence of noise for different 

value of L at frequency 2GHz by considering 5,700 test samples.  

As expected, by increasing the the number of training 

samples L, the deviation of the model prediction with respect to 

the ideal case (black dashed line) decreases. 



The plots clearly highlight that among the considered 

methods, GPR and LS-SVM have shown the good performance 

for the noiseless case, but the SVM regression seems to perform 

better with noisy samples. The above reasoning is confirmed by 

the results collected in Table I, which shows the mean square 

error computed on 5,700 test samples.  

 

  

  
Fig.1. Scatter plots obtained by the four algorithms with L=50. 

  

  
Fig.2. Scatter plots obtained by the four algorithms with L=250 

  

  
Fig.3. Scatter plots obtained by the four algorithms with L=500 

 
 

Table I: the mean square error of the four metamodels. 

Model 

L=50 L=250 L=500 

No 

Noise 

Noise 

added 

No 

Noise 

Noise 

added 

No 

Noise 

Noise 

added 

GPR 0.001 0.066 
7.28e-

05 
0.046 

4.08e-

05 
0.032 

LS-

SVM 
0.003 0.08 

6.45e-

04 
0.033 1.7e-4 0.038 

RF 0.118 0.176 0.069 0.197 0.058 0.138 

SVM 0.007 0.093 0.003 0.019 0.001 0.015 

IV. CONCLUSION 

In this paper, four ML regression techniques have been 

applied for the prediction of characteristic impedance of a 

microstrip line as a function of three parameters, i.e., substrate 

dielectric constant, height and strip width. The dataset is 

obtained from a set of simulations carried out with Sonnet 

software [9]. The training data are used to create the model and 

the test data are considered to qualify the established model. 

Also, the robustness of four regression techniques to noisy 

training samples are considered. The performances of the 

proposed methods are compared with the desired data. It is 

shown that the GPR and LS-SVM have good performance for 

the noiseless case, whilst the SVM turns out to be more robust 

with respect to noise. Such methods are suitable for 

electromagnetic problems where there is no explicit 

relationship between input and output parameters of the system. 
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