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Abstract  

Background: In digital pathology, the morphology and architecture of prostate glands have been 

routinely adopted by pathologists to evaluate the presence of cancer tissue. The manual annotations 

are operator-dependent, error-prone and time-consuming. The automated segmentation of prostate 

glands can be very challenging too due to large appearance variation and serious degeneration of 

these histological structures. 

Method: A new image segmentation method, called RINGS (Rapid IdentificatioN of Glandural 

Structures), is presented to segment prostate glands in histopathological images. We designed a 

novel glands segmentation strategy using a multi-channel algorithm that exploits and fuses both 

traditional and deep learning techniques. Specifically, the proposed approach employs a hybrid 

segmentation strategy based on stroma detection to accurately detect and delineate the prostate 

glands contours. 

Results: Automated results are compared with manual annotations and seven state-of-the-art 

techniques designed for glands segmentation. Being based on stroma segmentation, no 

performance degradation is observed when segmenting healthy or pathological structures.  Our 

method is able to delineate the prostate gland of the unknown histopathological image with a dice 

score of 90.16% and outperforms all the compared state-of-the-art methods. 

Conclusions: To the best of our knowledge, the RINGS algorithm is the first fully automated 

method capable of maintaining a high sensitivity even in the presence of severe glandular 

degeneration. The proposed method will help to detect the prostate glands accurately and assist the 

pathologists to make accurate diagnosis and treatment. The developed model can be used to 

support prostate cancer diagnosis in polyclinics and community care centres.  

 

Keywords: glands segmentation, digital pathology, computer-aided image analysis, prostate 

cancer, deep learning. 
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1. Introduction 

Prostate cancer is the most common cancer in men and the fifth cause of cancer-related deaths 

globally [1], [2]. Deeper understanding of the type and stage of prostate cancer is necessary to 

provide accurate treatment. More than 70% of men above 70 years develop prostate cancer, but 

only 10% of them are fatal [3], [4], [5]. Therefore, there is an urgent need for an accurate prognostic 

factor stratification of this cancer. Nowadays, the Gleason score assessment performed on prostate 

biopsies is considered as the gold-standard technique.  

The Gleason score is a five-grade based score that evaluates the architecture of neoplastic 

glands. It is a relatively easy method of prostate cancer prognostic assessment, and it is routinely 

performed by almost every pathology units worldwide. The primary issue about Gleason score is 

the reproducibility of its outcomes. Several reports in the literature have highlighted the 

subjectivity in the manual Gleason score assessment and hence causes the variance in the 

assessment [6], [7], [8]. In recent years, follow-up emerged as an alternative to prostatectomy in 

patients with low Gleason Score; consequently, reproducibility of this parameter is now relevant 

not only for the prognosis but also for establishing the correct therapeutic approach. As stated 

before, the only parameter considered by Gleason score assessment is the architectural pattern of 

neoplastic glands (Figure S1). However, several patterns present overlapping features and can be 

wrongly graded, causing wrong outcomes [9], [10], [11]. Gleason score is also a time-consuming 

reporting activity for the pathology units. Pathologists need to go through twelve biopsies for one 

patient and need to present a report with details of cancer features (e.g., including at least Gleason 

score, Gleason grade, length of the biopsy, length of the tumor, percentage of the tumor-affected 

tissue, continuity/discontinuity of the lesion, ratio of affected biopsy cores with the number of the 

total cores) [12], [13].  

In this challenging panorama, digital prostate gland segmentation may offer crucial support to 

the Gleason score assessment. The application of digital analysis and image segmentation to the 

field of pathology may help to accurately identify specific structures, such as prostatic glands, and 

can help to improve pattern recognition [14], [15]. The support of an automated image analyzer 

would increase the identification of prostatic glands - both physiological and neoplastic – and the 

interpretation of their arrangement. The application and implementation of automated 

segmentation of glands in prostate cancer cells will overcome the subjectivity issue and help to 

boost the accuracy of detection. Recently, many methods have been proposed to the development 
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of automatic glands segmentation techniques with the aim to improve both the accuracy and the 

efficiency in histopathological image analysis [16], [17]. The prostate glands segmentation is a 

challenging task because of variability in shape, dimension and internal architecture of glands 

especially in pathological conditions (see Supplementary Material). All current deep learning-

based approaches formulate this detection problem as a direct segmentation task. The operator 

manually annotates the glands contours, and the convolutional neural network (CNN) is then 

trained to recognize the glandular areas. However, training a deep network to detect cancerous 

patterns is not a trivial task as it is not easy to obtain accurate manual annotations due to the 

presence of severe glandular degeneration. 

In this paper, a novel glands segmentation strategy for histological images is presented. The 

main contribution of this paper can be summarized as follows:  

• We propose a hybrid deep learning framework that combines the accuracy of an active contour 

model with the semantic segmentation performed by a CNN. In particular, traditional and deep 

learning techniques are employed to create a hybrid image in which the contrast between glands 

and stroma is greater than the original image. Then, a softmax-driven active contour model is 

applied to detect all the prostate glands.  

• We develop an effective approach based on stroma segmentation to accurately detect the 

contours of prostate glands even in the presence of severe glandular degeneration. By 

complementing the stroma mask, we are able to bypass the limitations of the current methods. 

• We publicly release a dataset of 1500 H&E (hematoxylin & eosin) stained images of prostate 

tissue along with 18851 annotated glands. For each image of the dataset, we also provide the 

manual annotation of cancer tissue.    

• An extended validation is performed by comparing the proposed approach with the most recent 

state-of-the-art techniques. Our algorithm obtains highly satisfactory results and outperforms 

all the compared methods [18], [19], [20], [21], [22], [23], [24].  

The rest of this paper is organized as follows: Section 2 presents an overview of the current 

approach for prostate glands segmentation; Section 3 provides an exhaustive description of the 

proposed approach; Section 4 and 5 report and discuss the experimental results. 
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2. Related Works 

Recently, many methods have been proposed for glandular structures segmentation. Farjam et 

al. [18] used a combination of Gaussian filters to extract the texture features of the prostate tissue. 

Then, a k-means clustering is used to extract the glands boundaries. Texture-based approaches 

generally perform badly in the case of high stain intensity variability images and do not take into 

account the spatial information between epithelial nuclei and lumen. To overcome this problem, 

different algorithms have been developed to exploit the relationship between nuclei/stroma 

combined with the gland morphology. Naik et al. [19] implemented a level-set for prostate gland 

segmentation. The initial contour of the curve is detected by a Bayesian classifier that identified 

all the lumen regions. Then, an energy functional is defined to obtain the minimum energy when 

the level set is near the epithelial nuclei. If properly initialized, the level-set is used to obtain the 

satisfactory segmentation. This property also defined its main limitation, which is the level-set 

initialization. This class of algorithms may generate an inaccurate segmentation due to incorrect 

or missing initial level-sets (e.g., in the case of glands with no visible lumen). Peng et al. [20] 

employed a color decomposition and a principal component analysis to detect the four main 

components of the histological tissue (lumen, nuclei, stroma and cytoplasm). Then, a post-

processing strategy is applied to identify the gland boundaries. This method achieved a reasonable 

gland detection on healthy tissues but, in the presence of tumoral patterns, a significant drop in the 

segmentation accuracy is observed. Nguyen et al. [21] used k-means classification based on LAB 

color space information to classify pixels as nuclei, cytoplasm, lumen and stroma. The method 

then merged the lumen, cytoplasm and nuclei pixels to extract the glandular regions. Singh et al. 

[22] trained a logistic regression classifier to detect stoma, gland and lumen pixels. Then, a 

heuristic process is applied to obtain the final gland segmentation. These last two methods 

performed well on structures containing lumen, but they failed to segment the glands with 

discontinuous/absent lumina (as in the case of pathological conditions). 

Recently, deep learning methods achieved state-of-the-art performance in many fields of 

medical imaging [25], [26], [27], including digital pathology image analysis [28], [29], [30]. Ren 

et al. [23] proposed a convolutional neural network (CNN) for binary prostate gland segmentation 

in histopathological images. The semantic segmentation is performed using an encoder network 

followed by a decoder network. Both the encoding and decoding network contained 10 

convolutional layers. The input layer of the CNN had a dimension of 480x360x3. Bigger images 
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are segmented using a sliding window approach. Using this strategy, the authors obtained higher 

performance compared to the previously published works. Xu et al. [24] focused on the gland 

segmentation task using three-channels of CNN. One channel is designed for segmenting 

background from foreground pixels. The second channel detects gland boundaries while the third 

channel is employed for the detection of individual glands. The outputs of these three channels are 

fused by a CNN to obtain the final segmentation result. All the CNNs are based on the VGG16 

model. In particular, the architecture consists of five pooling structure with an image input size of 

400x400x3. These deep learning methods, however, did not address the issues of segmenting 

glands with no visible lumen explicitly. Gland detection may perform well for benign and well-

shaped glands, but the deep network hardly detects glands accurately in malignant cases.   

3.  Materials and Methods  

In this paper, an automated method called RINGS (Rapid IdentificatioN of Glandural 

Structures) is presented. The RINGS algorithm is a fully automated method developed for prostate 

glands segmentation in H&E stained images. The flowchart of our approach is illustrated in Figure 

1. Our method consists of three steps: image normalization, object detection (based on deep 

networks and traditional techniques) and hybrid segmentation. A detailed description of the 

RINGS algorithm is provided in the next section. 
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Figure 1. Schematic representation of  RINGS algorithm. Starting from the RGB image, a stain normalization method 

is applied. A deep neural network is employed to detect both regions and contours of glands while cellular structures 

(lumen, nuclei, and stroma) are found using traditional methods. Then, the hybrid segmentation combines all these 

information to obtain the final contours of glands. 

3.1 Human prostate histology 

The whole-slide images of prostate biopsy specimens of 150 male patients (median age 63.2 

years, range 41-86 years) were collected at the Division of Pathology, Department of Oncology, 

Turin, Italy. The histological tissues were collected by biopsy, formalin-fixed and paraffin-

embedded, serially sectioned to 5 μm, and stained with H&E. Digital images were scanned with a 

magnification of x100 (conversion factor: 0.934 μm/pixel) using a Hamamatsu NanoZoomer S210 

Digital slide scanner. Ten images of 1500x1500 pixels were extracted from each patient (n=150), 

for a total of 1500 images. Our database was then divided into two subsets: TRAIN (1000 images) 

and TEST (500 images). Manual annotations of the contours of the glands (n=18851) were 

generated after consent by two of us (MB and LM). Table 1 shows the details of the dataset 

composition. The image dataset, along with the annotations are available at 

https://data.mendeley.com/datasets/h8bdwrtnr5/draft?a=d40d333e-1a25-4a30-a446-

20299d773c3a 

Table 1 Dataset composition. 

Dataset #Patients #Images #Annotations 

TRAIN 100 1000 12924 

TEST 50 500 5927 

 

3.2 Image normalization 

The first preprocessing step of the proposed pipeline is image normalization. Starting from the 

original RGB image, the RINGS algorithm performs the stain normalization method which we 

developed in our previous work [31]. The procedure of stain normalization involves transforming 

a source image 𝐼 into another image 𝐼𝑁𝑂𝑅𝑀, through the operation 𝐼𝑁𝑂𝑅𝑀 = 𝑓(𝐼, 𝐼𝑅𝐸𝐹), where 𝐼𝑅𝐸𝐹  

is a reference image and 𝑓(∙) is the function that applies the color intensities of 𝐼𝑅𝐸𝐹  to the source 

image. This is a crucial step as the appearance of the histological specimen often suffers from large 

variability due to the chemical reaction of dye used during staining and operator’s ability. In this 

https://data.mendeley.com/datasets/h8bdwrtnr5/draft?a=d40d333e-1a25-4a30-a446-20299d773c3a
https://data.mendeley.com/datasets/h8bdwrtnr5/draft?a=d40d333e-1a25-4a30-a446-20299d773c3a
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context, the normalization of color appearance is fundamental in the development of automated 

solutions for quantitative analysis of histological images [32], [33]. Color normalization helps to 

standardize the stain appearance of a source image respect to a reference image. Figure 2 shows 

the color normalization process of a sample image. 

 

 

Figure 2. Stain normalization performed by the RINGS algorithm. The normalized image is obtained by applying the 

color intensities of the reference image to the source one. (a) original source image, (b) reference H&E-stained image, 

(c) normalized source image. 

 

3.3 Objects detection 

This section describes the object detection strategies used to segment the prostate glands 

contours. The RINGS algorithm applies two different processing steps to identify the glandular 

regions: i) CNN-based detection, ii) structures-based detection. 

3.3.1 CNN-based detection 

The proposed pipeline implements a convolutional neural network (CNN) to segment the 

prostate glands. In particular, a UNET architecture with ResNet34 backbone [34] is employed to 

perform semantic segmentation. The overall network architecture is shown in Figure 3. This deep 

network is composed of an encoder and a decoder structure. The encoder network, based on the 

ResNet34 architecture, downsamples the spatial resolution of the input image to obtain a low-

resolution feature mapping. The decoder network is then obtained by mirroring the encoding part 

using transposed convolutions. The aim is to project all the discriminating characteristics (lower 

resolution) learned from the encoder onto the pixel space (higher resolution) to obtain a dense 

classification. The output of the network is a probability map that assigns to each pixel a 

probability of belonging to a specific class. The entire network is trained on a three-class problem, 



 

9 

 

giving the 480x480 RGB images as input and the corresponding labeled masks as the target. In 

order to train the network, the outline of each prostate gland is extracted from the manual mask. 

Then, a dilation is performed with a disk of 2-pixel radius to obtain a binary mask of glands 

contours. Finally, pixels are labeled in three classes: (i) glands, (ii) glands boundaries, and (iii) 

background. The reason for choosing both object and edge detection is to define the spatial limit 

of each gland based on the information on the location and contour of each object. Previous studies 

have shown that this joint effort performs better than the single approach [17], [24]. 

 

Figure 3. Patch extraction and architecture of the deep network employed in this work. The normalized image is 

divided into non-overlapping patches of 480x480x3. Then, a three-class UNET is adopted to perform prostate glands 

segmentation using Keras framework. 

 

To solve the problem of class imbalance, our network’s loss function is class-weighted by 

taking into account how frequently a class occurs in the training set. This means that the least 

represented class (glands boundaries) will have a greater contribution than the more represented 

one (glands and background) during the weight update. The class weight is calculated as follows: 

𝑓𝑐𝑙𝑎𝑠𝑠𝑋 =
1

𝑁
 ∑

𝑝𝑖𝑥𝑒𝑙𝑐𝑙𝑎𝑠𝑠𝑋

𝑎𝑟𝑒𝑎(𝐼)

𝑁

𝑖=1

            𝑋 =  1,2,3 (1) 

 

𝑐𝑙𝑎𝑠𝑠𝑤𝑒𝑖𝑔ℎ𝑡𝑋 =  
𝑚𝑒𝑑𝑖𝑎𝑛(𝑓𝑐𝑙𝑎𝑠𝑠1, 𝑓𝑐𝑙𝑎𝑠𝑠2, 𝑓𝑐𝑙𝑎𝑠𝑠3)

𝑓𝑐𝑙𝑎𝑠𝑠𝑋
 (2) 

 

where I represents the current image, N is the total number of images, and 𝑓𝑐𝑙𝑎𝑠𝑠𝑋  is the class 

frequency of the generic class X.  
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The encoding network is pre-trained on ILSVRC 2012 ImageNet [35]. During the training 

process, only the decoder weights are updated, while the encoder weights are set to non-trainable. 

This strategy allows transferring the knowledge acquired from a previous task (ImageNet) to solve 

a new problem (glands segmentation). This approach is useful both to overcome the problem of 

small datasets and to reduce the training time [36]. Moreover, on-the-fly data augmentation is 

implemented by applying random transformations (i.e., flipping, shifting, rotation) both to the 

input image and to the corresponding encoded mask. Real-time data augmentation prevents 

network overfitting and makes the model more robust by increasing the amount of data available 

during training. The deep network was trained on 9000 patches (9 patches for each training image) 

with a mini-batch size of 128 and an initial learning rate of 10-3. Categorical cross-entropy and the 

Adam optimizer are employed as a loss and optimization function, respectively. Finally, the 

maximum number of epochs was set to 30, with a validation patience of 10 epochs for early 

stopping of the training process. The total training time was 17 hours on a dedicated workstation 

equipped with a GeForce 1080Ti, 128 GB of RAM, and a 4.1 GHz ten-core CPU. 

To preserve the information near the boundaries of the image, the RINGS algorithm applies a 

specific procedure to build the CNN softmax. Briefly, a mirror border is synthesized in each 

direction and a sliding window approach is employed to build the probability map. To give the 

reader the opportunity to observe the entire procedure, we added a detailed description along with 

a summary figure in the Supplementary Material. 

3.3.2 Structure-based detection 

The structure-based detection helps to identify three basic cellular components within the 

image: lumen, nuclei and stroma. In order to detect the lumen area (i.e., uncolored regions), the 

normalized image is converted to grayscale and Wiener filtered and finally, a fixed threshold of 

240/255 (equal to 94% of the image maximum) is applied to segment all the white regions. 

All detected white regions are erased to process only H&E stained structures (nuclei and 

stroma). The next step of the RINGS algorithm is the detection of the cellular regions of interest: 

nuclei and stroma. In order to perform this task, the stain separation proposed in our previous work 

[31] is employed to isolate the hematoxylin (nuclei) and eosin (stroma).  

Cellular nuclei are identified using an improved version of  MANA (Multiscale Adaptive 

Nuclei Analysis) algorithm [37]. In particular, a custom object-based thresholding is applied to the 
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hematoxylin channel (nuclei) obtained in the previous step. Let’s consider a grayscale image with 

pixel intensities expressed by integer numbers between 0 and 255. For each possible threshold 

point 𝑇 ∈ [0, 255], we calculated the probability of having gray values equal to or lower than T 

(p0) and higher than T (p1). Hence, 𝑝0 and p1 are related to the background and nuclei distribution, 

respectively. Then, the following energy function is computed:  
 

𝐸(𝑇) = 𝑝0
2 ∗ 𝑣𝑎𝑟0 ∗ 𝑙𝑜𝑔(𝑣𝑎𝑟0) + 𝑝1

2 ∗ 𝑣𝑎𝑟1 ∗ 𝑙𝑜𝑔(𝑣𝑎𝑟1) (3) 

where var0 and var1 are the variances of the probability functions of the two classes p0 and p1. The 

optimal thresholding point is then found by minimizing the energy function E in Eq. (3). The result 

of nuclei segmentation is illustrated in Figure 4. 

In order to identify stroma regions, k-means clustering is applied to the eosin channel. After 

min-max scaling, a fast k-means algorithm [38] is employed with a number of clusters equal to 2: 

stroma and background. The initial centroids for clustering are respectively the pixel with the 

highest and lowest intensity within the image. After k-means, stroma pixels correspond to the 

cluster with the highest mean intensity (Figure 4). 
 

 

Figure 4. Object detection  performed by the proposed method. White areas are first detected using a fixed threshold. 

Then, stain separation is performed to isolate the contribution of hematoxylin (nuclei) and eosin (stroma). Nuclei are 

segmented through a custom-based object thresholding, while stromal areas are found by applying a k-means 

clustering. 
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3.4 Hybrid segmentation 

As can be seen from Figure S2, the semantic segmentation of CNN does not guarantee 

satisfactory detection of all glandular areas. The CNN output may contain false-positive shapes or 

incomplete glands contours. Since the direct segmentation of prostate glands is a challenging task 

[24], the RINGS algorithm employed a novel stroma-based approach based on identifying all the 

stromal areas, which in practice is finding everything that is not a gland. In this way, the glands 

background is found, and more accurate gland detection is achieved by complementing the stroma 

segmentation. Stroma detection is an easier task compared to gland detection due to the high 

variability of glandular patterns, especially in pathological conditions. In order to detect all the 

stromal regions, an RGB image combining the structure-based detection and CNN output is 

created. This image is called RGBFUSION and contained the following elements:  

1) 1st layer (red): CNN softmax of the “glands” class (i.e., regions inside prostate glands); 

2) 2nd layer (green): CNN softmax of the “glands boundaries” class; 

3) 3rd layer (blue): eosin channel obtained after contrast enhancement (saturation of the 

bottom 1% and the top 1% of all pixel values), where the white regions not detected by the 

CNN are set to 1. 

In this way, the stroma/background regions have a blue tint while the regions near the edge 

and inside glandular areas have green and red tint, respectively. The RGBFUSION is a hybrid image 

that contains information both from deep learning techniques (UNET) and traditional techniques 

(eosin channel). Compared to the original specimen, the RGBFUSION image shows higher contrast 

between glands and stroma (Figure 5).  

 

 

 



 

13 

 

 

 

Figure 5.  Procedure for obtaining the RGBFUSION image. The red layer contains the softmax of the “glands” class,  

the green layer contains softmax of the “glands boundaries” class, while the blue layer is composed by the eosin 

channel after contrast enhancment. 

 

The RINGS algorithm employs a softmax-driven active contour model on the RGBFUSION 

image to detect all the stromal areas. Specifically, the energy model of Chan-Vese is implemented 

as described in Ref [39]. The Chan-Vese active contour take advantage of level sets [40], curve 

evolution, and energy functional to perform image segmentation. A modified version of the 

Mumford–Shah functional [41] is defined for the detection of all the stromal regions:  
 

𝐹 =  𝛼 ⋅ |Γ| + 𝛽 ∫(𝑥𝑑𝑦 − 𝑦𝑑𝑥)

Γ

+ 𝜆1 ⋅ ∫|𝐼(𝑥, 𝑦) − 𝜇𝑖𝑛|2 + 𝜆2 ⋅ ∫ |𝐼(𝑥, 𝑦) − 𝜇𝑜𝑢𝑡|2 

Ω𝑜𝑢𝑡Ω𝑖𝑛

 (4) 

where 𝛤 denotes the curve; Ω𝑖𝑛 and Ω𝑜𝑢𝑡 represent the regions inside and outside the curve; μ𝑖𝑛 

and μ𝑜𝑢𝑡 are the mean intensity of the pixels inside and outside the curve. The parameters of the 

active contour model were optimized by maximizing the performance on the training set (𝛼 =

0.25, 𝛽 = 0.05, 𝜆1 = 1.0, 𝜆2 = 1.0). The level-set curve is initialized using the stroma mask 

identified in Section 3.3.2, in which all the gland pixels detected by CNN have been removed. In 

this way, it is possible to maintain a high sensitivity since the initial contour of the curve is always 
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outside the prostate glands. Before applying the active contour model, the RGBFUSION image is 

downscaled (scale factor: 0.5) to speed up the segmentation process. The number of iterations of 

the Chan-Vese model is set to 40. With a low number of iterations (< 40), the model fails to adapt 

itself to the glands contours and, as a result, the RINGS algorithm does not perform an accurate 

segmentation of the glands boundaries. On the other hand, high iteration values (> 40) cause a rise 

in the computational time without leading to an increase in segmentation performance. The results 

after the level-set are illustrated in Figure 6. This hybrid segmentation approach combines the 

accuracy of an active contour model with the high-level features extracted by CNNs.  

At the end of the level-set, the results obtained are still sub-optimal, so further steps are 

performed to remove all the regions that do not contain the prostate glands. Firstly, all the areas 

lower than 25 m2 composed of nuclei (isolated cells within the stroma) are removed. Then, the 

result of the active contour model is merged with the segmentation provided by the UNET to 

increase the overall performance of the proposed strategy. Finally, a structural cleaning is 

performed by removing all the detected shapes with a lumen percentage higher than 95% as they 

represent vessels or other tissue artifacts. The last step of the RINGS algorithm is the interpolation 

of glands boundaries through the Savitzky-Golay filter [42] with a window size of 101 pixels and 

polynomial order of 5. Figure 6 shows the final result provided by our segmentation method. 
 

 
 

Figure 6. Hybrid segmentation approach for glands segmentation. An active contour model is applied to the 

RGBFUSION image to accurately segment all the stromal areas. Then, the result of the active contour is merged with the 
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segmentation provided by the UNET. Finally, a structural cleaning is performed by removing all the regions with a 

high percentage of white. 

3.5 Performance metrics 

Automatic masks are compared with manual ones to evaluate the performance of our strategy 

in the segmentation of prostate glands. Several pixel-based metrics, such as balanced accuracy, 

precision, recall, and dice score are calculated to assess the segmentation performance. Balanced 

accuracy (BalACCURACY) is a common metric used in segmentation problems to deal with 

imbalanced datasets (TP vs. TN). BalACCURACY is calculated as the average of the correct 

predictions of each class individually. Precision measures the false detection of ghost shapes; recall 

assesses the missed detection of ground truth objects; and finally, dice score measures the spatial 

overlap between two binary shapes [43]. For each image of the dataset, the pathologist also 

annotated the contour of prostate cancer. In this way, it is possible to assess the performance of 

the proposed method in both healthy and cancerous areas. An ideal gland detection algorithm 

should maintain high performance especially in tumor areas where segmentation is generally more 

challenging. For this reason, we evaluated the dice score for glands on healthy tissue (diceHEALTHY) 

and cancer tissue (diceTUMOR).   

4. Results 

4.1 Glands segmentation 

The fully automated results provided by the RINGS method are compared both with manual 

masks drawn by an expert operator and with previously published works [18], [19], [20], [21], 

[22], [23], [24]. We reproduced the pipeline described in each ‘Materials and Methods' section to 

implement all the published algorithms. A quantitative comparison is carried out by evaluating the 

balanced accuracy, precision, recall, and dice score in the segmentation of prostate glands. To 

demonstrate the superiority of our strategy, we also evaluate the results obtained using the three-

class UNET without the stain normalization (CNN no pre-processing) and the three-class UNET 

without the hybrid segmentation (CNN no post-processing). The entire processing is performed 

on a workstation with 32 GB of RAM and a 3.5 GHz octa-core CPU. Table 2 show the comparison 

of the proposed algorithm and current state-of-the-art methods using TRAIN and TEST datasets, 

respectively.  



 

16 

 

 

 

Table 2 Comparison of RINGS algorithm with current state-of-the-art methods (pixel-based metrics). 

Method Subset 
Comp. 

Time (s) 
BalACCURACY Precision Recall Dice 

Farjam et al. 

[18] 

TRAIN 1.41 ± 0.07 0.6552 ± 0.1489  0.7253 ± 0.3033  0.4566 ± 0.1795  0.5224 ± 0.2109 

TEST 1.53 ± 0.03 0.6378 ± 0.1586  0.7183 ± 0.3034  0.4372 ± 0.1736  0.5070 ± 0.2059 

Naik et al. 

[19] 

TRAIN 9.13  1.03 0.7520 ± 0.1136  0.7253  0.3033 0.4566  0.1795 0.5224  0.2109 

TEST 9.41  1.08 0.7402 ± 0.1151  0.7958  0.2021 0.5819  0.2275 0.6357  0.2105 

Peng et al. 

[20] 

TRAIN 2.97  0.31 0.8020 ± 0.1528  0.6573  0.2577 0.9420  0.0935 0.7441  0.2182 

TEST 2.59  0.25 0.7957 ± 0.1535  0.6508  0.2568 0.9305  0.1124 0.7334  0.2198 

Nguyen et al. 

[21] 

TRAIN 4.41  0.39 0.7773 ± 0.1631  0.8416  0.1360 0.7143  0.2907 0.7291  0.2438 

TEST 4.32  0.42 0.7703 ± 0.1632  0.8260  0.1588 0.7041  0.2998 0.7145  0.2556 

Singh et al. 

[22] 

TRAIN 8.73  0.84 0.6853 ± 0.1270  0.9012  0.1816 0.4115  0.2483 0.5203  0.2517 

TEST 8.57  0.76 0.6734 ± 0.1247  0.9001  0.1743 0.3869  0.2493 0.4931  0.2557 

Ren et al. 

[23] 

TRAIN 17.32  1.98 0.8722 ± 0.1040  0.8265  0.1467 0.8923  0.1605 0.8394  0.1382 

TEST 17.43  1.91 0.8576 ± 0.1139  0.8199  0.1638 0.8861  0.1673 0.8308  0.1495 

Xu et al. 

[24] 

TRAIN 12.45  2.35 0.8379 ± 0.1052  0.7410  0.1571 0.9323  0.1080 0.8106  0.1257 

TEST 11.84  2.43 0.8250 ± 0.1106  0.7407  0.1597 0.9273  0.1079 0.8079  0.1264 

CNN no pre-

processing1 

TRAIN 9.74  1.71 0.9283 ± 0.0485  0.8974 ± 0.0919 0.9148 ± 0.0797 0.8869 ± 0.0748 

TEST 9.72  1.65 0.9186 ± 0.0623  0.8875 ± 0.1132 0.9157 ± 0.0952 0.8948 ± 0.0992 

CNN no post-

processing2 

TRAIN 9.78  1.69 0.9301 ± 0.0539  0.9283 ± 0.0712 0.8967 ± 0.1035 0.8924 ± 0.0795 

TEST 9.91  1.56 0.9192 ± 0.0682  0.9228 ± 0.0921 0.8795 ± 0.1293 0.8965 ± 0.1065 

RINGS 

algorithm 

TRAIN 10.64  2.11 0.9417 ± 0.0520  0.8860 ± 0.1379 0.9492 ± 0.0725 0.9073 ± 0.0989 

TEST 10.29  2.06 0.9325 ± 0.0684  0.8897 ± 0.1359 0.9356 ± 0.0964 0.9016 ± 0.1087 

1 CNN with the same architecture shown in Figure 3 but trained on original images. 2 CNN trained on normalized images but 

without the stroma-based post-processing (section 3.4).  

 

Our strategy exhibits excellent performances in segmenting prostate glands. The high recall 

(94.92% on TRAIN and 93.56% on TEST) coupled with low standard deviation values 

demonstrates the robustness of the proposed algorithm. A recall value close to 1 also confirms that 

the RINGS algorithm does not miss any prostate glands, which is extremely important in 

pathological conditions. Our method also obtains the best accuracy, recall, and dice for both the 

TRAIN and TEST sets. A large margin is achieved by RINGS compared to the state-of-the-art 

techniques. The suggested approach outperforms present state-of-the-art methods using the TEST 

set, obtaining a dice score of 90.16%. The RINGS algorithm is slightly faster than the previous 

deep learning methods [23], [24] (10.64 s vs. 12.75 s). More interestingly, the hybrid segmentation 

adopted for glands segmentation allows to further increase the performance of the single deep 
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network (CNN no post-processing vs. RINGS) with only 0.86 s of additional processing. To 

demonstrate that the joint effort between stain normalization, CNN, and active contour yields 

better results than the single approach, a pairwise t-test is applied between the performance of the 

RINGS algorithm and the "CNN no-pre-processing" and "CNN no post-processing" strategies. All 

statistical tests are carried out with a significance level (p) of 0.05. The paired t-test reveals a 

significant difference in balance accuracy and dice score for both TRAIN and TEST set (Figure 

7). 

 

Figure 7. Comparison between RINGS performance and the three-class UNET without the stain normalization (CNN 

no pre-processing) and the three-class UNET without the hybrid segmentation (CNN no post-processing). (a) balanced 

accuracy in TRAIN set, (b) balanced accuracy in TEST set, (c) dice score in TRAIN set, (d) dice score in TEST set. 

Asterisk denotes statistically significant difference (p<0.05). 

 

The performance of the best two published methods is shown in Figure 8 while the comparison 

with all other methods is reported in Figure S8. As can be seen from the Figure 8, deep learning 
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methods such as [23] and [24] approach the overall performance of our method but do not allow 

an accurate segmentation of the gland contours. By combining an active contour model with 

semantic segmentation, the RINGS algorithm is able to outperform all the other methods. 
 

 

Figure 8. Performance between RINGS algorithm and the best two published deep learning methods. Each row 

represents sub-images taken from different samples while segmentation results are reported in columns. The original 

image along with manual annotations is displayed in the first column. Compared methods are shown in the second 

and third column, while the results of our strategy is presented in the last column. 

 

4.2 Pathological structures 

To evaluate the performance of RINGS algorithm during the segmentation of pathological 

structures, the dice score on healthy tissue (DiceHEALTHY) and cancer tissues (DiceTUMOR) are also 

evaluated. The RING algorithm obtains the highest dice score while segmenting tumoral glands, 

thus demonstrating the robustness of the proposed approach (Table 3).  
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Table 3 Overall performance for healthy and pathological structures using TRAIN and TEST datasets. 

Method 
TRAIN TEST 

DiceHEALTHY DiceTUMOR DiceHEALTHY DiceTUMOR 

Farjam et al. [18] 0.6251 0.3947 0.6128 0.4038 

Naik et al. [19] 0.7549 0.5232 0.7387 0.5129 

Peng et al. [20] 0.7570 0.8619 0.7402 0.8580 

Nguyen et al. [21] 0.8238 0.6536 0.79001 0.6523 

Singh et al. [22] 0.6725 0.2713 0.6526 0.2525 

Ren et al. [23] 0.8730 0.8666 0.8699 0.8485 

Xu et al. [24] 0.8674 0.8540 0.8632 0.8402 

CNN no pre-processing1 0.9034 0.8836 0.9104 0.8934 

CNN no post-processing2 0.9204 0.8911 0.9058 0.8751 

RINGS algorithm 0.9113 0.9088 0.9103 0.8987 

1 CNN with the same architecture shown in Figure 3 but trained on original images. 2 CNN trained on normalized images but 

without the stroma-based post-processing (section 3.4).  

 

A visual comparison between state-of-the-art methods and the proposed one for different 

pathological structures is shown in Figure 9. Being based on stroma segmentation, no performance 

degradation is observed when segmenting healthy or pathological structures. The RINGS 

algorithm is able to correctly detect the glands contours even in the presence of severe glandular 

degeneration (Figure 9 – Sample #1). The combination of semantic segmentation and level-set is 

able to detect prostate glands with discontinuous and absence of lumina accurately (Figure 9 – 

Sample #2). 
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Figure 9. Performance between the best two published deep learning algorithm and our strategy for different 

pathological structures. First column illustrates the manual segmentation, while the second and third columns show 

the comparison with other best methods. Last column shows the results of the proposed algorithm. 

 

4.3 Extension to other datasets 

Since prostate glands are generally assessed on tissue microarrays (TMAs) and whole slide 

images (WSIs), we have extended our strategy to entire biopsies using a sliding window approach. 

In particular, we used a public database of prostatic TMAs [44] and a set of proprietary histological 

slides to test our strategy on two different external datasets. Before testing the RINGS algorithm, 

we normalized each image of these two datasets according to our chosen reference H&E-stained 

image (Figure 2b). Then, we applied our algorithm as is, without applying any changes to its 

parameters. Figure 10a and 10b illustrate the results obtained on three TMAs and a biopsy, 

respectively. To evaluate the architecture of prostate glands, an expert pathologist takes at least 10 

min per slide, while the RINGS algorithm is able to process the entire WSI in about 3 min. The 

introduction of an automatic algorithm within the clinical workflow can speed up the diagnostic 

process and provide more accurate data to assess prostate cancer. 
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Figure 10. Result of RINGS processing on (a) three public TMAs [44] and on (b) a biopsy acquired at Città della 

Salute e della Scienza Hospital (Turin, Italy). The detected prostate glands are shown in green.  

 

4.4 CAD for cancer detection 

Recent studies demonstrated that an accurate glands segmentation is a useful preprocessing 

step to improve the performance of  computer-aided diagnosis (CAD) system for cancer detection 

[14], [45]. If the automated algorithm has high recall rate, the CNN can be applied only on the 

detected glandular regions. In this way, all structures of not interest (e.g., stroma, vessels, etc.) are 

excluded from the classification, thus reducing both the computational time and false-positive 

results. Chen et al. [14] have demonstrates that training a CNN only on glandular regions (i.e., 

where prostate cancer occurs) leads to a 26.9% improvement in cancer detection accuracy. For this 

reason, we have conducted experiments to evaluate the improvement of CNN model using 

different methods of gland segmentation (Figure S9). In particular, a GoogleNet architecture [46] 

is trained using our TRAIN dataset (1000 images) and validated using the TEST set (500 images). 

For each image of our dataset, an expert pathologist (M.B.) also annotated the contour of prostate 

cancer. These contours were used to train and test the CNN. The encoding network was pre-trained 
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on ILSVRC 2012 ImageNet [35] and the Adam optimizer was employed with an initial learning 

rate of 0.001. The training was performed on a dedicated workstation with 128 GB of RAM and a 

4.1 GHz ten-core CPU using Keras framework and TensorFlow as backend. Table 4 summarizes 

all the results obtained. The RINGS algorithm is able to increase the quality of a CAD system 

designed for cancer detection, obtaining the best precision rate of 91.24% and recall rate of 97.23% 

in cancer detection. At the same time, the computational time is reduced by more than 25% 

compared to other methods.  

Table 4 Performance of CAD for cancer detection using different glands segmentation method as preprocessing 

steps. 

Method 
Comp. 

Time (s) 
Precision Recall 

No preprocessing 1.74  0.06 0.6862 0.5825 

Farjam et al. [18] 1.02  0.27 0.7841 0.6207 

Naik et al. [19] 0.87  0.23 0.8235 0.6934 

Peng et al. [20] 0.79  0.21 0.6927 0.9568 

Nguyen et al. [21] 0.74  0.29 0.8441 0.7471 

Singh et al. [22] 0.95  0.31 0.9087 0.6519 

Ren et al. [23] 0.58  0.18 0.8873 0.8921 

Xu et al. [24] 0.64  0.20 0.7927 0.9247 

CNN no pre-processing1 0.55  0.17 0.8958 0.9624 

CNN no post-processing2 0.56  0.09 0.9105 0.9371 

RINGS algorithm 0.53  0.11 0.9124 0.9723 

1 CNN with the same architecture shown in Figure 3 but trained on original images. 2 CNN trained on normalized images but 

without the stroma-based post-processing (section 3.4).  

 

5. Discussion and Conclusions 

Study of prostatic cancer has been a challenging task in the field of pathology due to its 

complex glandular structure. The main challenge is the accurate classification of heterogeneous 

tumors which presents several architectural patterns correlated with tumor aggressiveness and 

prognostic outcomes [47], [48]. Finally, Gleason score system is proposed after many years of 

hard work by researchers in this area. The International Society of Urologist and Pathologist 

(ISUP) has made two radical updates to the Gleason score. They introduced Gleason grading - a 

clarifying and simplified grouping system to the Gleason score with enriched prognostic 

correlation. But the inter- and intra-subjectivity and grading variability are still far from their best. 
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In this puzzling scenario, every improvement in recognizing gland architecture and correctly 

classified it is of mandatory importance. 

In this study, we present a novel strategy for automated prostate glands segmentation in 

histopathological images. Detection of glands is a real challenge due to the variability of the size, 

shape and internal architecture of the glands. Thanks to the stain normalization step, our algorithm 

is capable of automatically detecting prostate glands in images with different staining intensity. 

The proposed approach is tested on 500 H&E stained images of prostate tissue and results are 

compared with manual annotations by an expert pathologist. Our method shows the highest 

accuracy, recall and dice compared to state-of-the-art techniques in both TRAIN and TEST dataset. 

More importantly, our method obtains the highest recall rate (TRAIN: 94.92%, TEST: 93.56%) as 

compared to the current published methods. This means that the proposed algorithm generated the 

lowest false negative rate compared to the other techniques. As can be seen from Figure 9, the 

algorithm maintained high performance even in the presence of severe glandular degeneration, 

thus demonstrating the robustness of the proposed approach.  

These high performances are mainly due to the combination of an accurate object detection 

(lumen, nuclei and stroma detection) coupled with high-level features extraction using deep 

learning techniques (UNET). Starting from stroma segmentation, our method is able to identify 

the gland boundaries by complementing the detected stromal regions. Using this indirect strategy, 

RINGS algorithm is able to bypass all the issues of the current state-of-the-art methods (see Section 

2). The stain normalization step is fundamental to standardize the intensity of the stromal regions 

and make the softmax-driven active contour model more stable and performing. The proposed 

pipeline also integrated a post-processing refining to remove the detected false-positive shapes 

(e.g., broken tissue areas, isolated cell nuclei, vessels, etc.). The limitation of RINGS algorithm is 

related to the stain content: if the eosin is not present in the image, stroma segmentation may fail, 

and the entire pipeline can yield suboptimal results. On the other hand, prostate cancer is generally 

assessed on biopsies (Figure 10b), so there is always a small amount of stroma to initialize the 

active contour model. In addition, histological images should be acquired at 5x or greater 

magnification: using a lower resolution, the cellular structures segmentation may fail due to poor 

quality images. 

Being based on stroma segmentation, the proposed methodology can be easily extended in the 

future to other histological structures (e.g., tubule, epithelium) or tissues (e.g., colon, breast). In 
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addition, we are planning to extend our dataset with images acquired from multiple centers and 

different types of scanners to further increase the robustness of the RINGS algorithm. Our research 

group is currently working on the extension of RINGS algorithm for entire prostate biopsy with 

an aim to develop a faster and accurate automated Gleason grading system.  
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