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C.so Duca degli Abruzzi 24, 10129, Torino, Italy 
  

Abstract. This paper deals with the stabilization of an inverted pendulum 
on cart; the latter is pneumatically actuated by a double acting cylinder 
controlled by low cost proportional valves. In particular, a numerical model 
of whole system is developed in order to find the ability of the pneumatic 
actuation in stabilizing the pendulum and evaluate its bandwidth. A cascade 
of two control loops (the inner one for the pendulum angle, the outer one for 
the cart displacement) are analyzed and proper compensators are defined. 
The possibility of introducing an additional loop to control the force exerted 
by the actuator on the cart is evaluated. 

1 Introduction 
Majority of the inverted pendulum based applications belong to the field of human 

transportation such as self-balancing scooters [1], unicycles [2] or electric motorbikes [3]; 
recently many solutions have grown in the version of “autonomous robots” [4-6]. The 
inverted pendulum still remains an interesting system for didactic use or to test new control 
types; to this aim papers focused on different architectures and control strategies [7, 8] can 
be found. Moreover, applications in the field of biomechanics are quite interesting and 
challenging; in particular, the gait modelling and stability of biped robots [9] and postural 
exoskeleton balancing [10] are based on inverted pendulum models. Most of the applications 
make use of electric actuators, appreciated for their high bandwidth. Anyway, some others 
make use of pneumatic technology [11-14], which presents some advantages such as the low 
cost and bandwidth sufficient to obtain stabilization. In [11] a low cost pneumatic actuator is 
used to control the system, together with potentiometers that measure the linear and angular 
displacements of cart and pendulum respectively. The control is implemented on a notebook 
equipped with a PCMCIA card. In [12] an inner loop controlling the actuating force of a 
pneumatic cylinder was studied, while position and angle were controlled in an outer loop. 
A friction estimator offsets the control signal for the force control to compensate for friction. 
However the work is purely numerical. 

The authors have already designed and manufactured a prototype of inverted pendulum 
mounted on cart and pneumatically actuated. The architecture of the system is described [13, 
14]. Four proportional valves were used to supply the double-acting cylinder and 
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potentiometers are employed to feedback the displacement signals; in particular, in [14] a 
common industrial logic controller (PLC) was used to control the pneumatic servosystem. 

In this paper, the numerical model of the pneumatic system is detailed and various 
compensators are designed in order to achieve good stability margins and bandwidth. A 
cascade of two control loops (the inner one for the pendulum angle, the outer one for the cart 
displacement) is analysed and stability is discussed. The possibility of introducing an 
additional inner loop (third loop) to control the force exerted by the pneumatic cylinder is 
also evaluated and discussed. 

2 Mathematical model 
The inverted pendulum on cart is described by equations (1), (2) which represent the 

rotational and translational equilibrium:  
  

𝑔 sin 𝜗 − 𝑙𝜗̈ + 𝑥̈ cos 𝜗 = 0 (1) 
  

(𝑚𝑝 + 𝑚𝑐)𝑥̈ + 𝑚𝑝𝑙𝜗̇2 𝑠𝑖𝑛 𝜗 − 𝑚𝑝𝑙𝜗̈ 𝑐𝑜𝑠 𝜗 + 𝑏𝑐𝑥̇ − 𝐹 = 0 (2) 
 
After linearization of these equations, it is possible to obtain the transfer function between 

angle 𝜃 and cart position x 
𝑥(𝑠)

𝜃(𝑠)
= 𝐺𝑥/𝜃 =

𝑙𝑠2 − 𝑔

𝑠2
 (3) 

 
and the transfer function between the force F applied by the cylinder to the cart and angle 𝜃:  

 
𝜗(𝑠)

𝐹(𝑠)
= 𝐺𝜃/𝐹 =

𝑠

𝑚𝑐𝑙𝑠3 + 𝑏𝑐𝑙𝑠2 − 𝑔(𝑚𝑝 + 𝑚𝑐)𝑠 − 𝑏𝑐𝑔
 (4) 

 
The pneumatic cylinder is modelled considering the equilibrium equation (5) and the 

mass balance equations (6, 7) for the two chambers (rear chamber A and front chamber B). 
Friction force in pneumatic actuators depends on many factors such as velocity, chambers 
pressure, greasing conditions, material and shape of the seals [15], which can lead to complex 
friction models. For the scope of this analysis, a classical viscous friction model was 
employed. 

 
𝐹 = 𝑝𝐴𝐴𝐴 − 𝑝𝐵𝐴𝐵 − 𝑝𝑎(𝐴𝐴 − 𝐴𝐵) − 𝑏𝑝𝑥̇ − 𝑀𝑝𝑥̈  (5) 

 

𝑚̇𝐴 =
𝑝̇𝐴𝜌0

𝑝0

(𝑉𝐴0 + 𝐴𝐴𝑥) +
𝑝𝐴𝜌0

𝑝0

𝐴𝐴𝑥̇ (6) 

 

𝑚̇𝐵 =
𝑝̇𝐵𝜌0

𝑝0

(𝑉𝐵0 − 𝐴𝐵𝑥) −
𝑝𝐵𝜌0

𝑝0

𝐴𝐵𝑥̇ (7) 

 
where 𝜌0 and 𝑝0 are the air density and pressure in reference conditions. 

The air flow through the valves is given by 
 

𝑚̇ = 𝜌0𝐶𝑘𝑇

∆𝑝

(1 − 𝑏)
 (8) 
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where 𝑘𝑇 = √𝑇/𝑇0 is the temperature ratio, b the critical ratio and C the valve conductance, 
∆𝑝 is the pressure difference between chambers. The pressure difference on the supply valve 
is ∆𝑝=ps-p and ∆𝑝=p-pa on the discharge valve, where ps is the supply pressure and pa is the 
ambient pressure, while p is the pressure in chambers. 

The proportional valves model is linearized around the operating point defined by 
(ps+pa)/2. Neglecting the opening time of the valve, this expression results to be proportional 
to the command signal u to the valve: 

 
𝑚̇ = 𝐾𝑢∆𝑝 (9) 

  
Input signal u can change in range -1<u<1; positive/negative values refer to 

outward/backward cylinder motion.  
From relations (3) to (9) it is possible to obtain the transfer function 𝐺𝜃/𝑢 =  

𝜃(𝑠)

𝑢(𝑠)
   between 

input signal u and angle 𝜃. 
 
𝐺𝜃/𝑢 =  

𝜃(𝑠)

𝑢(𝑠)
=

(𝐾𝐴𝐴𝐴+𝐾𝐵𝐴𝐵)𝑠

(𝑀𝑝+𝑚𝑐)𝑙𝑠4+(𝑏𝑐+𝑏𝑝)𝑙𝑠3+(𝐶𝐴𝐴𝐴+𝐶𝐵𝐴𝐵)𝑙𝑠2−(𝑀𝑝+𝑚𝑐+𝑚𝑝)𝑔𝑠2−(𝑏𝑐+𝑏𝑝)𝑔𝑠−(𝐶𝐴𝐴𝐴+𝐶𝐵𝐴𝐵)𝑔
                         (10) 

 
Moreover, the relationship between the force F available in output from actuator and 

variables u and x is made explicit, where the cart position is assimilated to a disturbance 
variable and u is the input variable: 

 
𝐹(𝑠) =

𝐾𝐴𝐴𝐴+𝐾𝐵𝐴𝐵

𝑠
𝑢(𝑠) − (𝑀𝑝𝑠2 + 𝑏𝑝𝑠 + 𝐶𝐴𝐴𝐴 + 𝐶𝐵𝐴𝐵)𝑥(𝑠) (11) 

 
where 

𝐾𝐴 = 𝑝0

𝐾
𝑝𝑠

2
𝜌0𝑉𝐴0

 

 

𝐾𝐵 = 𝑝0

𝐾
𝑝𝑠

2
𝜌0𝑉𝐵0

 

 
𝐾 = 𝜌0𝐶𝑘𝑇 

 

𝐶𝐴 =

𝑝𝑠

2
𝑉𝐴0

𝐴𝐴 

 

𝐶𝐵 =

𝑝𝑠

2
𝑉𝐵0

𝐴𝐵 

3 Control architecture 
The control is aimed at controlling the pendulum angle and the cart position in the set 

point reducing to zero the error between set and feedback. The control on x is necessary as 
the cylinder stroke is limited to ±250 mm. Figure 1 outlines the block diagram of the control 
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architecture, which consists of a cascade of two loops to control angle 𝜃 (inner loop) and 
position x (outer loop). 

 
 

 
Fig. 1. Control system architecture only with 𝜃 and 𝑥 controlled. 

 
 
As an alternative to this scheme, a further loop is introduced to control the force F exerted 

by the cylinder on the cart. The new architecture is depicted in Figure 2. In this case, a load 
cell is inserted between cylinder and cart. The eventual advantages of introducing this loop 
are discussed here below. 

 
 

 

 
 

Fig. 2. Control system architecture with 𝐹, 𝜃 and 𝑥 controlled. 

4 The regulators 
Referring to Figures 1 and 2, transfer functions 𝐶𝑥 , 𝐶𝜃 , 𝐶𝐹  are the regulators of 

displacement, angle and force loops respectively. The regulators designed are the filtered PID 
(with first order filter on the derivative part) and the filtered PD. The first one assumes the 
following form: 

 

𝐶𝑃𝐼𝐷𝑓
(𝑠) = 𝐾𝑝 +

𝐾𝑖

𝑠
+

𝐾𝑑𝑠

𝜏𝑑𝑠 + 1
 

 
where 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 are the proportional, integral and derivative gains, while 𝜏𝑑 is the filter time 
constant. The second one lacks of the integral part and is equivalent to a phase lead 
compensator. 

For the angle loop, compensator 𝐶𝜃 was found to be of PIDf type. For the position loop, 
two alternatives compensators 𝐶𝑥 were designed: a PIDf and a PDf. 

5 Results and discussion 
A stability analysis of the linearized system is performed around the operating point, 

characterized by x =0, 𝜃 =0. 
The compensators of the control architecture of Figure 1 were designed with Matlab pid 

Tuner toolbox considering the following constraints: a) the crossover frequency of the inner 
angle loop was fixed to 10 rad/s; b) the crossover frequency of the displacement outer loop 
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was fixed to 1 rad/s; c) the minimum phase margin of both loops was set to 50°. Stability was 
verified both using the Nyquist criterion and analysing the sign of the closed loop transfer 
function roots. 

5.1 Control architecture 1: angle 𝜽 and displacement 𝒙 

Table 1. Compensators of x and  loops  

Compensator type 𝑲𝒑 𝑲𝒊 𝑲𝒅 𝝉𝒅 Gain  
Margin 

Phase 
Margin 

𝐶𝜃 PIDf 2.08 9.87 0.109 0.000875 5.33 dB 
@17.6rad/s 

50° 
@10rad/s 

𝐶𝑥 PDf -
0.00702 - -

0.0467 0.285 10.9 dB 
@3.59rad/s 

55.8° 
@1rad/s 

𝐶𝑥 PIDf -
0.00868 

-
0.000401 

-
0.0461 0.183 11.1 dB 

@4.31rad/s 
59.1° 

@1rad/s 
 

  
(a) (b) 

 
Fig. 3. Response to a step displacement with two different compensators 𝐶𝑥, (a) cart position and (b) 
pendulum angle. 
 
The performance of the controlled system is evaluated with the response to a displacement 
step. Figures 3a-3b show the cart displacement and the pendulum angle after a 100 mm step, 
considering the designed compensators 𝐶𝑥. 

The settling time, evaluated to reach 2% of the static value, is 13.9 s and 13.6 s for the 
PDf and the PIDf respectively, while the overshoot is 14.2% and 15.5% respectively. In both 
cases the angular oscillations is limited in range ±2°, see Figure 3b. 

 

5.2 Control architecture 2: force F, angle 𝜽 and displacement 𝒙 

The force control is based on eq. (11), which describes the dependency on 𝑥, assimilated to 
a disturbance, and input signal u. The block diagram of Figure 4 depicts the force loop which 
have been considered to design compensator 𝐶𝐹 . 

Eq. (13) defines the disturbance transfer function between 𝑥  and F, while eq. (14) 
expresses it in the normalized form. 
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Fig 4. Control loop of the controlled variable 𝐹. 
 
 
 

𝐺𝐹/𝑢(𝑠) =
𝐾𝐴𝐴𝐴 + 𝐾𝐵𝐴𝐵

𝑠
=

𝐺1

𝑠
 (12) 

 
𝐺𝑑(𝑠) = −(𝑀𝑃𝑠2 + 𝑏𝑃𝑠 + 𝐶𝐴𝐴𝐴 + 𝐶𝐵𝐴𝐵) (13) 

 

𝐺𝑑(𝑠) = −(𝐶𝐴𝐴𝐴 + 𝐶𝐵𝐴𝐵) (
𝑀𝑃𝑠2

𝐶𝐴𝐴𝐴 + 𝐶𝐵𝐴𝐵

+
𝑏𝑃𝑠

𝐶𝐴𝐴𝐴 + 𝐶𝐵𝐴𝐵

+ 1) =

= 𝐺2𝑐 (
𝑠2

𝜎𝑑
2 + 2𝜁𝑑

𝑠

𝜎𝑑

+ 1) = 𝐺2𝑐𝐺2(𝑠) 
(14) 

 
where 𝜎𝑑 ≅ 33,5 𝑟𝑎𝑑/𝑠  𝜁𝑑 ≅ 0,63 . These parameters are only function of physical 
parameters of the system.  

The closed loop transfer function is 
 

𝐹(𝑠) =
1

1
𝐶𝐹𝐺1

𝑠 + 1
𝐹𝑠𝑒𝑡 +

𝐺𝑑

𝐶𝐹𝐺1
𝑠

1
𝐶𝐹𝐺1

𝑠 + 1
𝑥 (15) 

 
while the open loop transfer function (see Figure 4) is 

 

𝐶𝐹𝐺𝐹/𝑢 =
𝐶𝐹𝐺1

𝑠
 (16) 

 
The system stability is assured as the phase is always beyond -90°. Considering constant 

Fset, the variation of F due to a variation of disturbance x is expressed by  
 

𝐹(𝑠) =

𝐺𝑑

𝐶𝐹𝐺1
𝑠

1
𝐶𝐹𝐺1

𝑠 + 1
𝑥 

 

(17) 

while the disturbance stiffness is defined as the inverse function: 
 

𝑥

𝐹
(𝑠) =

1 + 𝐶𝐹𝐺𝐹/𝑢

𝐺𝑑

=
𝐶𝐹𝐺1/𝐺2𝑐

𝑠

(
1

𝐶𝐹𝐺1
𝑠 + 1)

𝐺2(𝑠)
 

 

(18) 
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It is important to have a high disturbance stiffness in order to have a negligible influence 
of the disturbance on the controlled variable. Figure 5 shows the Bode diagram of the 
disturbance stiffness: introducing the controller, it is clear that it remains high in a wide 
frequency range, sufficient to cover the frequency of variation of displacement x. 

 
Fig. 5. Bode diagram of disturbance stiffness, with and without compensator 𝐶𝐹. 
 
The adopted compensator is expressed by 
 

𝐶𝐹(𝑠) = 𝐾𝑝 +
𝐾𝑑𝑠

𝜏𝑑𝑠 + 1
= 0.5 +

1.24𝑠

0.01𝑠 + 1
 

 
It gives wide stability margins and a crossover frequency higher than 100 rad/s. 

Compensators 𝐶𝜃 e 𝐶𝑥 are also reported in Table 2. 
 
Table 2. Compensators of x and  loops in case of force control 

Compensator type 𝑲𝒑 𝑲𝒊 𝑲𝒅 𝝉𝒅 Gain  
Margin 

Phase 
Margin 

𝐶𝜃 PIDf 88.8 218 8.99 0.000875 -11.9 dB 
@1.76rad/s 

50° 
@10rad/s 

𝐶𝑥 PDf -
0.0149 - -0.074 0.267 9.35 dB 

@5.77rad/s 
64.9° 

@1rad/s 

𝐶𝑥 PIDf -
0.0159 -0.000805 -

0.0751 0.369 10.7 dB 
@5.25rad/s 

59° 
@1rad/s 

 
Figure 6 shows the response to a 100 mm displacement step in terms of cart position and 
pendulum angle obtained with two different compensators 𝐶𝑥. 
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(a) (b) 

 
Fig. 6. Step response with two different compensators  𝐶𝑥, (a) slider position and (b) pendulum 
position. 

 
The settling time, evaluated to reach 2% of the static value, is 12.1 s and 12.7 s for the 

PDf and the PIDf compensators respectively, while the overshoot is 13.5% and 17.2% 
respectively. In both cases the angular oscillations is limited in range ±2°, see Figure 6b. 

Comparison 

In both control architectures the two proposed sets of compensators don’t really differ. In 
architecture 2 (with the force loop) the settling time is a little smaller (-6,6%) considering the 
same type of compensator 𝐶𝑥. 
Nevertheless, to have a more complete analysis of the comparison between the two 
architectures, a non-linear control system should be considered and experimental tests should 
be carried out. 

6 Conclusions 
Control architectures to stabilize a pneumatically actuated inverted pendulum were 

described in this paper and proper PD and PID compensators are designed. Cascade controls 
with two or three loops were considered to control the actuator force, the pendulum angle 
and the displacement. Both architectures allow the pendulum to be stable. In particular, the 
use of an additional internal force loop seems to be not so favorable in terms of transient 
response (settling time) compared to the cost needed for the force transducer. In order to 
further investigate and compare these solutions, a non-linear analysis will be carried out 
together with experimental tests. 

Nomenclature 
𝑥: cart position (𝑚) 
𝜃: pendulum angle (𝑟𝑎𝑑) 
𝐴𝐴, 𝐴𝐵: cylinder sections (𝑚2) 
𝐶: valve conductance ( 𝑚3

𝑠𝑃𝑎
)

𝐴𝑁𝑅
 

𝐾: valve linearization coefficient (𝑘𝑔/𝑠𝑃𝑎) 
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𝑀𝑝: cylinder rod mass (𝑘𝑔) 
T0: temperature in reference conditions (𝐾) 
𝑉𝐴0, 𝑉𝐵0: dead volumes of cylinder (𝑚3) 
𝑏𝑐: friction coefficient between cart and basement (𝑁𝑠/𝑚 ) 
𝑏𝑝: friction coefficient in cylinder (𝑁𝑠/𝑚) 
l: pendulum length (𝑚) 
𝑚𝑐: cart mass (𝑘𝑔) 
𝑚𝑝: pendulum mass (𝑘𝑔) 
𝑝0: reference pressure (𝑃𝑎) 
𝑝: absolute pressure (𝑃𝑎) 
𝑝𝑎: ambient pressure (𝑃𝑎) 
𝜌0: air density in reference conditions (𝑘𝑔/𝑚^3 ) 
u: valve command signal 
𝜎𝑑: damped natural frequency 
𝜁𝑑: damping ratio 
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