
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting Artificial Swarms for the Virtual Measurement of Backlash in Industrial Robots / Squillero, Giovanni;
Giovannitti, Eliana; Tonda, Alberto; Nabavi, Sayyidshahab. - ELETTRONICO. - (2021), pp. 1743-1750. ((Intervento
presentato al convegno IEEE Congress on Evolutionary Computation 2021 tenutosi a Kraków, Poland nel 28.06.2021
[10.1109/CEC45853.2021.9504962].

Original

Exploiting Artificial Swarms for the Virtual Measurement of Backlash in Industrial Robots

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/CEC45853.2021.9504962

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2896894 since: 2022-01-11T10:27:14Z

IEEE

Exploiting Artificial Swarms for the Virtual
Measurement of Backlash in Industrial Robots
Eliana Giovannitti

Comau S.p.A.
Torino, Italy

0000-0001-5180-6651

Sayyidshahab Nabavi
Islamic Azad university of Urmia

Urmia, Iran
0000-0003-4772-9651

Giovanni Squillero
Politecnico di Torino

Torino, Italy
0000-0001-5784-6435

Alberto Tonda
UMR 518 MIA, INRAE

Paris, France
0000-0001-5895-4809

Abstract—The backlash is a lost motion in a mechanism created
by gaps between its parts. It causes vibrations that increase
over time and negatively affect accuracy and performance. The
quickest and most precise way to measure the backlash is to use
specific sensors, that have to be added to the standard equipment
of the robot. However, this solution is little used in practice
because raises the manufacturing costs. An alternative solution
can be to exploit a virtual sensor, i.e., the information about
phenomena that are not directly measured is reconstructed by
signals from sensors used for other measurements.

This work evaluates the use of bio-inspired swarm algorithms
as the processing core of a virtual sensor for the backlash of
a robotic joint. Swarm-based approaches, with their relatively
modest occupation of memory and low computational load, could
be ideal candidates to solve the problem. In this paper, we exploit
four state-of-the-art swarm-based optimization algorithms: the
Dragonfly Algorithm, the Ant Lion Optimizer, the Grasshopper
Optimization Algorithm, and the Grey Wolf Optimizer. The four
candidate algorithms are compared on 20 different datasets
covering a range of backlash values that reflect an industrial case
scenario. Numerical results indicate that, unfortunately, none of
the algorithms considered provides satisfactory solutions for the
problem analyzed. Therefore, even if promising, these algorithms
cannot represent the final choice for the problem of interest.

Index Terms—backlash, robotic manipulator, real-world, in-
dustry application, swarms-based approaches

I. INTRODUCTION

Industrial robots are used by manufacturing companies
to perform repetitive, difficult or even dangerous tasks [1].
Robotics manipulators are made of a sequence of rigid links,
connected by movable joints. These joints are actuated by
electrical motors and include a set of gears that are designed
to deliver power from the motor to the link as efficiently as
possible. In engineering, Backlash is the name given to the lost
motion in a mechanism caused by gaps between the parts [2];
in industrial manipulators, that is, in the context of gears and
gear trains, the backlash is the amount of clearance between
mated gear teeth (Figure 2). Backlash is dependent on wear
and increases over time [3]. It causes vibrations to arise and
eventually impair the robot positioning accuracy degrading the
performance. The immediate effect is a reduction in the quality

Authors are listed in alphabetical order.

of the pieces produced by the robot, and in the long term the
breakage of the joint can occur.

Fig. 1: A robotic manipulator (Comau SMART NJ 650).

To prevent this scenario industries target maintenance inter-
ventions with great care. On the one hand, they try to avoid
unnecessary components substitutions and limit the number of
stops; on the other hand, they don’t want to come up with
the breakdown of a joint that may cause as a stop in the
whole production line bringing significant economic losses.
Therefore, to guarantee the quality of the production and to
predict failures, an assessment of the value of the backlash is
fundamental. A direct measure of the backlash can be obtained
using two coupled encoders, one on the motor side and one on
the load side, or using an accelerometer. Unfortunately, these
sensors are not part of the standard equipment of industrial
robots, and adding them to the robot means higher costs of
the final product. Moreover, it can be difficult to find free
space inside the robotic joint to place the extra sensors. A
solution for these problems can be the use of virtual sensors.
A virtual sensor is a piece of code which serves as physical
sensor. It uses the information available from other onboard
measurements, and infer an estimate of the quantity of interest
that can not be directly measured. The measure is achieved
relying on mathematical models and relationships between
different variables.

In [4], authors try to estimate the value of the actual
measurement of the joint backlash by using measures from the
onboard motor encoder. The measure of the motor position is
carefully analyzed looking for information about the backlash978-1-7281-8393-0/21/$31.00 ©2021 IEEE

Fig. 2: Backlash in mating gears.

status. In particular, the analog signal is scanned to find
the match with a peculiar disturbance pattern related to the
backlash presence, see Figure3. This pattern is obtained and
characterized through simulation, and is taken as the signature
of the backlash in the encoder signal. A generic formula (1)
is developed to model it, and an estimate of the underlying
backlash is obtained by fitting the formula against the mea-
sured data. The measure of the backlash is simply given by the
measure of the amplitude of the oscillation, but the fit of the
whole formula is required to discern the specific disturbance
caused by backlash from any other disturbance source. In more

Fig. 3: Backlash disturbance on the reference signal (blue) and
how its appearance changes at increasing backlash gap.

details, the formula of the expected disturbance on the encoder
signal is

db(t) =

{
Ae−(t−t1)τ sinω(t) t1 < t < t2

0 otherwise
(1)

where A and τ are the parameter related to the amplitude
decay; t1 is the starting time of the oscillation, and t2 is
the ending time, that is, db(t) = 0 if t 6∈ [t1, t2]. In [4]
the optimization phase is carried out by an Evolutionary
Algorithm that provides accurate and repeatable results. Unfor-
tunately, the algorithm has proved to be time consuming, and
demanding in terms of memory occupation and computational
load. From this emerged the idea of this paper: try to use easier
and lighter to implement optimization algorithms.

In this work, we analyze the use of different swarm-based
meta-heuristics for the core of the virtual sensor, that is the
fitting of Equation (1) with the real data, and evaluate their
performance in terms of precision and accuracy.

The paper is organized as follows: Section II describes
the four algorithms analyzed and the bio-inspired behavior
models at the basis of their functioning; Section III provides

an overview of the backlash estimation problem and how it
has been formalized in terms of an optimization problem;
Section IV is about the experiments performed and the results
discussion. Finally, the last section contains the conclusions
on the work carried out.

II. SWARM-BASED APPROACHES

This paper is focused on four state-of-the-art nature-inspired
algorithms, all emulating typical behaviours of the animal
world. They are: the Dragonfly Algorithm, the AntLion Opti-
mizer, the Grasshopper Optimization Algorithm, and the Grey
Wolf Optimizer. The algorithms were all developed by the
same author, Seyedali Mirjalili, and are freely downloadable
from the Web. The logic behind them is described as follows.

A. Ant Lion Optimizer

Ant Lion Optimizer (ALO) was developed in 2015, [5]. The
idea was inspired by the hunting mechanism of the antlion (a
species of insect in the family Myrmeleontidae). The hunting
strategy of this animal is based on the use of traps it creates to
capture its victims: the ants. The antlion digs a cone-shaped
pit in the sand, then conceals under the trap and waits for the
victim. As soon as the insect finds the prey in the trap, it starts
throwing sand towards the edge of the trap making the victim
slump down to the bottom of the trap. After having its meal,
it prepares the trap for the next time.

The ALO algorithm takes place in the following 4 main
steps: the definition of a random position and a random move-
ment for the ants, the establishing of traps, the enmeshment of
ants in the trap, the capture of the victims. Ants and antlions
are associated to the possible solutions, at every iteration their
fitness is evaluated. Ant move randomly, while antlions are
more stationary, hidden in their traps, in defined points of
the search space. The position of an antlion represents the
best solution found so far in the area around it. This area
correspond to the size of the antlion trap, and is proportional
to the fitness of the antlion: the greater the fitness, the greater
the area of the trap. Each ant is associated to a corresponding
antlion, and can only move inside the area defined by the trap.
The ant’s task is to explore this area looking for a solution with
a fitting higher than the fitting of the antlion. If this happens,
the position of the antlion is updated with the position of
the ant and the radius of the trap is increased accordingly.
This phase correspond to the capture of the prey. Finally, the
antlion with the best fit is considered as an elite, and when
optimization ends, the position of this antlion represents the
solution of the problem.

In ALO, the random walk followed by ants is modeled by

x(t) = [0, S(2r(t1)− 1), ..., S(2r(T)− 1)] (2)

where S(·) is the cumulative sum, ti counts the iterations, T
indicates the maximum number of iterations of the algorithm,
and r(t) is a stochastic function that returns 0 or 1 value with

equal probability. The position of the ants during optimization
is stored in the following matrix:

MA =

A11 A12 . . . A1d

A21 A22 . . . A2d

...
...

. . .
...

An1 An2 . . . And

 (3)

where Aij is the position in the j-th dimension of the i-th
ant. The number of the ants is indicated by n, while d is
the problem dimension. Given f(·) as the fitness function, the
fitness values for each ant during optimization are stored in
the matrix

FA =

f([A11, A12, ..., A1d])
f([A21, A22, ..., A2d])

...
f([An1, An2, ..., And])

 (4)

These two matrices are updated at each step of the opti-
mization. Similar matrices, MAL and FAL, are defined for
antlions. To set the position for the antlions a roulette wheel
selection is applied. Antlions are selected based on their fitness
values, a higher chance is given to antlions with higher fitness
value. To model the falling of the prey in the cone shaped
trap, the radius of random walk used in each step is decreased
following these equations

Ct =
Ct

I

dt =
dt

I

(5)

where, Ct and dt indicates the minimum and the maximum,
respectively, of all variables at iteration t, I is the decreasing
ratio calculated as I = 10w t

T . In this last equation, T is the
maximum number of iteration and w is a constant defined
based on the current iteration. The value of w gradually
increases as iterations proceed, controlling the accuracy level
of the exploitation stage.

To model the effect of antlion’s ambush on the random
movement of the ants the following equations are used

Cti = Antliontj + Ct

dti = Antliontj + dt
(6)

in which Antliontj is the position of antlion j at iteration
t. Moreover, the random movement of an ant around the
corresponding antlion is also affected by the position of the
elite; so the position of the i-th ant at the t-th iteration, Antti,
is expressed as

Antti =
RtA +RtE

2
(7)

where RtA and RtE are the random walks around the antlion
and the elite considered at the same iteration.

B. Grasshopper Optimization Algorithm

The Grasshopper Optimization Algorithm (GOA) [6] is
a swarm-based algorithm that imitates social behavior of
grasshoppers seeking for food.

In their lifetime, these insects pass through two main phases:
nymph and adulthood. While nymph, they have no wings so
they move slowly and eat all the vegetation on the floor.
When adult, they develop wings so they can move fast and
fly covering long distances to find a new place with food. The
swarming behavior characterizes both nymph and adulthood.
The two modality grasshoppers use to search for food can be
easily compared to the exploitation and exploration phases in
an optimization algorithm.

In GOA, grasshoppers represent the possible solutions. The
insects move in the search space, and the fittest one at
each step of the optimization is elected as the food position,
i.e. the best solution so far. The food position is passed to
the other individuals of the swarm requiring them to move
toward it. While other grasshoppers move, they can find a
fitter position than the previous one. This last position then
becomes the position for the food in the new iteration. While
the optimization progresses, the algorithm continuously finds
better solutions and converges to the optimum.

In GOA the position, X , of i-th grasshopper is given by the
formula

Xi = Si +Gi +Ai (8)

where Si, Gi, Ai represent the three forces that act on
the insect behavior. The social interaction, the gravitational
attraction, and the wind flow, respectively.

The social interaction term, which has the highest impact
on the movement, is expressed as

Si =

N∑
j=1,j 6=i

s(dij)d̂ij . (9)

In the formula, dij is the distance between grasshopper i and
grasshopper j. It is computed as dij = |xj–xi|. While d̂ij =
xj−xi

dij
is the unit vector from the i-th grasshopper to j−th one.

The function s(.) represents the power of social interaction, i.e,
attraction or repulsion, among grasshoppers and is expressed
as

s(r) = fe−
r
l − e−r (10)

where f represents attraction intensity and l is the the scale
of attractive length. Thanks to this formula, the space between
two grasshoppers is divided into a repulsion zone (the inner of
the hypersphere centered in the i-th grasshopper), an attraction
zone (the outer of the hypersphere), and a comfort zone (the
surface of the hypersphere) where there is neither attraction
nor repulsion. Changing the value of l and f changes the social
behavior of grasshoppers.

The gravitational term in Equation (8) is given by

Gi = −gêg (11)

where g is the gravitational constant, and êg is the unity vector
in the direction of the earth center.

The last component in the position formula (8) is the wind
drift, Ai, computed as

Ai = uêw (12)

where u is a constant drift, and êw is a normalized vector in
wind direction. From all the above, the equation that defines
the position of the i-th grasshopper can be rewritten as

Xi =

N∑
j=1,j 6=i

s(|Xj −Xi|)
xj − xi
dij

− gêg + uêw (13)

where N is the total number of grasshoppers.
However, this formula is a good model for the behavior of

the elements of the swarm but needs a further modification
to be used for an optimization algorithm. Indeed, the formula
quickly leads, and then holds, the grasshoppers in the equi-
librium position, without making them converge in a single
point. So, it is modified as follow

Xd
i = c

(N∑
j=1,j 6=i

c
ubd − lbd

2
s(|xdj−xdi |)

xj − xi
dij

)
+T̂d (14)

where c is a coefficient which decreases as the iterations
proceed shrinking the repulsion region between grasshoppers,
ubd and lbd are the upper and lower bound in the d−th
dimension, T̂d is the best value found so far in dimension
d, and s(.) is approximately the same function used in (8).
The Gi contribution is not considered, and it is presumed
that the wind (i.e., the Ai term) is always in the direction of
T̂d. The c factor appears twice in the formula because is also
used to act on the exploration and the exploitation behaviour.
While decreasing, c reduces the movements of grasshoppers
around the target, promoting the exploitation at the expense
of exploitation. It is updated with the following equation

c = cmax − l
cmax − cmin

L
(15)

where cmax is the maximum value, cmin is the minimum
value, l indicates the current iteration, and L is the maximum
number of iterations.

C. Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) is inspired by the social
and hunting behavior of grey wolves in nature, [7].

Grey wolves live in packs and respect a strict social hi-
erarchy which divides them into 4 main categories: alpha,
beta, delta, and omega. The dominant wolf is the alpha, it
leads the pack. The beta and delta wolves help the alpha in
making decisions about pack activities or accomplice main
tasks like hunting or watching the boundaries of the territory.
All other wolves in the group are omega individuals. The
hunting strategy of grey wolves can be summarized in three
phases: searching for prey, encircling prey, and attack prey.

The GWO logic mimic these behaviours. Each wolf is asso-
ciated to a possible solution. At every iteration the solutions
are evaluated and fittest one is taken as alpha wolf, while
the second and third best solutions became beta and delta

wolves. These three solutions are used to define an estimate
of the position of the prey, and this information is then used
to update the position of wolves for the next iteration. Wolves
have to converge to the prey while diverging form each other.
The exploration (diverging) or the exploitation (converging)
behavior of wolves can be mitigated or enhanced acting on
specific coefficients in the position formula.

The generic position of a wolf around a prey can be
expressed by using two equations:

→
D = |

→
C.
→
Xp(t)−

→
X(t)| (16)

→
X(t+ 1) = |

→
Xp(t)−

→
A.
→
D|. (17)

In these equations, t is the current iteration,
→
Xp indicates the

position vector of the prey, while
→
X is the position vector of

a grey wolf.
→
A and

→
C are coefficient vectors given by the

formulas
→
A = 2.a.

→
r 1 (18)

→
C = 2.

→
r 2 (19)

where
→
r 1, and

→
r 2 are random vectors in [0,1], and a is

a coefficient that is linearly reduced from 2 to 0 while the
optimization proceeds. Since the position of omega wolves is
updated with respect to the alpha, beta, and delta ones, the
following equations are used

→
Dα = |

→
C1.

→
Xα −

→
X| (20)

→
Dβ = |

→
C2.

→
Xβ −

→
X| (21)

→
Dδ = |

→
C3.

→
Xδ −

→
X|. (22)

→
Xα,

→
Xβ ,

→
Xδ indicates the position of alpha, beta and delta

wolves respectively, and C1, C2, C3 are random vectors. To
estimate the approximate distance between the current solution
and alfa, beta and delta wolves, equations (20), (17), and (22)
are applied as follow:

→
X1 =

→
Xα −

→
A1.
(→
Dα

)
(23)

→
X2 =

→
Xβ −

→
A2.
(→
Dβ

)
(24)

→
X3 =

→
Xδ −

→
A3.
(→
Dδ

)
(25)

Then, the position of the current solution can be updated for
the next iteration, and becomes

→
X(t+ 1) =

→
X1 +

→
X2 +

→
X3

3
. (26)

It can be observed that two vectors,
→
A and

→
C , are defined.

These two vectors are random and are used to tune the
strength of the exploration and exploitation phases in the GWO
algorithm.

D. Dragonfly Algorithm

The last algorithm evaluated in the present work is the
Dragonfly Algorithm (DA), [8]. The DA is an optimization
method inspired by the swarming behavior of dragonflies.
They exhibit two different attitudes while flying: a static
feeding swarming, and a dynamic migratory swarming. These
two habits loosely mimic the characteristics of the two phases
of an optimization process: exploration and exploitation.

The base principles used in this algorithm are the same
swarm principles identified by Reynolds in [9] and [10].
Elements in a swarm follow three fundamental rules while
moving:
• Separation, which means avoid collisions between indi-

viduals;
• Alignment, which indicate individuals should have the

same velocity;
• Cohesion, which refers to the tendency of individuals to

converge to the center of the mass of the swarm.
Two more principles can be added to the previous three:
• Attraction towards food, which is the main aim of the

swarm;
• Distraction outwards enemy.
In the following, a model for each principle is provided.

The separation term is given by

Si = −
N∑
j=1

Xi −Xj (27)

where the position of the current individual is indicated by Xi,
N is the number of agents in Xi’s neighborhood, and Xj is the
position of the j-th neighboring individual. A radius r is used
to define a region of visibility for the considered dragonfly,
all dragonflies inside this region are taken in account in the
calculation of Si. The same visibility rule is used for the other
behavioural terms.

The alignment is computed as

Ai =

∑N
j=1 Vj

N
(28)

where Vj represents the velocity of the j-th neighboring
individual. While the cohesion is given by

Ci =

∑N
j=1Xj

N
−Xi. (29)

Attraction towards the food source and distraction outwards
the enemy are computed as

Fi = X+ −Xi (30)

Ei = X− +Xi (31)

where X+ indicates the position of the food source, while X−

is the position of the enemy.
Agents move within the search space and their position is

updated at every iteration with the rules:

Xt+1 = Xt + ∆Xt+1 (32)

∆Xt+1 = (sSi + aAi + cCi + fFi + eEi) + w∆Xt (33)

The vector ∆X is the velocity vector of the dragonfly and
contains information about the direction and speed of the
movement. The constant w is an inertia weight, and t is the
iteration counter. The coefficients s, a, c, f , e are used to
weight the different behaviours. In the first steps of the opti-
mization process the dragonflies fly in a dynamic swarm. The
fly is highly coordinated, dragonflies speeds are aligned and
cohesion and separation are high. This is the best organization
for exploring the search space. While the optimization pro-
ceeds, the swarm behavior changes and gradually becomes a
static swarming. In this last stage the cohesion increases while
alignment and separation decrease, so that the dragonflies can
converge towards the prey exploiting the search space. The
transition between the two flight modes occurs by acting on
the radius r and on the coefficients s, a, c, f, e. Their values
are modified with the increasing number of iterations. A last
note should be added about food and enemy position in DA.
They are updated at the beginning of every iteration, when the
fitting of all dragonfly is evaluated. The position of the fittest
one is taken as the food location, while the position of the
worst one is considered as the place where the enemy is.

III. METHODOLOGY

The simple logic and the easy equations of the presented
algorithms have made them of interest for the industrial
problem addressed. Since the idea is to implement a virtual
sensor, that is a software sensor, the occupation of memory and
the computational effort are taken carefully into consideration.
These aspects are even more important when dealing with
industrial devices where software resources are often tailored
to the primary needs of the system. In order to use swarm
algorithms to address the backlash problem this last must be
translated into an optimization problem. Details on this are
presented below.

The backlash phenomena arises inside the joint, but its
effects propagate both to the link and to the motor that are
connected at the input and output ends of the joint, see Figure4.

Fig. 4: Simplified model of a robotic joint.

In standard industrial robots there are no sensors in the joint,
nor on the link. While an encoder is always present on the
motor. The encoder is used in position and speed control loops
of the motor itself. By detecting the consequences on the motor
of the backlash in the joint, is possible to derive information

on the backlash presence in the joint itself. However, the
detection is not so simple because these effects can reach the
motor strongly attenuated and be added or confused with other
sources of disturbance.

The main idea of this virtual sensor is to identify a model
as the signature for the backlash effect on the motor and look
for this pattern inside the signal from the encoder. When the
model is detected, its parameters are measured end an estimate
of the backlash level in the joint is derived. The greater the
amplitude of the disturbance, the greater is the backlash.

The matching between the model and the signal, and the
measurement of the model parameters are performed through
the optimization algorithm. All the information about the cost
function, the parameters, the search space and the constraints
of the problem are described in what follows.

A. The objective function

For the problem of interest, Root-mean-square error
(RMSE) between data and model is the objective function
to minimize. Since data show a repetitive pattern, made of
positive and negative sequential oscillations, the disturbance
signature (1) has been slightly modified to replicate this
behavior too. The resulting formula is

h(t, A, t0, τ, ω, vt, t1, t2, T, Tw) =

vt +

12∑
i=1

f(t, A, t0 + i · Tw, τ, ω, t1, t2, T) (34)

where vt is the commanded motor speed, and the function
f is the sequence of a positive and a negative, T shifted,
disturbance oscillation

f(t) = db(t− t0)− db(t− t0 + T). (35)

The t0 parameter is the disturbance starting time while Tw is
the time period for the f(t) function.

So, it turns out that the objective function is

RMSE =

√√√√ΣNi=1

(
v(t)− h(t, A, t0, τ, ω, vt, t1, t2, T, Tw)

)2
N

where N is the number of samples in the dataset.

B. The parameters

The parameters to be identified are

X = [A, t0, τ, ω, vt, t1, t2, T, Tw] (36)

The vector dimension is 9 but, since T and Tw have fixed
and known in advance values, the problem dimension becomes
7. Considering that all the parameters have a physical meaning
and that some information about the system under test is a-
priori available, it is possible to use it to define upper and
lower bounds for the parameters. In particular, boundaries
for amplitude related parameters of the model, A and c, are
proportional to the amplitude of the signal to be analyzed. We
know in advance they have increasing amplitude because the
disturbance superimposed on it is growing.

TABLE I: Parameters Variability Range

Symbol Min value Max valuee Units

A − 1
3
∗ (

max v(t)−min v(t)
2

) 1
3
∗ (

max v(t)−min v(t)
2

) rpm
t0 min t max t s
τ 5 30 -
ω 2π 2π · 40 rad/s
vt min v(t) max v(t) rpm
t1 0 0.204 s
t2 0 0.204

2
s

T 0.204 0.204 s
Tw 0.408 0.408 s

NOTE: t is the time vector of the measured signal v(t)

Furthermore, these parameters must have a definite relation-
ship to one another to ensure that the aspect of the function
respects the expected one. In particular the constraints are
defined for t0, t1, and t2 and are: 0 < t0 < (max(t) − t1),
t2 < t1 < T and 0 < t2 < pi/(2ω).

At the end of every iteration, when the position of the
agents is updated for the next iteration and after the check to
verify if the new values fall within the defined domains, the
constraint check is also performed. If the value of a parameter
is outside the interval defined by the constraints, then the value
is saturated to the extreme of the allowable range.

To perform a comparison, the algorithms are run under
the same conditions: same number of agents and iterations,
same constraints and same input data. All algorithms used are
applied in their original Matlab implementation. No changes
are made to the code other than minimal customization to fit
the problem.

C. The datasets

Each algorithm is run on the same test set. The test set
comprises 20 signals, all affected by a different level of
backlash.

Signals are obtained with the help of simulation. The
Matlab/Simulink environment is used to model the robotic
joint and record the motor encoder signal when the system
is affected by an increasing value backlash (see Figure 3).
Dataset1 contains the signal that corresponds to the low-
est level of backlash, while Dataset20 contains the data
corresponding to the highest backlash. Figure 5 shows the
datasets and the corresponding values for the backlash (in
blue) and for the disturbance amplitude (in red). The datasets
correspond to the 20 backlash values that span the interval
[δmin; δmax] = [0.0001; 0.004]radians with the constant
step ∆δ = 0.002radians. Since it represents the minimum
distance between two possible measures, the step was also
taken as the accuracy value required for the virtual sensor.

D. The optimization

The number of agents and the number of iterations used for
the four algorithms is the same. The best setting is identified
in 300 agents and 200 iterations. The value is chosen taking
the DA algorithm as a reference and following a trial and
error strategy. Since the aim of our study is to compare

Fig. 5: Backlash and expected disturbance amplitude on the
considered datasets.

the performances of the different optimization methods, it
is decided to proceed under the same conditions for all the
algorithms and use [300, 200] as the common setting.

The workstation used for carrying out the result is equipped
with a 2.70 GHz processor, 16 GB of RAM, and the system
used is Microsoft7. To run the proposed algorithm the Matlab
software is used.

IV. EXPERIMENTS

To evaluate the performance of the different algorithms with
respect to the problem of interest, an extensive test campaign
is conducted. The four algorithms are run on the backlash
measure problem described in Section I, and the identification
is performed on the datasets described in Section III. Since
preliminary tests have shown that in the first two datasets the
backlash disturbance is too small and cannot be properly iden-
tified, these dataset are ignored in the analysis. The remaining
18 datasets have served as reference for the assessment. Thirty
independent experiments are performed for each set while all
conditions are kept as constants. The same setting is used for
all tests and for all the algorithms. Furthermore, to provide
each algorithm with equal opportunities, the starting solution
is always randomly chosen.

A collection of all results is shown in Figure 6. Graphs in the
upper part summarize the values of the backlash disturbance
amplitude provided by the different optimization methods.
Dots stacked in each column correspond to the 30 outcomes
of experiments on a same dataset. The red line in the graph
connects the expected values for the disturbance amplitude.
While the red dotted lines represent the maximum allowable
error for the measure, i.e. the accuracy on δ reported on the
value of A. Since the relationship between A and δ is not
linear, the accuracy on A is taken as the minimum distance
between two consecutive values of A plotted in Figure 5.
Looking at the figures, it can be noted that the distribution
of results is always widening while moving towards larger
values of the backlash, i.e., going left to right in the plots.
The reason behind this is not the increased difficulty of the
problem, but is the way the problem search space is defined. In
fact, amplitude related parameters of the model, A and c, have

boundaries that grow while moving through the datasets on the
right leading to an increase in their search space, see Section
III-B. It is also possible to note that it is more likely that the
swarm optimization algorithms tend to underestimate, rather
than overestimate, the solution. It can be attributed to the fact
that the fitting result is sometimes wrong. When fitting fails,
only the second and smaller half of the decreasing oscillation
is fitted, while the first and largest part is lost. In such cases
an underestimated solution is provided.

A different perspective on the same data is given by the box
and whisker diagrams, in Figure 7. They present in quantitative
terms the dispersion of the data around the expected value.
Diagrams give clear information about GOA, ALO and DA
performance, but unfortunately are not significant for GWO.
This is because the particular shape of the dispersion of GWO
results, with the majority of them lying very close to the
red expected value and the wide empty band separating the
remaining data (see GWO graph in Figure 6), makes the box
plot misleading. So, even if box charts show ALO as the best
in terms of accuracy, a more in-depth analysis returns GWO
as the best one.

Since comparing the outcome of stochastic algorithms is
not trivial, as just examining the mean performance is not
enough, the results are also evaluated through a statistical
test procedure. The series of 30 results obtained from exper-
iments on the single dataset is treated as a set of samples
from a continuous distribution. The two-sample Kolmogorov-
Smirnov test [11] is used to check the hypothesis that two
different series of results come from the same distribution.
In particular, the test is run with α = 0.05 as the threshold
for significance of distinctiveness. The results are shown in
Table II. The reported value is the mean of the fitting error
on the 30 repeated experiments. Italic is used for results that
are likely form the same distribution. Corresponding values
are considered as not significant. For the majority of cases,
however, it is possible to accept the hypothesis that the data
collected come from different distributions. In these cases the
best result is indicated in bold. Again, GWO appears as the
best of the four algorithms.

TABLE II: Kolmogorov-Smirnov test results

Datasets ALO GOA DA GWO
3 2.777 4.781 3.227 2.637
4 3.331 6.169 4.558 3.278
5 4.560 7.214 6.039 3.327
6 5.752 9.511 7.422 3.630
7 6.728 8.946 9.277 4.250
8 6.622 11.628 9.363 5.400
9 7.580 12.163 11.553 5.817
10 8.816 13.065 11.412 7.310
11 9.456 14.159 13.399 7.957
12 8.647 16.212 12.846 8.268
13 10.218 16.571 14.409 8.844
14 10.729 18.311 14.321 9.289
15 10.957 17.419 16.261 10.411
16 10.427 19.766 16.709 10.509
17 11.301 20.982 16.921 10.521
18 11.932 20.055 18.920 11.017
19 13.628 20.69 17.799 12.576
20 13.660 22.126 19.150 11.214

Fig. 6: Collection of all the results of the experiments.

Fig. 7: Box and whisker diagram.

For all the above, it can be stated that the GWO algo-
rithm has the best performances with respect to the back-
lash problem. While, DA is the worst. Nevertheless, none
of the algorithms analyzed presents performances that can
meet the requirements of precision and repeatability of our
sensor. Figure 6 clearly shows the solutions lying outside the
allowable band delimited by the desired accuracy. Therefore,
at the present stage of development, these algorithms cannot
be used for the implementation of the virtual sensor for the
backlash.

V. CONCLUSIONS

The paper presented an application of four bio-inspired
swarm algorithms to a real industrial problem. A extensive
test campaign was conducted and a thorough comparison of
results and performances of the algorithms was performed.
Key aspects as accuracy, precision, and ease of implementation
were taken into account, focusing on the possible use of
the swarm algorithms for the implementation of a virtual
sensor. The problem of interest, i.e., the matching between
a disturbance signature and a signal, has proved difficult
to solve, and the considered algorithms was found to be
unsuitable to find its solution. The presence of many local
minima has been observed, and none of the algorithms showed
sufficient exploration capabilities not to get stuck in one of the
many local solutions. It has been verified that, even showing
some advantages in terms of memory occupation and ease of
implementation, the bio-inspired swarm algorithms can not be
used for the backlash sensor implementation. They were not

able to guarantee the level of reliability and accuracy required
by the sensor.

REFERENCES

[1] M. Edwards, “Robots in industry: An overview,” Applied ergonomics,
vol. 15, no. 1, pp. 45–53, 1984.

[2] J. L. Stein and C.-H. Wang, “Estimation of gear backlash: Theory and
simulation,” 1998.

[3] Q. Yang, T. Liu, X. Wu, and Y. Deng, “Gear backlash detection and
evaluation based on current characteristic extraction and selection,” IEEE
Access, vol. 8, pp. 107 161–107 176, 2020.

[4] E. Giovannitti, G. Squillero, and A. Tonda, “Virtual measurement of the
backlash gap in industrial manipulators,” in Swarm, Evolutionary, and
Memetic Computing and Fuzzy and Neural Computing. Springer, 2019,
pp. 189–200.

[5] S. Mirjalili, “The ant lion optimizer,” Advances in Engineering
Software, vol. 83, pp. 80–98, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0965997815000113

[6] S. Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, and I. Aljarah,
“Grasshopper optimization algorithm for multi-objective optimization
problems,” Applied Intelligence, vol. 48, no. 4, pp. 805–820, 2018.
[Online]. Available: https://doi.org/10.1007/s10489-017-1019-8

[7] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Advances in Engineering Software, vol. 69, pp. 46–61, 2014.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0965997813001853

[8] S. Mirjalili, “Dragonfly algorithm: A new meta-heuristic optimization
technique for solving single-objective,discrete, and multi-objective prob-
lems,” Neural Computing and Application, vol. 27, pp. 1053—-1073,
2016.

[9] C. Raynolds, “Flocks, herds, and schools: A distributed behavioral
model,” Computer Graphic- ACM SIGGRAPH ’87 Conference Proceed-
ings, vol. 21, no. 4, pp. 25–34, 1987.

[10] C. Raynolds, “Steering behaviour for autonomous characters,”
http://www.red3d.com/cwr/steer/, first version, 1999.

[11] N. V. Smirnov, “On the estimation of the discrepancy between empirical
curves of distribution for two independent samples,” Bull. Math. Univ.
Moscou, vol. 2, no. 2, pp. 3–14, 1939.

