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Abstract— The Generalized Wiener-Hopf technique and the 
associated Fredholm factorization method constitute powerful 
tools that allow to study in quasi-analytical form the diffraction 
by complex structures with edges. A characteristic of this 
technique is the possibility to break down the complexity of the 
diffraction problem into different homogeneous canonical sub-
regions where the WH functional equations and their associated 
integral representations of Fredholm kind are deduced. The 
mathematical-physical model is comprehensive and it allows 
spectral interpretation. In this paper we consider a novel 
canonical scattering problem: the three face impenetrable 
polygon. 
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I. INTRODUCTION  

The accurate and efficient study of scattering from complex 
wedge structures is of great interest in electromagnetic 
engineering communities. In this paper we investigate a novel 
complex canonical electromagnetic problem constituted of 
impenetrable polygonal shape proposed by Bernard in [1]. This 
problem enlarges the library of canonical scattering problems 
and its solution has a great impact in propagation community 
where ray techniques may integrate this structure in their 
database avoiding to resort to full local numerical techniques or 
iterative techniques based on PO/PTD/GTD and localization 
principle [2]. 

In particular we consider the three face impenetrable 
polygon as reported in Fig. 1. Cartesian coordinate system is 
used to describe the problem. The origin is located on the top 
edge. Two polar systems are also used: the first one ( is 
centered in (x=0,y=0) and the second one (''is centered in 
(x=0,y=-d). For the sake of simplicity we consider an Ez-
polarized plane wave incident on the structure with incidence 
angle o: cos( )( , ) ojki

z oE E e      . We define three homogenous 

regions: a) angular region 0<<a, b) angular region -b 
<’<c) half layer region x<0, -d<y<0. The most general case 
of three face impenetrable polygon is the one with impedance 
boundary conditions as depicted in Fig. 1. We consider in this 
preliminary work the case with PEC and PMC faces in any of 
the possible 8 dispositions.  

In this paper we propose a novel and effective technique to 
study this problem with a formulation in terms of Wiener-Hopf 
(WH) equations. The proposed WH solution procedure is 
general and it is called Fredholm factorization [3-4]. This 

technique has been effectively used to solve diffraction 
problems in geometries that present angular regions and planar 
regions filled by arbitrary material, see for instance [5-8]. The 
method in fact is capable to break down the complexity of the 
diffraction problem into different homogeneous canonical sub-
regions where the WH functional equations and their 
associated integral representations of Fredholm kind are 
deduced. We observe that each WH equation and each integral 
representation (related to a single sub-region) is obtained 
independently from the geometries of the other sub-regions. 
The integral representations can be interpreted as equivalent 
network that is useful to order and systematize the procedure 
[9].  

We assert that our method has the benefit to model the 
entire structure with a true comprehensive mathematical 
physical model in spectral domain that avoids multiple steps of 
interaction among separated objects and it allows semi-
analytical solutions with spectral interpretation. 

 
Fig. 1. Scattering by an Impenetrable Polygonal Structure 

II. FROM WH EQUATIONS TO THE SOLUTION 

The problem reported in Fig. 1 is modelled in terms of WH 
equations where the unknowns are the Laplace transforms of 
the electromagnetic field components: 
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In general a plus function ( )F 
 can be written in the form 

. . .( ) ( ) ( )s n sF F F       where .( )   sF 
constitutes the standard 

part, i.e. it is regular in the half-plane  Im[ ] 0  , and . . ( )   n sF 

constitutes the not standard part, i.e. it contains the poles of 
( )   F 

located in the half-plane  Im[ ] 0   due to the 

sources. It is remarkable that the non-standard parts of the WH 



unknowns are coincident with the non-standard parts of the 
geometrical optical (GO) contributions . . ( )G OF 

 known a-

priori. 

A. Region a and b 

As stated, in this preliminary work, we consider that 
Region a (Fig. 1) is terminated by PEC or PMC boundary 
conditions, i.e. Za=0,+∞. Starting from the Generalized Wiener 
Hopf equation of an angular region [9], by applying Fredholm 
factorization [3-4] we obtain the following integral 
representation that relates 

1 ( )I 
 to 

1 ( )V 
: 
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k and Zo are respectively propagation constant and the 
impedance of the free space. For the PEC case we have 

1

( ') ( ) ( )
( , '] ( )

( ') ( ) ' ' ' p ( ) 2

aMax

a

n
c c n

a a
n n

Y Y qd
y u n

d

    
        






    
   

 ( ) cos arccos( )
a

k
k

  
 

    

 (5) 


2 2

o

2 2

1
[ ] ( sin 2 cos 2 )

k Z

[ ] cos(2 ) sin 2 ,

a
n a a

n a a

q n k n

p k

  

  





    

    

 

The known function Isca in (3) depends on the non- 
standard GO contributions and for space reasons it is not 
reported here. The finite sum in (4) is vanishing for obtuse 
angular regions. It is remarkable that when the sub-region a is 
inserted in a complex structure different from of Fig. 1, only 
the source Isca changes because it depends on the contributions 
of GO field of the whole structure. Representations similar to 
(5) hold for region a and b terminated by PMC or PEC. 

B. Region c 

For region c (Fig. 1) we introduce directly the general case 

of surface impedance / sinc oZ Z   at x=0, -d<y<0. In order 
to get WH equations for the semi-layer region we resort to a 
generalization of the technique proposed in [8] where the 
characteristic Green’s function procedure is used starting from 
the wave equation in Laplace domain. In this case the semi-
layer region is terminated with impenetrable material. It yields 

1 11 1 12 2( sin ) ( ) / sin ( ) ( ) ( ) ( ) ( )o oj k p Z I Y V Y V               
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where 2 2( ) /c oY k k Z   , 2 2( ) k     and with 

( ) ( ) cot[ ( ) ]ii cY jY d     , ( ) ( ) / sin[ ( ) ]ij cY jY d     

(i,j=1,2). The functions po and ro reported on the left hand side 
of (7) and (8) are due to the boundary conditions at x=0. 
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By resorting to the property that both po and ro  are even 
functions of  and applying the Fredholm factorization [3-4] in 
a generalized form we get from (7)  
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A similar equation holds for 
2 ( )I 

 starting from (8). Again 

when the region c is inserted in a structure different from one 
reported in Fig. 1, the kernels do not change. 

C. The complete problem 

The problem is formulated using the four integral 
representations reported above (1 each for regions a,b and 2 
for c). By substitution in the system of equations we obtain the 
following vector Fredholm integral equation of second kind: 

 1
( ) ( , ') ( ') ' ( ),

2
d

j
      




 
  V M V N  

where 
1 2( ) ( ), ( )

t
V V    V  and ( , ') M  is the integral 

kernel, ( )N  the source term constituted of the not standard 

part of the Geometrical Optics field present in the whole 
structure of Fig.1. Approximate semi-analytical solutions of 
(19) and asymptotics for the computation of total uniform 
field will be presented during the Symposium. 
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