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POINT CLOUD NORMAL ESTIMATION WITH GRAPH-CONVOLUTIONAL NEURAL
NETWORKS

Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, Enrico Magli

Politecnico di Torino, Italy

ABSTRACT

Surface normal estimation is a basic task for many point cloud
processing algorithms. However, it can be challenging to cap-
ture the local geometry of the data, especially in presence
of noise. Recently, deep learning approaches have shown
promising results. Nevertheless, applying convolutional neu-
ral networks to point clouds is not straightforward, due to the
irregular positioning of the points. In this paper, we propose a
normal estimation method based on graph-convolutional neu-
ral networks to deal with such irregular point cloud domain.
The graph-convolutional layers build hierarchies of localized
features to solve the estimation problem. We show state-of-
the-art performance and robust results even in presence of
noise.

Index Terms— Point clouds, normal estimation, graph-
convolutional neural networks

1. INTRODUCTION

The increased availability and quality of range-sensing instru-
ments, such as LiDAR, has made point clouds a commonly
used data type. A point cloud can be described as an un-
ordered collection of 3D points sampled from an underlying
surface. Estimating the normal vector to the surface is a fun-
damental task that is part of the pipeline of many point cloud
processing algorithms addressing a variety of problems. For
instance, normals can be used to apply shading effects in com-
puter graphics [1], improve surface reconstruction [2], reg-
ularize segmentation [3] and denoising [4]. Therefore, im-
provements on normal estimation algorithms are significant
as they benefit a large number of downstream tasks.
However, processing point clouds can be challenging due
to their nature as unordered sets of points. Traditional model-
based approaches typically resorted to fitting local geometric
models of the surface [5, 6, 7, 8, 9, 10], encountering model
difficulties in presence of noise. Recently, an interest in deep
learning approaches has grown out of their capability of build-
ing more complex representations that can also be robust to
noise. Nevertheless, extending deep learning approaches to
point clouds is hard due to the lack of a grid-like domain
and the permutation-invariance problem, i.e., the irrelevance
of the ordering of points. PointNet [11] is one of the early ap-

proaches to use deep neural networks on point clouds for the
classification problem; it addresses those issues by applying
the same weights to all points and then merging the informa-
tion with a globally-symmetric function (e.g., a max pool).
However, this construction is sub-optimal as it does not ex-
ploit some of the useful properties that made convolutional
neural networks (CNNs) so successful. In particular, it can-
not create hierarchies of localized features where the hidden
representation of a point is constructed from the features of its
neighbors and then is in turn assembled with the other local
representations to create higher-level features.

Graph-convolutional neural networks [12] are emerging
as a state-of-the-art approach to deal with irregular domains
in the form of a general graph. They are, therefore, natu-
rally suited to process point clouds where a graph can be con-
structed to capture the spatial neighbors of points. The graph
convolution operation used in such networks extends proper-
ties of traditional convolution such as weight reuse as well as
locality and hierarchical compositionality of features to the
graph domain. Indeed, graph-convolutional neural networks
have already been used successfully to address classification
[13], segmentation [14], and generation [15] tasks on point
clouds.

In this paper, we present a graph-convolutional neural net-
work to estimate unoriented surface normals from raw point
clouds. Thanks to graph convolution, the network can create
complex hierarchies of features with a dynamically expanding
receptive field. This allows the proposed method to achieve
state-of-the-art performance, providing robust estimates even
in presence of noise.

2. RELATED WORK

The most well-known method for point cloud normal esti-
mation uses Principal Component Analysis (PCA) [S]. This
method selects a patch of a given size around a point and uses
PCA regression in order to estimate the tangent plane. More
sophisticated surface fitting techniques, such as jet fitting [6],
moving least squares [7], and spherical fitting [10], have also
been introduced. However, the performance of these methods
is very sensitive to the choice of the patch size. If the patch
size is too large, it can lead to oversmoothing, especially near
sharp edges. On the other hand, if the patch size is too small,
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Fig. 1. Proposed architecture for normal estimation.

the method can be less robust to outliers.

A different set of approaches [8, 9, 16] employs the
Voronoi diagram of the point cloud to estimate the normals
of the points. These methods preserve sharp edges and they
can provide strong theoretical guarantees on surface approx-
imation and robustness. However, in practice they rely on a
very careful fine tuning of the hyperparameters and they need
a preprocessing step in presence of strong noise.

Recently, learning-based methods [17, 18, 19, 20, 21], es-
pecially the ones based on deep learning, have gained atten-
tion thanks to their capability of learning more sophisticated
representations. However, since point clouds are unordered
sets of points, applying convolutional neural networks to such
data type is not straightforward. For this reason, some meth-
ods preprocess the point cloud in order to obtain a representa-
tion of the data that can be used as input of a standard convo-
lutional neural network. For example, NestiNet [18] employs
a multi-scale point statistics representation which encodes the
local geometry on a grid, while Boulch et al. [20] use a Hough
transform to obtain an image-like representation of the neigh-
borhood of a point. This preprocessing step allows to use
standard convolutional neural networks, at the expense of the
representation power of the method, which is limited by the
handcrafted point cloud features of choice. Instead, PCPNet
[17] proposes a different approach, employing a network ar-
chitecture similar to PointNet [11]. With this approach, each
point of the local patch is processed independently and then
points are aggregated using a global symmetric function. The
main drawback of this approach is that it does not exploit the
neighboring points in a hierarchical way like standard CNNss.

3. PROPOSED METHOD

In this section, we present the proposed graph-convolutional
network to estimate the normal vector associated to each point
of an input point cloud. We first present an overview of the ar-
chitecture of the proposed network. Then, we describe in de-
tail the graph-convolutional layer, which represents the core
of the proposed architecture, and the loss function employed
during training.

3.1. Architecture

An overview of the architecture is shown in Fig. 1. The
network takes as input a patch of N points of a point cloud

and estimates the unoriented normal vector associated to each
point. First, the patch is normalized so that its points have
zero mean and unit standard deviation. Then, the normalized
3D coordinates of the input point cloud are projected onto an
F'-dimensional feature space employing a single-point convo-
lutional layer followed by a batch-normalization block and an
activation function. The rest of the network can be described
as a series of two residual blocks, where a skip connection
sums the feature vectors from the input of the block with the
feature vectors at its output. Residual connections are well
known to reduce vanishing gradient issues and provide im-
proved training convergence. The residual blocks represent
the core of the network where the geometrical information is
extracted. Each residual block is composed by three graph-
convolutional layers, each followed by batch normalization
and an activation function. In addition to the feature vectors of
the points, the graph-convolutional layer also requires as input
a graph, describing connections between points. The graph is
computed at the beginning of each residual block as a nearest
neighbor graph using Euclidean distances between the fea-
ture vectors of the points. Since the graph is updated at every
residual block, it is a dynamic graph construction. Such dy-
namic construction has been seen to promote more powerful
feature representations as well as exploiting self-similar pat-
terns [14, 15]. We remark that the graph is shared by all layers
inside each residual block to limit computational complexity.
Finally, after the two residual blocks, a single-point convolu-
tional layer projects the features of the estimated normals to
the 3D space. Notice that, in contrast with other methods such
as PCPNet, which estimates only the normal in the central
point of the patch, the proposed network estimates a normal
for each point in the patch. However, estimates for points at
the edges of the patch may suffer from highly skewed neigh-
borhoods.

3.2. Graph-convolutional layer

The graph-convolutional layer is the main building block of
the proposed network. Graph convolution generalizes the
convolutional operation to data that lie on irregular domains.
In the last years many definitions of graph convolution have
been proposed. In this paper, we employ a lightweight ver-
sion of the Edge-Conditioned Convolution (ECC) [13]. The
ECC is defined as a weighted aggregation of the node features



Table 1. Unoriented RMS angle error (degrees).

Proposed Nesti-Net PCPNet PCA Jet HoughCNN
Noiseless 6.47 6.99 8.49 8.31 7.60 10.02
Low Noise 10.73 10.11 11.08 12.00 12.36 11.21
Med Noise 17.53 17.63 18.26 18.38 18.33 22.66
High Noise 22.09 22.28 22.80  23.50 23.41 33.39

Table 2. Angle error percentiles.

90 percentile 95 percentile 99 percentile
Proposed Nesti-Net PCPNet | Proposed Nesti-Net PCPNet | Proposed Nesti-Net PCPNet
Noiseless 8.50 10.07 12.35 12.43 15.13 17.02 24.04 25.86 29.66
Low noise 15.61 15.39 17.28 22.30 21.46 2291 38.34 34.73 36.51
Med noise 27.17 26.84 28.67 35.37 35.42 37.19 56.28 58.92 57.08
High noise 35.16 35.17 36.90 45.57 45.59 47.33 65.33 67.66 66.83

restricted to a neighborhood. We use the lightweight ECC
presented in [22], which introduces some approximations in
order to reduce the computation complexity and alleviate the
risk of vanishing gradient.

The graph-convolutional layer takes as input the feature
vectors associated to each point and the graph structure,
which describes the connections between the points of the
patch. The output feature vector hé“ € RY of point i at
layer [ is obtained as a weighted aggregation performed over
its neighborhood NV}
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where W! € RF*F is a trainable matrix representing the
self-loop contribution, and 87 =% @241 ¢ RF and k177 €
R are the outputs of a fully-connected network F' whose in-
put is the difference between the feature vectors of point ¢ and
point 7, i.e.,

j—i,R pi—i, L j—i _ 7l (1.l l
6,701,070 k17 = F(hi — hj).

The network F' is defined as a two-layer multi-layer per-
ceptron, where the second layer is composed of multiple
stacked partial circulant matrices in order to reduce the num-
ber of parameters. The value r is an hyperparameter that
defines the maximum rank of the aggregation weight matrix
S, kIiQi~iLei—i R The scalar weight 411 € R is
an edge attention term defined as

717 = exp(—|[bi — hj[3/9),

where 6 € R is a decay parameter. This term is inspired
by the graph attention networks proposed in [23] and it helps
to stabilize the network by penalizing the edges that connect
nodes with very distant feature representations.

3.3. Loss Function

During training, we consider as loss function the Euclidean
distance between the predicted normal vectors n and the
ground truth ones n:

1
L= > min ([ -l 8+ wl3). ()
i€ESp

where Sp is the set containing the P closest nodes to the cen-
tral point of the patch. This is due to the fact that the nodes
far from the center of the patch can suffer from border effects,
due to highly skewed receptive fields. Therefore, even if the
proposed method estimates the normals of all the points of the
patch, we consider only the P nodes closest to the patch cen-
ter. At the same time, we use more points than just the central
point, in contrast with the approach by PCPNet, in order to
improve training efficiency and convergence. Moreover, since
the main goal of the proposed method is to estimate the unori-
ented normals associated to the points, the minimum function
in Eq. (1) selects for each point the normal orientation that
provides the minimum error.

4. EXPERIMENTAL RESULTS

In this section we present a set of experiments aimed at evalu-
ating the performance of the proposed method with respect to
model-based baselines and state-of-the-art deep learning ap-
proaches. In particular, we consider PCA [5], jet fitting [6],
HoughCNN [20], PCPNet [17] and Nesti-Net [18].

4.1. Training and testing details

The training and testing datasets are the same used by PCPNet
[17] and Nesti-Net [18] in order to ensure a fair comparison.
The training data are composed by 8 point clouds with 100000
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Fig. 2. Cumulative distribution of angle errors for point cloud “star sharp”.

points partitioned into 10000 patches of N = 800 points each. ~ being n; the ground-truth normal vector at point ¢, n; the
During training, a batch of 16 patches is provided as input to  corresponding estimated normal vector and N the number of
the network and a normal vector is estimated for each of the  points.

points in the patch. However, as explained in the previous Table 1 shows the RMS angle error achieved by the var-
section, only the normals of the P = 250 points closest to the ~ ious methods. For methods having multi-scale variants, the
central point of the patch are considered in the loss function.  scale achieving the best result is selected for each standard
A variance-specific model is independently trained for both ~ deviation. It can be noticed that the proposed method is close
our model and PCPNet. White Gaussian noise at three noise  to or improves state-of-the-art results, achieving lower aver-
standard deviations is considered to test the robustness of the ~ age errors. In order to gain a deeper insight into the distri-
proposed method. The same standard deviation levels used  bution of errors, Table 2 shows a few percentiles of the an-
in earlier works are adopted, i.e. 0.012, 0.006, 0.00125 with gle error distribution, averaged over the whole test set with a
respect to the bounding box. We remark that the graph con-  one-standard-deviation confidence interval. For instance, the
struction in the proposed method uses 15 nearest neighbors  value of 24.04 degrees for the 99 percentile means that 99%
at noiseless and low noise levels and 35 nearest neighbors at  of the points have a normal estimation error lower than 24.04
medium-high noise levels. The number of neighbors has been  degrees. The angle error (in radians) at point ¢ is computed as

cross-validated on a validation dataset but not optimized for 1

the specific standard deviation; rather it has been discretized E; = arcos <1 ~3 min(||n; — ni||§, |lf; + nz”%)) .

into two configurations: one for low noise and one for high

noise. The edge attention hyperparameter is set to 6 = 10. It can be noticed that the proposed method achieves lower

Leaky ReLUs are used as activation functions. The proposed ~ Vvalues, meaning that it has a shorter tail of the error distri-

network is trained for approximately 100 epochs with an ini- ~ bution and consequently fewer points exhibiting high normal

tial learning rate equal to 10~%, then decreased to 10~ after ~ estimation errors. We argue that having a lower proportion of

60 epochs. points with high estimation errors is even more desirable than
The testing data are 19 point clouds with 100000 points. ~ lower average error as outliers with high errors can signifi-

Following the protocol of earlier works, a subset of 5000 cantl.y affect the Rerfo.rmanc.e of algorithms r.elying on high
points per point cloud is chosen for evaluation of the error ~ quality normal estimation. Fig. 2 shows the high-error tail of
metric. For each of these points a patch composed of the near-  the cumulative error distribution for point cloud “star sharp”

est 800 points is provided as input to the network. for the proposed method, Nesti-Net and PCPNet.

4.2. Quantitative results 4.3. Qualitative results

In order to quantitatively assess the performance of the pro- ~ Fig. 3 visually ShOWS the per-point angle error of the esti-
posed method, we measure the root mean squared (RMS) an- ~ mated normals Wlﬂ{ respect to the ground truth for 'the pro-
gle error for unoriented normal estimation on the 5000 points ~ Posed m(?thf)d, Nesti-Net, PCR Net and PCA at all noise stan-
per point cloud in the test set. The RMS angle error (in radi- ~ dard deviations. It can be noticed that the proposed method
ans) for unoriented estimation is defined as shows a lower proportion of points with high estimation er-

rors. It is also noticeable how the proposed method achieves

1 1 2 lower errors in the challenging region constituted by the cen-

E= N Z [arcos <1_ imin(Hﬁi —ngl3, [0, +n; ||§)>} ’ tral junction of the star shape. This is an area where PCPNet
=1 in particular suffers from higher errors.
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Fig. 3. Angle errors for point cloud “star sharp” at different level of noise: from a high level of noise (top) to noiseless (bottom).

5. CONCLUSIONS

We proposed a method to estimate unoriented surface nor-
mals from point clouds using a graph-convolutional neural
network. Improvements over state-of-the-art techniques show
that the method can achieve robust estimation even in pres-
ence of noise.
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