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ABSTRACT  Numerical analyses of induced ground vibrations play an important role in assessing building safety and comfort. One of the 
major difficulties is related to the calibration of an adequate source model to be used in the numerical simulation. In this paper the attenua-

tion of waves caused by drop load tests is considered to provide a general framework for the evaluation of vibration attenuation both with 

empirical laws and numerical simulations. A new equation to reproduce the source signal is suggested and used as input for a dynamic cou-
pled consolidation Finite Element Analysis. The model is validated through comparison with field data obtained at a site in the vicinity of 

the Tower of Pisa, Italy, from geophones at various distances from the impact source. The calibrated numerical model is then used to study 

in detail the attenuation of waves from the source and assess the validity of empirical attenuation laws. 

RÉSUMÉ  La modélisation numérique de vibrations induites dans le sol joue un rôle important dans l'évaluation de la sécurité et le confort 

des constructions. L'une des principales difficultés à cet égard est le calibrage d'un adéquat modèle pour représenter la source dans la simu-

lation numérique. Dans cet article, l'atténuation des ondes causées par les drop load tests est considérée comme la base pour une général 
évaluation de l’atténuation des vibrations pas comparaison avec lois empiriques et simulations numériques. Une neuve équation pour re-

produire le signal de la source est présentée et utilisée dans une analyse par éléments finis en tenant compte de la consolidation dynamique. 

Le modèle est validé par comparaison avec les données de mesures obtenues sur un site à proximité de la Tour de Pisa, en Italie, du géo-
phones à différentes distances de la source des vibrations. Le modèle numérique calibré est ensuite utilisé pour étudier en détail l'atténua-

tion des ondes propageant dans le sol et pour évaluer la validité des lois d'atténuation empiriques. 

 

1 INTRODUCTION 

Surface wave tests, including drop load tests, are of-

ten used for site characterisation (Foti et al. 2014). 

These tests are non-intrusive and can be used to ob-

tain shear wave velocity and material damping pro-

files at a site. 

Several analytical expressions have been devel-

oped in the past to reproduce the source pulse gener-

ated by drop load tests (Pekeris 1955; Mooney 1974; 

Abe et al. 1990). However, only a few of these pro-

vide a good match to real data. As the influence of 

the drop load apparatus set-up is found dominant on 

the resultant wave field, a new expression for the dis-

turbing source signal is proposed, based on experi-

mentally recorded signals, generated by a well char-

acterised source. 

Several factors contribute to the attenuation of the 

vibration amplitude with the distance in the ground. 

The most important contributions are given by geo-

metrical wave spreading, material damping and scat-

tering due to heterogeneities in the soil: the first 

component following a power law with the distance 

from the source, the latter two an exponential law 

(Auersch 2010). 

Numerical simulations of the case study of Pisa, 

Italy, were carried out to validate wave velocity-

distance attenuation relationships. The layered soil 

profile was modelled in detail in the finite element 

model and the input drop load action was based on a 

novel expression for the disturbing source pulse. The 

numerical model was considered to be reliable in re-



producing the attenuation of the wave generated by 

drop load tests, as a very good agreement between 

the experimental and the computed peak particle ve-

locity (PPV) decay trends with distance was 

achieved. 

 

2 AMPLITUDE-DISTANCE ATTENUATION 

LAWS 

2.1 Theoretical framework 

Any disturbing source, as simple as an impulse, act-

ing on a medium generates a complex wave field. 

The amplitude of such waves decays with distance as 

the waves propagate away from the source. Two are 

the main mechanisms that influence the attenuation 

of impact-induced vibrations (Semblat & Pecker 

2009; Auersch 2010): 

 Geometrical attenuation: based on the elastic 

wave energy conservation, the amplitude A of 

waves generated at a point attenuate with dis-

tance r following a power law 𝐴 ∝ 𝑟−𝑛, where A 

represents the wave velocity amplitude and r is 

the distance from the source position. The ex-

ponent n takes values of 0.5 or 2.0 respectively 

for surface and body waves produced by a sur-

face point load (Auersch 2010). 

 Material attenuation and scattering in non-

homogeneous media: the hysteretic behaviour 

of the soil and the wave refraction at interfaces 

between layers lead to a second attenuation 

component, exponentially dependent on the dis-

tance, A ∝ exp(-k ∙ r), where the coefficient k 

accounts for material damping, soil natural fre-

quency and surface waves characteristics (Au-

ersch 2010). 

2.2 Amplitude-distance attenuation laws for waves 

induced by impact loads 

It has been argued that the exponential term has only 

a minor influence on the energy reduction of ground 

vibrations induced by impact sources as the distance 

increases (Auersch & Said 2010). Hence it can be 

neglected and the attenuation of the vibrations can be 

approximated by a power law of similar form to the 

theoretical one: 𝐴 ∝ 𝑟−𝑞. Various experimental veloc-

ity recordings have been analysed to assess the atten-

uation of impact-induced vibrations and the exponent 

q was found to change according to the type of 

source and type of soil profile (Auersch & Said 

2010). The experimental exponent q has been found 

varying between values of 1.0 and 1.6 for drop load 

tests carried out on sandy and clayey soils respective-

ly (Auersch 2010). 

Further experimental studies (Mooney 1976) cor-

relate the vibration amplitude A of the induced wave-

field with the distance r from the disturbing source 

through a power law and with the characteristics of 

the source as defined below: 

𝐴 = 𝐶 ∙ 𝐻𝑆 ∙ 𝑟
−𝑛 ∙ 𝑇𝑆

−𝑚−𝑝 (1) 

Where HS and TS are the source pulse and period 

respectively; C is a constant; m+p=1.4 and n=0.5 are 

the surface wave velocity exponents. 

Equation (1) can be expanded taking into account 

also the effect given by the exponential term to ob-

tain a complete attenuation law that can be applied to 

drop load tests: 

𝐴 = 𝐶 ∙ 𝐻𝑆 ∙ 𝑅
−𝑛 ∙ 𝑇𝑆

−𝑚−𝑝 ∙ 𝑒𝑥𝑝⁡(−𝑘𝑅) (2) 

Where 𝑘 = 2𝜋𝜉 (with ξ material damping); n is the 

effective surface wave velocity attenuation exponent; 

and 𝑅 = 𝑟 𝜆𝑅⁄ , with 𝜆𝑅 the surface waves wavelength. 

 

3 DROP LOAD TESTS AND ANALYTICAL 

REPRESENTATION OF DISTURBING 

SOURCES 

Drop load tests consist of a falling heavy weight hit-

ting a plate or directly the ground, generating a wave 

field. Particle velocity signals are captured at differ-

ent distances from the source by geophones (Foti 

2000; Figure 1). 

 

Figure 1. Experimental setup for multistation SASW tests 

 

Early attempts to evaluate the soil response due to 

a surface point force were based on the disturbing ac-

tion represented by a vertical impulse (Lamb 1904; 

Mooney 1974), a step unit function (Pekeris 1955) or 

sinusoidal functions (Mooney 1974; Abe et al. 1990). 



In the latest studies the amplitude of the source 

signal was found proportional to the momentum of 

the weight before the impact (given by the product of 

mass by velocity just before the impact). 

From the analysis of near-field observations of 

particle velocity time histories recorded by geo-

phones, a new more accurate expression is derived. A 

Gabor wavelet (Semblat & Pecker 2009) formed the 

basis of the new function, then modified to account 

for the momentum of the dropped weight Cb in order 

to approximate the pulse produced by a mass falling 

on the ground (Figure 2, equation (3)). 

𝑣(𝑡) = {
𝐶𝑏 ∙ 𝛽 ∙ 𝑡𝛾 ∙ 𝑒𝑥𝑝 [−(

2𝜋

𝑇𝑆𝛼
𝑡)

2

] 𝑐𝑜𝑠 (
2𝜋

𝑇𝑆
𝑡) ,⁡⁡⁡0 ≤ 𝑡 ≤ 1.2𝑇𝑆

0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3) 

where t is a generic time instant; TS the period of 

the function; and α, β, and γ are constants. 

 

Figure 2. Modified Gabor wavelet  

 

4 SITE DESCRIPTION AND FIELD DATA 

The subsoil of Piazza dei Miracoli, Pisa (Italy) has 

been extensively characterised in the last decades as 

the basis for the stabilisation design of the Tower. 

The soil stratigraphy beneath Piazza dei Miracoli 

presents a sequence of sand and clay formations and 

is represented in Figure 3. Seismic Analysis of Sur-

face Waves tests (SASW), among which drop load 

tests, were performed in Piazza dei Miracoli next to 

the Tower (Foti 2003). 

The drop load test configuration consisted of a 130 

kg weight dropped from a height of approximately 3 

m, hitting the ground directly in order to avoid mass 

rebound and to reach lower frequencies. The vibra-

tions at the surface were recorded by 24 in-line geo-

phones at 2.5m spacing. 

Figure 4 shows the velocity time histories record-

ed at 5, 35 and 60m from the source location. The in-

crease in the significant duration of the motion with 

distance is due to increasing shear wave velocity with 

depth, i.e. the dispersive behaviour of the soil, typical 

of heterogeneous media. 

 

 

Figure 3. Indicative stratigraphy retrieved in Piazza dei Miracoli, 

Pisa 

 

5  NUMERICAL MODEL DESCRIPTION 

Fully coupled finite element simulations of the drop-

load tests carried out in Pisa were performed in the 

time domain with the code ICFEP (Potts & 

Zdravkovic 2001). The precise evaluation of the 

model input parameters is of primary importance for 

the accurate representation of the impact-induced 

wavefield. 

 The domain discretisation for the simulation of the 

drop load tests consisted of: two-dimensional ax-

isymmetric configuration; mesh dimensions 160m x 

53m; total number of 9472 eight-noded quadrilateral 

solid elements to define the mesh; horizontal dis-

placements restricted along the left lateral boundary 

to account for symmetry of the problem; tangential 

and normal to boundary dashpots applied at the bot-

tom and right lateral boundaries to absorb wave re-

flections; zero pore pressure at water table depth (as-

sumed 1.3m bgl); and disturbing action applied at the 

top left node of the model. 

 As the impact source used in the tests performed 

in Pisa was not monitored, the modified formulation 

of the Gabor wavelet (Semblat & Pecker 2009, equa-

tion (3)) was considered as the model synthetic input 

source signal, employing the following parameters: 

v(
t)

time t

0.0



𝛼 = 7; 𝛽 = 1.55 ∙ 10−2; 𝛾 = 1.2; 𝑇𝑆 = 0.04𝑠; and 

𝐶𝑏 = 997.4 𝑘𝑔 ∙ 𝑚 𝑠⁄ . These parameters were ob-

tained with a calibration on the signal at the first ge-

ophone. 

The properties assigned to the materials are shown 

in Table 1. The material damping of the soil profile 

was approximated with the Rayleigh damping formu-

lation, based on a target damping ratio varying with 

depth (Foti 2003). Incomplete saturation of near-

surface layers was also approximated in the analyses 

(Table 2) by appropriately reducing the correspond-

ing pore fluid compressibility. 

 

 

 

Figure 4. Velocity time histories recorded at r = 5, 35 and 60 m 

from the source 

 

Table 1. Soil properties used in the finite element analysis – Vs: 
shear wave velocity; γ: bulk unit weight; E: soil stiffness; ν: Pois-

son’s Ration; ξ*: target damping ratio; K: permeability 
Layer Vs γ E ν ξ* K 

 [m/s] [kN/m3] [MPa] [/] [%] [m/s] 

MG 155 19.00 124 0.33 7.0 1E-07 

A1 180 18.50 163 0.33 5.4 1E-07 

A2 170 18.00 141 0.33 2.5 5E-07 

BI 150 16.75 102 0.33 3.1 9E-09 

BII 235 19.50 2920 0.33 2.0 8E-09 

BIII 245 18.75 3051 0.33 2.0 5E-07 

BIV 215 18.00 226 0.33 2.0 8E-09 

C 380 20.00 783 0.33 2.0 5E-7 

 

Table 2. Partial saturation characteristics - Kf: bulk modulus of flu-

id and Sr: correspondent saturation 

Layer 
Kf 

[kPa] 

Sr 

[%] 

Layer MG   (above water table) 9954.8 99.00% 

Layer MG   (below water table) 19819.8 99.50% 

Layer A1   (Vp <1400 m/s, 6m bgl) 592710.5 99.981% 

Layer A1   (Vp >1400 m/s) 2.2E6 100.00% 

Layers A2 ÷ C 2.2E6 100.00% 

 

6 RESULTS 

The results from the finite element simulation have 

been compared with the field measurements. To get a 

representative response for near-field, far-field and 

intermediate conditions, geophones at 5m, 35m and 

60m distance from the disturbing source are reported. 

6.1 Comparison with the field data 

The experimental recordings at the geophones are 

compared to the numerical results in Figure 5. 

 High resemblance is achieved between the signals, 

in particular in the near- and middle-field, while in 

the far-field a faster wavefield propagation in the soil 

is predicted. The waves of smaller amplitude (regis-

tered after the major tremor) due to wave reflections 

and refractions in the soil deposit are not well cap-

tured by the numerical model. These inaccuracies in 

the response are mainly due to the simplifications 

used in the numerical model, e.g. uncertainties in the 
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degree of soil saturation and the use of a synthetic 

source signal based on a single central frequency (25 

Hz). 

 
Figure 5. Comparison of the experimental and numerical time his-

tories (at r = 5, 35 and 60 m from the source) 
 

6.2 Comparison of the PPV trend with literature 

equations 

The most effective approach to analyse the attenua-

tion of ground vibrations is the analysis of the peak 

particle velocities (PPVs) recorded by each geo-

phone. The magnitude of the peak particle velocities 

recorded in Pisa decreases from 9 mm/s at a distance 

of 2.5 m from the source to 0.2 mm/s at a distance of 

60 m (Figure 6, white circles). 

The previously mentioned analytical and empirical 

attenuation equations are presented for comparison. 

In Figure 6 both experimental data and numerical 

predictions are approximated by the power law 

𝐴 ∝ 𝑟−𝑞, which gives a straight line on a double log-

arithmic plane with slope 𝑞 = 1.282 and 𝑞 = 1.272 

respectively. An accurate modelling has therefore 

been achieved and this power attenuation law is 

found to be able to reproduce the wave amplitude de-

cay with sufficient accuracy for preliminary design 

purposes. A second comparison is made against the 

complete attenuation law given by equation (2) for 

both experimental and numerical data (Figure 7 and 

Figure 8 respectively). The input coefficients are 

𝑇𝑆 = 0.04𝑠; 𝐻𝑆 = 0.145𝑚𝑚 𝑠⁄ ; k= 0.302; C=
3800; 𝑚+ 𝑝 = 1.4; and 𝑛 = 0.75.  

The very good agreement between the complete 

law and the measured attenuation trend demonstrates 

the importance of the exponential component, related 

to the soil material, to the overall attenuation. 

 

Figure 6. Comparison of the experimental and numerical PPV at-

tenuation curves 

 

7 CONCLUSIONS 

This study investigated the attenuation of ground vi-

brations generated by drop load tests and compared 

analytical and empirical expressions with the attenua-

tion predicted by numerical analysis using as a refer-

ence the field data from the well-documented case 

study of Pisa. 

The soil response due to a weight falling on the 

ground has been investigated in previous studies. The 
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Figure 7. Comparison of the field measurements attenuation curve 
with the amplitude-distance curve given by equation (2)  

 

Figure 8. Comparison of the numerical PPV attenuation curve 

with the amplitude-distance curve given by equation (2) 

 

simplified source signal and homogeneous soil repre-

sentation previously proposed were revised to obtain 

a better representation of the disturbing action pro-

duced by drop load tests. A new expression (equation 

(3)) is presented which for the examined case study 

was shown to successfully represent the impact 

source, but further analysis is needed to confirm its 

applicability. 

Two main factors contribute to the attenuation of 

impact-induced waves in the ground: geometrical 

spreading and material damping, following a power 

and exponential attenuation law respectively. Nu-

merous equations have been suggested in previous 

studies to reproduce the decay of the waves with dis-

tance. A simplified power law and a complete power-

exponential law were examined in this study. Both 

expressions exhibited good agreement with the field 

data of drop load tests carried out in Pisa, but the su-

periority of the complete law was evident. 

As an independent assessment of the existing ana-

lytical attenuation expressions, a numerical simula-

tion of the drop load tests was performed with the fi-

nite element program ICFEP (Potts and Zdravkovic 

2001). The agreement of the numerical results with 

the experimental recordings shows how an excellent 

prediction of the induced ground vibrations can be 

achieved on the basis of a good site characterisation 

and a monitoring device close to the source. 
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