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Abstract: Titanium and its alloys, specially Ti6Al4V, are among the most employed materials in
orthopedic and dental implants. Cells response and osseointegration of implant devices are strongly
dependent on the body–biomaterial interface zone. This interface is mainly defined by proteins: They
adsorb immediately after implantation from blood and biological fluids, forming a layer on implant
surfaces. Therefore, it is of utmost importance to understand which features of biomaterials surfaces
influence formation of the protein layer and how to guide it. In this paper, relevant literature of the
last 15 years about protein adsorption on titanium-based materials is reviewed. How the surface
characteristics affect protein adsorption is investigated, aiming to provide an as comprehensive a
picture as possible of adsorption mechanisms and type of chemical bonding with the surface, as
well as of the characterization techniques effectively applied to model and real implant surfaces.
Surface free energy, charge, microroughness, and hydroxylation degree have been found to be
the main surface parameters to affect the amount of adsorbed proteins. On the other hand, the
conformation of adsorbed proteins is mainly dictated by the protein structure, surface topography at
the nano-scale, and exposed functional groups. Protein adsorption on titanium surfaces still needs
further clarification, in particular concerning adsorption from complex protein solutions. In addition,
characterization techniques to investigate and compare the different aspects of protein adsorption on
different surfaces (in terms of roughness and chemistry) shall be developed.

Keywords: titanium; protein adsorption; biomaterials; surface modifications; cell interactions

1. Introduction

Almost 1000 tons of titanium-based biomaterials are worldwide used every year as
orthopedic and dental implants [1] mainly as commercially pure titanium (cp-Ti) and
αβ-alloy Ti6Al4V (Ti64), eventually as extra low interstitial (ELI) [2]. Despite titanium’s
exceptional biocompatibility implant failure is a current issue. Dental and orthopedic
implants have a failure rate ranging from 5 to 10% after up to 15 years [3]. Implant
osseointegration is mediated by a complex series of events included in the immune response
that are triggered as soon as the tissue are damaged during the surgery. The implant surface
is immediately covered by a layer of water molecules and on top of them, a layer of protein
is adsorbed within the first few minutes. That, along with cytokines released from the
damaged cells and protein-promoted blood coagulation, triggers the foreign body reaction
(FBR) of a host body to an implant [4,5]. In order to achieve osseointegration of Ti implants,
an equilibrium within the events that occurs during FBR need to be found, in order to
avoid chronic inflammation and fibrotic encapsulation. Concerning the inflammatory
response, neutrophilis and monocytes are recruited at the implant site. Then (after about
48 h) monocytes differentiate into macrophages with a phagocytic function for controlling
the immune response. In order to remove larger debris, monocytes and macrophages
can fuse together forming foreign body giant cells (FBGCs). Concerning osseointegration,
it takes place when mesenchymal stem cells (MSC) differentiate into osteoblasts and
osteocytes, leading to new bone formation and it is triggered by an early pro-inflammatory
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response. When this does not happen, the worst scenario is proliferation of fibroblasts
and the formation of a fibrous capsule that engulfs the implant, preventing a correct
contact with the bone tissue [4,5]. Formation of the blood clot on the implant surface is of
great importance to get the mechanical and biochemical environment for osseointegration.
Activation of platelets within the blood clot on the implant surface provides a natural
gradient of signal molecules with a high concentration on the surface of the implant and
consequent attraction of monocytes, neutrophilis, and mesenchymal cells. This allows
the “contact osteogenesis” mechanism with formation of immature bone characterized
by irregularly arranged, interwoven collagenous fibers, and, as last, of mature lamellar
bone through bone remodeling. Due to this cascade of events, cells do not interact directly
with the implant surface, but the interface is strongly mediated and controlled by the
adsorbed proteins. Cells exhibit specific binding sites for certain proteins and their activity
can be enhanced by those adsorbed onto the material surface. For example, protein
such as fibronectin (FN) and vitronectin (VN) are considered adhesive proteins. FN can
activate cell α5β1 integrins through the binding domain arginine-glycine-aspartic acid
(RGD), which is present in VN as well [6]. Bone morphogenetic (BMP) proteins can
promote osseointegration [7] but contemporary increase the inflammatory response to
biomaterials [8]. As a consequence, the ability to control the formation of the protein
layer, by promoting selective adsorption, is of great interest in the design of novel and
more functional biomaterials. Since the ‘70s of the past century, a great amount of efforts
have been put in studying protein adsorption [9]. What happens when a surface gets in
contact with a protein containing solution is dictated by a multitude of different factors.
According to surface characteristics (roughness, wettability, charge), protein properties
(surface charge, hydrophilicity, structure) [9], and even solution parameters (composition,
pH, temperature) [10], adsorption of proteins may be driven by hydrophobic interactions,
electrostatic attraction, or weak forces, such as Van deer Waals’ [11]. Furthermore, the
protein layer is a dynamic entity, where adsorbed proteins can be displaced and replaced by
the ones still in solution, and according to the so-called Vroman effect, they can change their
conformation on the surface, spreading and reorienting themselves, and multilayers of
loosely bound proteins can form thanks to protein–protein interactions [12]. Many authors
have gathered and reviewed knowledge about driving forces of protein adsorption and
their behavior on the surface [12–14]. Nevertheless, despite all these efforts, a fully and
comprehensive understanding of adsorption processes and mechanisms is still missing.
Even though we found that the protein adsorption on certain biomaterials was reviewed,
such as bioactive glasses [15], bioceramics [16], metals of medical interest, steel [17], and
magnesium [18], or even nanomaterials for biosensors [19], to our best knowledge, no
work of this kind was made for protein adsorption on titanium. This review aims to
put together the literature about adsorption of protein on titanium-based materials for
osseointegration, trying to depict a comprehensive picture of how surface characteristics
affect the way proteins bond to Ti surfaces. After a brief introduction on the main driving
forces of protein adsorption, we focused on the principal characteristics of titanium surfaces.
The literature was sorted accordingly to how titanium surfaces were treated or modified
(kind of surface modification or activation, surface chemical composition, and crystalline
structure) in order to explore the specific effect of the different surface features (wettability,
roughness, hydroxylation, or charge) on protein adsorption. The same rational was applied
to investigate how external parameters can affect the protein–titanium interaction and
the correlations among surface features and the competitive adsorption of proteins. This
knowledge can lead to an improved design of novel and more effective biomaterials. At last,
the characterization techniques applied for studying protein adsorption on titanium-based
biomaterials are collected. Due to the great amount of work published on these materials,
only adsorption on bulk materials, these being pure Ti, Ti alloys, or titanium oxides (native
or modified), is discussed. Adsorption on titania nanoparticles, as well as interaction of
proteins with coated or functionalized surfaces were not included unless of interest for the
selected topic. Relevant literature of the past 15 years was researched and selected.
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2. Driving Forces and Factors Affecting Protein Adsorption
2.1. Driving Forces of Protein Adsorption

Protein adsorption is a complex phenomenon that involves different kinds of protein-
substrate interactions and it is influenced by numerous different factors depending on the
surfaces features and chemical or biological environment.

It is well acknowledged that protein adsorption can be promoted by several kind of
driving forces, these being hydrophobic or electrostatic interactions and van der Waals
forces [12,20].

Hydrophobic interactions are fundamental in order to maintain the protein tertiary
structure: When a protein is dissolved into a polar solvent, non-polar amino acid residues
have the tendency of interact between each other, in the inside of the protein, to limit
interaction with solvent. On the reverse, hydrophilic residues are exposed on the protein
surface [21]. If a protein approaches a hydrophobic surface, the balance of protein–solvent
and intra-protein interactions is disrupted, and hydrophobic residues can interact with
the hydrophobic surface. Changes in protein structure lead to entropy gain, with this
being a strong driving force for protein adsorption [22]. As a general rule of thumb,
proteins adsorbed onto the hydrophobic surfaces undergo greater denaturation than on the
hydrophilic ones [10]. Furthermore, dehydration of a surface has to happen for proteins
to adsorb. On hydrophobic substrates, this results in reduction of Gibb’s free energy and
increases protein adsorption [13].

Hydrophobic interactions are the main driving forces of protein adsorption on hy-
drophobic surface. On the other hand, in case of adsorption on hydrophilic and charged
materials, electrostatic and van der Waals interactions take over as primary cause of protein
binding to surfaces [20]. When a charged object is immersed into a solution, ions of oppo-
site charges are attracted towards it, forming the so called double layer: the Stern layer,
which is composed by ions very close to the surface, and the Gouy-Chapman diffuse layer,
which extends towards the solution and exhibits an abundance of ions compensating the
surface charge [23]. When proteins approach a surface, the protein diffuse layer overlaps
with the one of the substrate and attractive or repulsive forces may arise depending on the
zeta potential (ζ). The zeta potential is defined as the electrical potential at the interface di-
viding the Stern and the Gouy-Chapman layers. Proteins are also sensitive to dipole–dipole
interactions, induced or not, commonly referred as van der Waals forces. Usually, van der
Waals interactions are attractive at short distances [24]. The contribution of electrostatic
interactions and van der Waals forces can be predicted by the DLVO (Derjaguin, Landau,
Verwey Overbeek) theory. This theory allows to calculate the total interaction energy
between two surfaces, determining if the resulting force is attractive or repulsive in the
range of few tens of nanometers [24].

2.2. Surface Effect on Protein Adsorption

As discussed in the previous section, it is clear that the surface properties influence
on protein adsorption mechanisms is of great importance. Surface wettability, topogra-
phy, charge, and chemistry are able to deeply modify surface–protein interactions, as
schematized in Figure 1 [12,25].

Wettability of substrates determines the major driving forces for adsorption, and the
final result of the whole process may change heavily. It is well accepted that hydrophobic
surfaces can adsorb more protein with respect to hydrophilic one [26]. Hydrophobic
surfaces can better interact with hydrophobic residues of proteins and water displacement
from the surface is more favorable than on hydrophilic surfaces [14]. The pivotal water
contact angle (WCA)(θ) dividing hydrophobic from hydrophilic surfaces regarding protein
adsorption was set at values near θ = 65◦ by different researchers [27,28].

Wettability does not only influence the total amount of proteins, which can be adsorbed
onto surfaces, but also their spatial conformation. Different studies investigated the effect
of surface wettability on protein conformation upon adsorption, such as FN and bovine
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serum albumin (BSA), highlighting the fact that proteins adsorbed on more hydrophobic
materials present the higher degree of denaturation [29,30].

Figure 1. Effects of the physiochemical properties of material surfaces on various aspects of protein
adsorption (amount, binding strength, orientation, conformation). Reprinted with permission from
ref. [25]. Copyright 2017 WILEY-VCH Verlag GmbH & Co.

Strictly related to surface hydrophilicity/hydrophobicity behavior, there are surface
charges. Usually, hydrophobic materials are non-polar, while hydrophilic substrates present
a distribution of charges onto their surfaces. Surface charge of solids and particles immersed
in solution may vary with the pH of the liquid, and they can be both positive and negative.
Thus, according to protein type and substrate, attractive or repulsive interactions may
happen [20]. Negatively charged surfaces, such as bioactive glasses in physiological
conditions, may hinder adsorption of negative charged proteins [15], and vice versa for
positive surfaces [31]. Still, proteins bearing an overall negative charge may adsorb on
negatively charged surfaces thanks to the interactions of positive residues that remains on
their surfaces, such in the case of BSA [32]. The same can happen with positive charges
onto materials, as in the case of block co-polymers [33].

Cells are able to sense micro- and nano- roughness and it affects their adhesion,
proliferation, and growth [8]. Similarly, morphological features of surfaces can influence
protein adsorption [34]. Increase in surface roughness leads to larger surface area, thus
higher protein adsorption. Still, it has been found that in some cases, proteins adsorb on
appreciably larger amounts than what might be expected accounting only area increase [35].
Grain size and crystallinity of materials have also been reported to influence the adsorption
process on biomaterials [36]

Protein adsorption can be controlled also by changing the chemistry of the surface, for
example by functionalization with polymers or polyelectrolyte brush [12,36].
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2.3. Protein Characteristics Affecting Adsorption

As well as surface characteristics, protein features like structural stability, charge, and
dimension, are of greatly affect the adsorption mechanisms and outcomes.

Structural stability of proteins is related to the easiness to undergo conformational
modification. In the late 1990s, Norde introduced the concept of soft and hard proteins [9]
to highlight the different structural behavior of proteins: Soft proteins are less stable and
they are more prone to change their conformation after adsorption; on the other hand,
hard proteins are more stable and they less prone to be denaturated. Changes in 3D
conformation allows optimization of electrostatic interactions on hydrophilic/charged
surface, since polar amino acid residues can be close to oppositely charged surfaces. Thus,
in general, the soft proteins adsorb in a larger amount than the hard ones [37]. Changes
in tertiary and secondary structure of proteins can affect their biological activity. In some
cases, denaturation produces a loss of protein activity, as in the case of platelets activation
by fibrinogen (FIB) [38]. In another case, denaturation can increase the effect of certain
proteins. Denatured FN may expose more integrin-binding sites RGD, increasing cells
adhesion [39].

Electrostatic interactions are capable to drive adsorption of proteins on charged sur-
faces of biomaterials, in a different way according to the overall net charge of proteins and
distribution of the electrostatically charged residues within the protein’s structure. Proteins’
overall net charge is influenced by the presence of polar amino acids in the primary protein
structure and by the pH of the solution, depending on the acid/basic behavior of the
specific amino acids [40]. The overall net charge of a proteins is positive at pH values below
the isoelectric point (IEP), zero at the IEP, and negative above it: It must be remembered
that in any case the IEP is due to a balance between the number of positively and negatively
charged functional groups which are present at any pH. IEPs of different proteins can vary
in a wide range of values, from 4.7 of BSA to about 11 for Lys [41,42]. Still, proteins can
adsorb to likely charged surfaces thanks to a non-homogeneous charge distribution within
the protein’s structure: Positive residues can be selectively exposed on the outside of BSA
even at pH 7, allowing its adsorption on a negative surface like titanium [32]. Furthermore,
the proteins charges also determine the nature of protein–protein interactions. It is ac-
cepted that a higher amount of a protein is adsorbed at the IEP, when electrostatic repulsion
between proteins is minimized [12]. Dimension and molecular weight of proteins play an
important role too. The smallest proteins can reach the surface before the largest thanks
to a higher diffusion coefficient, thus adsorbing in a larger amount at first. In addition,
the largest proteins need to displace more water molecules, on hydrophilic surfaces, and
higher energy is needed to enter the interface region [43]. On the other side, the largest
proteins usually can interact in a stronger manner with the surface, therefore they can
displace and substitute the smallest proteins with times. This dynamic behavior of the
adsorbed protein layer is known as “the Vroman effect” [12].

2.4. External Parameters Affecting Protein Adsorption

Investigating protein adsorption, it is also fundamental to consider the environment
where the process is carried on and the effects of some external parameters. Temperature
influences several aspects of the adsorption mechanisms. Increasing temperature allows for
higher mobility of proteins in solution, faster adsorption kinetics [44], equilibrium surface
concentration [45], and also protein desorption from the surface is easier [29].

A fundamental and determining role is played by the solution where proteins are
dissolved. As already mentioned, the pH determines both the charge of protein and
surface. Thus, according to its value, the same protein–surface combination may repel or
attract one another [46]. Beside pH, other solution parameters have great influence on the
adsorption. Presence of ions in the solution has a double effect. The first one regards the
ionic strength of the solution, which influences the thickness of the Gouy-Chapman layer
and consequently the distance at which the electrostatic interactions take place. Higher
ionic concentration and strength result in a thinner diffuse layer both on proteins and
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surfaces. Thus, an eventual electrostatic repulsion is less relevant on adsorption [47]. As
a second effect, ions can also compete with proteins in the adsorption on surfaces. For
example, negative phosphate ions in phosphate buffered saline (PBS) solution have been
found to depress protein adsorption [48].

Protein concentration in solution is another parameter that can largely impact on
adsorption. Several studies describe how an increase of the initial protein concentration
results in a higher amount of protein adsorbed onto the surface at the equilibrium [49,50].

The main parameters that affect protein adsorption and the general rules of thumb on
the process are collected in Table 1.

Table 1. Main parameters affecting protein adsorption on surfaces.

Parameters General Rules of Thumb

Surface

Topography/roughness Higher surface roughness ≥ higher amount of adsorbed proteins

Hydrophobicity (non-polar surfaces)
Hydrophilicity (polar surfaces, with a net

surface charge)-

Higher hydrophobicity ≥ higher amount of adsorbed proteins and
denaturation degree; hydrophobic interaction as adsorption

mechanism
Different mechanisms of adsorption on hydrophilic surfaces:

electrostatic, van der Waals, dipole-dipole; adsorbed water must be
removed for adsorption

Chemistry
(functional groups, metal ions) Influence on the surface charge

Protein

Amino acid chain Affects structural stability

Hydrophilicity/hydrophobicity
Surface charges and non-polar residues are always present; they can
be differently arranged according to the environment; hydrophobic

residues interact with hydrophobic surfaces

Charge Higher amount of adsorbed proteins at IEP

Molecular weight
Small proteins adsorb quicker

Large proteins replace the smaller ones and make stronger bonds
with the hydrophobic surfaces

Structural stability
Soft proteins change easier configuration and adsorb larger on

hydrophilic surfaces; denaturation can enhance or reduce biological
activity

Solution

pH Affects surface charge of both proteins and surfaces

Ionic strength Adsorbed ions reduce repulsive effects among proteins; some ions
compete with proteins for adsorption

Protein concentration Higher protein concentration higher amount of adsorption

Protein mixture(single, binary or more
complex) Vroman effect

Temperature Higher temperature ≥ faster kinetics of adsorption

3. How the Characteristics of Titanium Based Biomaterials Influence
Protein Adsorption
3.1. General Consideration on Protein Adsorption on Titanium Based Materials

Titanium peculiar properties have made it one of the most world widespread biomate-
rials [1]. With respect to other metals, titanium and its alloys possess excellent osseointegra-
tion capability, proper mechanical properties, and soft tissue compatibility. They have been
extensively described elsewhere, therefore here only the ones of interest for discussing
protein adsorption will be briefly reported [8,51,52]. Being a very reactive element, titanium
does not exist in its metal form onto its surface, but it is immediately passivated by oxygen
and its surface is covered by a thin native oxide layer, which is mainly amorphous TiO2
about 3–7 nm thick [53]. This layer confers chemical stability, biological inertness and
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corrosion resistance to the surface. To understand how this biomaterial interacts with the
biological environments, it is mandatory to notice that titanium surfaces are highly hydrox-
ylated. OH groups can form by dissociation of water molecules at the five-coordinated Ti
sites. Several kinds of hydroxyls can thus form on the surface, differing in their position
(terminal or bridging) and in their chemical behavior (acidic or basic). As a consequence,
when the surface gets in contact with water, acidic OH groups deprotonate, while basic
OH groups protonate themselves, forming both positive and negative charges (Figure 2).

Acidic OH deprotonation: Ti-OH + H2O↔ [Ti-O]− + H3O+

Basic OH protonation: Ti-OH + H2O↔ [Ti-OH]+ + OH−

Figure 2. Scheme of hydroxylation of Ti surface and surface charge generation during contact with
aqueous solutions.

As consequence of the dissociation constants of both the OH groups, IEP of titanium
lies around 5 [54].

Titanium affinity for proteins is well acknowledged. A stable protein layer was found
to form in vivo after just three hours [55]. This was observed to prevent precipitation
of compound like HA after a week. Ti-based materials can interact with many different
proteins, such as serum albumin [56,57], FIB [58], or FN [59]. Many researchers have tried
to unveil the mechanisms of interaction between proteins and titanium substrates. By
studying the adsorption isotherms of several different proteins (such as human serum
albumin (HSA), BSA, lysozyme (LYS), pepsin, myoglobin, and others) at different pH
values, Imamura et al. [60] ascribed pseudo-irreversible adsorption of protein to electro-
static interactions between the OH2

+ groups on the titanium surface and COO- groups of
proteins. Furthermore, negatively charged carboxyl groups can also induce protonation
of the OH groups of the surface around the IEP of titanium. Another research group
proposed a slightly different interaction mechanism between HSA and titanium [57,61].
They proposed that HSA has a similar effect to a local change of the pH, acting like a
reduction of [H+] and affecting the thickness of the H+ diffusion layer on the Ti surface.
Interactions between albumin and a titanium surface followed the proposed two steps
mechanism, which involves a first hydrogen bonding and a subsequent proton transfer.
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Hydrogen bonding:

Proton transfer:

Even though the interaction mechanisms proposed by Imamura [60] and Camàra [57]
are different, they underline the importance of the OH groups on driving protein adsorption.
Molecular dynamic simulations observed that an increased density of the OH groups on
rutile (1 1 0) means higher affinity for the subdomain IIIb of HSA [62]. Electrostatic
interactions with the COO- and NH3

+ groups of proteins were greatly enhanced. A key
role of the local electrostatic interactions between opposite charges respectively on TiO2
and organic molecules was also observed for peptides [63]. The charge effect of hydroxyls
on the strength of protein adsorption was investigated in another interesting computational
studies by Sun et al. [64]. They tuned the hydrophobicity/hydrophilicity of rutile surface
by scaling the OH charges of different factors. Lower surface charge, related to higher
hydrophobicity, turned out to adsorb lactoferrin and bone morphogenetic protein-2 (BMP-2)
in a stronger manner than a hydrophilic surface. Being a soft protein, BMP-2 is also more
denaturated. At the same time, protein–surface interactions on hydrophilic TiO2 surfaces
are hindered due to water-surface interactions [65]. Thus, spreading and denaturation
of certain adsorbed proteins are limited. OH groups generated onto TiO2 by vacuum
annealing can prevent FIB denaturation by avoiding electron transfer, from the protein
to the surface. In this case, hydrophilic TiO2 surface denatures less proteins than the
hydrophobic ones [38]. Less FIB denaturation is related to lower platelet activity and better
blood compatibility of biomaterials.

In order to predict the biological behavior of biomaterials, alongside the amount and
type of protein adsorbed, it is necessary to be aware of their spatial configuration and
orientation with respect to the surface. Proteins can adsorb in a “side-on” or “end-on”
orientation, according to the positioning of their main axis [12].

Furthermore, denaturation can occur to different extents with different proteins. As
already mentioned, adsorption on titanium substrates lead to denaturation of FIB. Several
authors found that FIB can interact with titanium surfaces through αC domains. Since
they are positively charged at pH = 7.4, electrostatic attraction between the surface and the
protein can occur [58,66]. The strong protein–surface interactions lead to denaturation of
FIB [66]. This was confirmed by Zhao et al. [67]. Furthermore, even though binding via αC
domains shall result in side-on orientation of the proteins on the surface, FIB was found
with preferred end-on orientation [67]. Bimodal adsorption isotherms of immunoglobulin
(IgG) suggest that adsorbed proteins may undergo structural rearrangements and orien-
tation modification according to saturation level of the surface [68]. While in some cases
no denaturation of BSA was observed upon adsorption on titanium oxide [69], others had
observed conformational changes of albumin [56]. Hydrophobicity of titanium may lead
to spreading of adsorbed HSA onto its surface [70]. Conformation and adsorption mecha-
nisms are strictly dependent on both surface features and protein composition. Different
structures were found for proteins that shall be analogous, such as chicken and human
albumin [71]. Adsorption mechanism was also profoundly different: HSA adsorbs as a
continuous thin film, while chicken albumin forms adherent flakes on the titanium surface.
In addition, relevant peptide sequences, such as RGD domains of FN, may change their
spatial configuration after adsorption on rutile or anatase [72]

Surface roughness is a parameter that very often is addressed as pivotal in determining
the outcome of protein adsorption, and more in general, cell behavior [73]. It does not only
change the effective surface area available for interaction with proteins, but it can also affect
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the wettability of the materials. It has been acknowledged that roughness in the micro-range
enhanced protein adsorption due to increase of specific surface area [74]. Several authors
have tried to understand the extent of roughness, in particular in the nano-range, influence
on the protein adsorption on titanium-based surfaces. Roughness variations from few to
some tens of nm were found not to have a unique effect on all proteins and some results in
literature may disagree. BSA adsorption is slightly influenced by roughness between Ra
values of 1.57 and 16.44, while in the same range FIB adsorption is increased to a slightly
larger extend [75]. Controversially, in a more recent study, Rockwell et al. [76] observed
that the increment in the surface area ratio (SAR) due to increased roughness, in the same
range as previously reported [75], along sample profile, was not sufficient for explain
the increased of normalized adsorption of both FIB and BSA (Figure 3a). Increments on
proteins and SAR were up to 50% and 15%, respectively. Instead, the increment in curvature
of surface features accounted better for the increment in adsorption (Figure 3b): Higher
curvature, meaning smaller features radii, favors end-on FIB adsorption and stabilizes
protein secondary structures. Besides, increased roughness, from less than 1 nanometer to
about 11, resulted in increased surface free energy (SFE) that promoted better adsorption
of FN and VN from fetal bovine serum (FBS) [77]. These results were confirmed also on
TiO2 when other proteins, such as BSA [78] or casein [79], were adsorbed.

Figure 3. Normalized adsorption profile of bovine serum albumin (BSA) (black) and fibrinogen (FIB) (blue) on Ti with
roughness gradient (left y-axes). The overlaid red lines are the SAR profile (a) and the curvature profile (b) (right y-axes).
Adapted with permission from ref. [76]. Copyright 2011 Elsevier B.V.

Roughness of titanium substrates is also capable of influencing the mechanisms of
adsorption. While adsorption of BSA, FIB, and streptavidin on flatter substrates occurs
mainly as protein monolayers, roughness values about Rms = 29.5 nm can increase protein–
protein interactions, resulting in a multilayer type adsorption [80]. Surface features such as
protuberances and peaks are not the only topographical characteristics that have influence
on proteins adsorption. Surface pores in the meso- and nano-range need to be accounted
when the effect of surface roughness on this matter is discussed. Proteins are not able
to enter pores smaller than their hydrodynamic radius. In the case of BSA, of which
hydrodynamic diameter is about 7.2 nm, mesopores need to be at least about 9 nm for
albumin to enter them [81]. Larger mesopores can accommodate more than one BSA
molecule, with very little conformational changes, and protein-surface adhesion forces
were stronger with respect to smaller pores [82]. Singh et al. [83], due to protein tendency to
aggregate into nanopores, concluded that nanometer scale morphology is the main reason
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for increased protein adsorption, more than the modest increase in wettability of surface
with different roughness.

Titanium and its oxide exhibit different adsorption properties with respect to other
materials, such as other metals or metal oxides clinically used polymers or dental enamel.
In comparison with other metal surfaces such as Au, Pt, and Ir, titanium adsorbs the largest
amount of plasma proteins. This is because Ti presents the highest SFE and roughness, as
a result of the deposition process of metal thin films [84]. At the opposite, when TiO2 is
compared with other oxides such as ZrOx, TaOx, and NbOx, it showed the least adsorption
capability [85] and it is also the flattest and the least energetic surface. ZrOx interacts
the most with albumin being a hydrophobic surface, while the amount of adsorbed BSA
correlates well with roughness and polar component of the SFE on the hydrophilic oxides.
Similar evidence of different mechanisms of adsorption on hydrophobic or hydrophilic
surfaces was found with FIB, investigating fibrinogen adsorption on the same set of
oxides [86]. Titanium shows also different retention capability of the adsorbed proteins
with respect to the other oxides. Its negative charge makes HSA displacement from its
surface faster than on positive charged alumina, at pH 7 [87]. Al2O3 adsorbs more BSA
than TiO2 also because of its higher number of OH groups that can form H-bonds with
proteins [88]. Adsorption of positively charged proteins such as lactoferrin was enhanced
on titanium with respect to stainless steel, ZrO2, and polymethylmethacrylate (PMMA)
thanks to the higher negative surface charge [89]. Still, stronger interactions were found
on hydrophobic substrates. In order to better understand why different materials have
different behavior during their life as implants, titanium was widely compared to other
surfaces of interest in the dental field. Titanium’s poor adhesion to gingival tissue may be
explained by the fact that, with respect to dentin, it adsorbs less key basal lamina proteins,
such as laminin (LAM) α, a protein with a key role in tooth-epithelium adhesion, and
nidogen-1 [90]. It was also observed that hydrophobic polymeric materials used in dental
field, such as polytetrafluoroethylene (PTFE), polyethylene (PE), and PMMA, adsorb more
salivary proteins than Ti, for instance salivary mucins and proline-rich proteins [91,92].
This also reflects in higher adhesion forces between albumin and polymers as PMMA and
PTFE with respect to titanium [93]. Interestingly, the interaction force between BSA and Ti
is about twofold more than on enamel.

3.2. Effect of Surface Modifications on Titanium: How Topography, Roughness and Surface
Chemistry Change Protein Adsorption
3.2.1. Surface Modification by Sand Blasting and Acid Etching (SLA)

Surface roughness and wettability are the main parameters influenced by SLA treat-
ments, thus changes in protein adsorption are mainly ascribed to these materials features.
According to our findings in literature, the studies on this kind of surfaces are not in com-
plete agreement. Some of them observed that SLA treatments increases the total amount of
adsorbed proteins [94,95], while, in different conditions of adsorption, others observed a ne-
glectable difference [96]. In a remarkable work of Kohavi et al. [94], the authors studied the
influence of SLA and acid treatments on Ti64. Proteins adsorption was carried out in vivo
during dental implantation surgery. A titanium rod was implanted into the osteotomy and
removed after 10 min. Albumin, fibronectin, fibrinogen, and immunoglobulin were quanti-
fied by enzyme-linked immunosorbent assay (ELISA). The SLA surfaces adsorbed more
than fourfold more of each protein with respect to an untreated surface. Acid etched (AE)
titanium surfaces adsorbed only twice more. SLA surfaces were rougher than both AE and
flat surfaces (Ra equal to 287.5, 214.5 and 26.8 nm, respectively). Roughness was addressed
as the main factor influencing in vivo protein uptake. Prewetting of surfaces also increases
protein adsorption. Similar findings on the same surfaces were obtained in vitro [95]. FN
resulted the major protein found on a surface in case of adsorption both from a single
protein solution and whole plasma. The effect of roughness and increased surface area on
protein adsorption was also highlighted by SLA treatment followed by secondary etch-
ing [97]. Protein adsorption is only increased to a certain time of etching, since after about
30 min decreasing in specific surface area is experienced. MC3T3 pre-osteoblastic cells
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viability also correlate well with this observation. Kopf and co-workers [74] put effort in
isolate the effect of wettability and roughness. Hydrophilic and hydrophobic SLA surfaces
were obtained through proper storage in air or NaCl solutions. On some samples, the
storage in NaCl resulted in further nanostructuration of the surface. WCA of hydrophilic
and hydrophobic SLA surfaces ranged between less than 10◦ to 120◦, respectively. Simply,
SLA-treated surfaces showed no influence of the WCA on adsorption of both FIB and FN.
On the contrary, the hydrophilic nanostructured (NS)-SLA samples adsorbed much more
than the hydrophobic ones. In both cases, they adsorbed more than the SLA specimens.
Thus, it seems that protein adsorption is mainly driven by roughness at the microscale and
by a synergistic effect of hydrophilicity and roughness when it comes to nanostrcutures. As
an interesting fact, in the same study, it is observed that blood clotting is more improved
by hydrophilicity than surface topography. H2O2 hydrothermal treatments on SLA-treated
dentals screws can promote bioactivity through surface nanostructuration and formation of
many OH groups [98]. Better protein adsorption, in particular increased selectivity towards
FN, resulted from increased wettability of the implants. Hydroxylation of the surface does
not only account for improved wettability and enhanced protein adsorption. SLA-induced
OH groups are also responsible for denaturation of proteins, such as statherin [99]. Hy-
droxyls can bond with proteins through hydrogen bonds, disrupting the equilibrium of
forces that maintains the native conformation of proteins. Statherin adsorbed onto polished
titanium showed less denaturation.

Some studies focused on how SFE influences the adsorption of proteins. Simple
sandblasting of cp-Ti resulted in very different values of surface energy, according to
dimension of the blasting particles and even to their composition [100]. On rough surfaces,
the authors found a linear correlation between surface energy and amount of adsorbed FN
(Figure 4b). Interestingly, the samples treated with SiC particles showed higher SFE, in
particular the dispersive component, than the ones processed with alumina particles. As
a consequence, FN adsorbed preferably on SiC-blasted samples, regardless of roughness
(Figure 4a). The importance of SFE on SLA treatments was also observed very recently
by Mussano et al. [101]. Adsorption of different proteins, namely collagen (COL) I, FN,
and BSA, was depressed by blasting with alumina if compared with machined surface.
SLA treatment restored titanium adsorptive properties, though without enhancement with
respect to untreated surface. Blasted surfaces showed lower SFE, while machined and SLA
specimens had similar values. This correlates well with the results obtained for alumina
blasting particles in ref. [100].

Figure 4. Correlation of FN adsorption with roughness (a) and surface free energy (SFE) (b) on cp-Ti blasted with different
particles: S, SiC particles; A, Al2O3 particels; 3, particles of 212–300 µm; 6, 425–600 µm. Adapted with permission from
ref. [100]. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd.

As previously said, the debate on the effective enhancement of protein adsorption by
SLA treatments is an open issue. A recent study observed no difference in adsorption from
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FBS on machined or SLA cp-Ti [96]. Still, microrough surfaces elicit murine MC3T3-E1
osteoblastic cell spreading and adhesion. Similar findings were observed also in adsorption
kinetics and total amount of adsorbed proteins when FN and BSA are adsorbed from single
protein solutions, even when wettability was increased by heat treatment [102]. As an
interesting fact, heat treatment promoted selective adsorption of fibrinogen and fibronectin
from human serum. Even though hydrophilicity may not increase protein adsorption on
SLA surfaces, it can promote the formation of a more homogeneous protein layer [103].
SLA did not seem to enhance adsorption of salivary proteins neither [104].

3.2.2. Surface Modification by Chemical and Hydrothermal Treatments

Acid etching is a very simple kind of chemical treatment employed to enhance bi-
ological response of titanium surfaces [51]. Nanopatterning by acid etching was found
to affect in different ways adsorption of different proteins [105]. Nanopits, generated by
simultaneous acid etching and oxidation with H2O2, act as physical traps for proteins that
can be accommodated within, such as LYS and growth/differentiation factor 5. Adsorp-
tion of larger proteins, such as FN, is hindered due to steric limitations. Acid etching of
microgrooved titanium resulted in increased hydrophilicity and consequent enhancement
of BSA adsorption and human osteoblast proliferation [106].

Hydrothermal treatments are widespread techniques to obtain surfaces with enhanced
cytocompatibility [51]. Immersion in solutions with different chemicals and subsequent
heating results in nanostructuration of the surface and modification of its chemistry.

Hydrothermal treatments on Ti64 can also be obtained using simply distilled wa-
ter [107]. In this way, higher hydrophilicity is obtained without changing surface roughness.
Increased wettability led to higher laminin adsorption and consequent improved adhesion
of cells through integrins. Hydrogen peroxide is a common reactant for hydrothermal mod-
ification of titanium surfaces. Nanoporous structures can be obtained in this way [108]. The
increased roughness and SFE of H2O2-treated Ti64 results in evident decrease of the WCA,
from 49◦ to 16◦, and in a sixfold increase of cytochrome C adsorption. Enhanced serum
protein adsorption on this kind of surfaces is also due to the generation of OH groups on
titanium surfaces [109]. BSA adsorbs also in a different conformation on H2O2-treated
Ti64 with respect to the polished surfaces [54]. The higher amount of OH on the treated
surface produced adsorption of albumin in a more hydrophilic orientation. FN was proven
to adsorb in an island-like manner on this kind of surfaces, by positioning mainly in the
surface valleys and forming multilayered globular structures ranging from 55 to 83 nm
in diameters [110]. Titanium oxide grown using H2O2 treatment adsorbs FN in a more
irreversible manner than sputtered TiO2. On the other side, adsorbed HSA is more easily
exchanged by HSA molecules in solution [111].

Bioactive titanium surfaces can be obtained by acid-alkali (AA) treatments, which
involve a step of acid etching and a subsequent treatment in alkali solution, mainly NaOH.
Both the steps can be performed at temperatures ranging from 30 ◦C [112] up to 70 ◦C [113].
These treatments allow to obtain surfaces with nanostructures, enhanced wettability, and
different charges with respect to untreated titanium. Nanoscale topography was found
responsible for increased protein adsorption of albumin and fibronectin in particular [112].
Treatments in NaOH result in a formation of Ti-O-Na layer that changes the surface electri-
cal charge further increasing adsorption of negatively charged proteins such as albumin.
AA treatments are more effective in promoting protein adsorption when compared to
other surface treatments, such as alkali-heat (AH) [114] or anodic oxidation treatments
(AO) [115] and also SLA modification [116]. Better BSA adsorption capability of AA-Ti
than AH-Ti, where samples are heated at 600 ◦C for 1 h after alkali treatment, relied on
the higher number of OH groups and on the positive surface charge of AA-Ti [114]. Hu
and Yang observed that the NH3

+ groups of albumin mainly interact with AA and un-
treated samples, exposing more COO- groups while the orientation is different on AH-Ti.
Secondary structures of albumin are also affected by the charge of the surfaces and OH
groups. Interestingly, they found that BSA preadsorption elicited higher mouse osteoblast
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proliferation on polished Ti (P-Ti), due to higher content of cell binding α-helices. The
same research group observed that AA-Ti adsorbs more osseointegration-relevant proteins,
such as FN and bone morphogenetic protein 2 (BMP-2) than AO- and P-Ti [113,115]. They
observed that morphology was more relevant than wettability in determining the amount
of protein adsorbed: Nanopits on AO-Ti are not able to accommodate large proteins, while
grooves on P-Ti and network structure of AA-Ti offers more interaction sites. The latter can
act as reservoir for BMP-2 [113]. On the other hand, protein conformation on the surface is
dictated by hydroxylation of surfaces. Thus, proteins retained their native structure better
on AO-Ti than on AA-Ti. Biological activity of BMP-2 is related to its α-helix content, thus
AO-Ti promoted bone formation to a longer extend than AA-Ti, despite adsorbing less.
Contrary, adhesive properties of FN are more related to β-sheets, which are consistent
with the amount of RGD sequences. In this case, AA-Ti can increase FN effect thanks to
the disruption of α-helices and the formation of β-sheets [115]. AA-treatments were also
found to increase protein adsorption of SLA modified surfaces by turning the surface from
hydrophobic to super-hydrophilic [116]. On hydrophobic samples, air bubbles may be
trapped in micropores in a Cassie-Baxter regime, hindering solution-surface interactions
thus reducing protein adsorption. Moreover, AA-treatments increase SFE. Alkali-acid
treatments were employed also to increase protein adsorption ability of porous titanium
scaffolds [117,118]. Various morphology can be easily obtained by changing the treatment
parameters such as temperature, time, and solution compositions. Nanoneedles [119],
nanopores, or nanoleaves [120] can be obtained on the surfaces. Since nanoneedles showed
much higher BSA adsorption than the untreated surfaces, Yu et al. [119] obtained very
specific adsorption patterns by texturing nanostructured titanium with laser irradiation
(Figure 5).

Figure 5. Fluorescent image of BSA adsorbed onto a patterned nanostructured surface: The protein
is adsorbed on zones with titanium nanoneedles (red) and not in the zones, which were irradiated
with laser. Adapted with permission from ref. [119]. Copyright 2015 WILEY-VCH Verlag GmbH &
Co. KGaA, Weinheim.

Morphology has also effect on adsorption selectivity. They present different surface
area ratios, SFE, or they can generate physical nanotraps for proteins of certain dimen-
sions [120]. Thus, nanoneedles may overall adsorb less proteins from FBS than nanoleaf
or octahedral structures, but still have an equal if not higher number of adhesive proteins
such as FN and VN. As result, focal adhesion of human osteoblasts turned out to be larger
on this kind of nanostructured surface than on others. Depending on the kind of protein,
adsorption may be mainly driven by the contact angle or by roughness. In the case of FIB,
adsorption on hydrothermally treated cp-Ti and Ti64 resulted affected more by topography
than WCA [121]. Protein adsorption on different morphologies obtained by hydrothermal
treatments was also related to their surface potential [122]. High treating temperature,
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140 ◦C, allows to obtain nano-wires on the surface, which exhibit the lowest zeta poten-
tial, about −50 mV at pH 7.4, among other nano-structures, such as a nano-network or
nano-plate, about −30 and −35 mV at pH 7.4, respectively. Adsorption of BSA and FN was
higher on nanowires than on all the other surfaces. Moreover, mouse bone marrow MSCs
(BMSCs) had spread better on this kind of surface.

3.2.3. Growth of Titania Nanotubes (TNTs)

A common and easy way to obtain nanotextured titanium surfaces is formation of nan-
otubes by anodic oxidation [8]. TNTs geometrical features such as diameters, in the range
of 15–300 nm, and length are easily tunable with the process parameters. Such surfaces
have higher biological response than untreated Ti and can induce cellular differentiation.

At first glance, the enhancement of protein adsorption on TNTs can be ascribed to a
much larger surface area than a flat sample [123,124]. At the same time, the oxidized sur-
faces have higher wettability and SFE, which are factors that contribute to BSA adsorption.
The diameters of TNTs further influence the amount of protein adsorbed [125,126]. Increas-
ing diameters from 30 to 100 nm increase adsorption of both FN and COL [125]. Osteoblast
viability is higher on 30 nm TNTs when no proteins are adsorbed, while they have the same
viability on 30 and 100 nm tubes after adsorption of FN and COL. Computational studies
showed that larger diameters correspond to higher interaction energy with collagen, thus
increasing protein adsorption [127]. Conformation of the proteins is not affected by TNT’s
diameters, and collagen lies across several nanotubes. Changes in the 3D structure of other
proteins were reported. Smaller diameters correspond to higher α-helix and β-turn content
of adsorbed BSA and FIB, while β-sheet showed the inverse behavior. Since the bigger the
diameter, the larger flat area on the top of TNTs is, conformation is similar to the proteins
adsorbed onto a flat surface. With smaller nanotubes, proteins are more likely to interact
with the edge of them, generating differences [126]. A very interesting study by Kulkarni
and co-workers [128] defines the synergistic effect of dimensions and charge distribution of
TNTs on protein adsorption. The surface charge density is affected by radius of curvature,
therefore there is a difference between the outer convex surface and the inner concave
surface of TNT. The former presents higher density than the latter. Anyway, the points
with higher curvature are the edges at the top of TNTs. Small proteins like histone and
albumin can enter TNT with diameter ranging from 15 to 100 nm. Being positively charged,
histone can adsorb twofold BSA and also penetrate the space between nanotubes. Albumin
cannot do that because of electrostatic repulsion with titanium oxide. Edges at the top of
nanotubes are preferential adsorption sites for histone due to higher charge density, as
shown in Figure 6

Figure 6. Spatial distribution of albumin and histone adsorbed on titania nanotubes reconstructed by
different techniques: Time of flight-secondary ion mass spectroscopy (ToF-SIMS) (1–3 nm depth);
X-ray photoelectron spectroscopy (XPS) (3–10 nm depth); Tof-SIMS depth profile (from 10 nm to
bottom). Reprinted with permission from ref. [128]. Copyright 2016 Acta Materialia Inc. Published
by Elsevier Ltd. Amsterdam, The Netherlands.
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Adsorption from platelet rich plasma resulted in lower FIB on TNT surfaces with
respect to flat cp-Ti [129]. This is because on more hydrophilic surfaces, such as nanotubes,
fibrinogen can be more easily replaced by other proteins, like kininogen, through “the
Vroman effect”. Adsorption of proteins can be selectively controlled by tuning the diameters
of the tube. Smaller TNTs, about 27 nm of diameter, adsorbed more VN from FBS than
larger ones, diameters of about 88 nm [130]. Similar effect was obtained for other adhesive
proteins such as laminin and fibronectin. Protein adsorption on TNT can be further
enhanced by chemical modification of the surface. Hydrogenation of the surface can
be achieved by thermal treatments in hydrogenated atmosphere [131]. This is because
hydrogenation increase hydrophilicity of TNT and liquid penetration as consequence.
Since TNTs substrates can be used as drug-carrier materials, hydrogenation treatment is
intriguing because of its effect in changing the release profile of the different proteins.

3.2.4. Other Surface Modification Techniques

SLA, chemical treatments, and growth of TNTs are the most common surface modi-
fication techniques for Ti-based biomaterials. Beside those, studies regarding how other
kind of surface modifications affect protein adsorption were found.

Electrochemical methods such anodic oxidation allows to grow oxide layers with
different nanostrucutres: nanopores [132], nanonetworks [133], or nanorods [134]. By
increasing the applied voltage, thickness, micro-roughness, and porosity of the oxide layer
increase, resulting in higher BSA adsorption [132]. Higher anodizing voltages resulted,
on the other hand, in a rutile layer, which is less biocompatible than anatase. On similar
surfaces, no enhancement of adsorbed protein was found when high protein concertation
solution as FBS was used [135]. This is a useful reminder that protein adsorption on surfaces
is not only dictated by the biomaterials properties but also, and in a significant manner,
by the adsorption environment. Subsequent hydrothermal modification of the anodized
surfaces highlighted the effect of the surface charge on protein adsorption [136]. Anatase
nano-spikes lowered the surface potential of titanium and showed inhomogeneous charge
distribution (higher negative charge density on titania tips due to higher curvature). Thus,
adsorption of positively charged histone was increased. Au and Ag- nanoparticles (NPs)
were successfully embedded into the titanium oxide layer by sequential anodization and
soaking in NPs precursor solution and it was found that their presence further increases
BSA adsorption [137]. Increased adsorption capability of surfaces with nanonetwork poros-
ity was addressed as result of increased surface area, where pores can easily accommodate
BSA and FN [133]. On nanorods, adsorption was found to be mainly driven by the density
of the rods. When there are too many or too less structures, adsorption was found to be
lower than on untreated titanium. Only intermediate rod density was beneficial for protein
adsorption, MC3T3-E1 cell proliferation, and bone formation in vivo [134].

Surface texturing with laser beam is a rather novel way of obtain specific surface
pattern in order to increase biological response to biomaterials [138]. It is possible to obtain
very complex surface structures, such as micro-pits with nano-ripples at the bottom or at
the top, selectively. This results in an accelerated adhesion of MSCs and in a more enhanced
osteogenic behavior of the cells [139]. Laser patterning changes surface properties, such as
roughness, wettability, chemistry, and charge, to a great extent. Thus, its effect on protein
adsorption may vary largely according to the process parameters. Patterning of Ti64 was
demonstrated to increase FIB adsorption due to increasing in surface roughness [140].
Furthermore, affinity for FN seemed increased, in particular due to increase in the polar
component of the SFE [141]. For the same reason, adsorption of HSA decreased. Lower
affinity of textured Ti64 for albumin was also ascribed to a reduction of available binding
sites and to chemical modifications and formation of less active titanium oxide forms [142].
Controversy, in a series of studies by Kuczyńska et al. [138,143], an increased adsorption of
both BSA and FN was observed. This is the combined result of modified wettability and
SFE, morphology, and increased negative charge of the treated surfaces. Conformation of
proteins was also affected.
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3.3. Effect of Alloying Elements and Surface Ion Doping

Despite being the most widespread materials for orthopedic and dental implants,
properties of pure titanium and Ti6Al4V alloy, such as Young’s modulus, are not the
optimum for instance to avoid stress shield effect. Thus, titanium alloying with several
different metals have been developed in order to reduce the elastic modulus or to get other
interesting mechanical properties. Nickel is one of the most common alloying elements,
TiNi alloys, such as Nitinol (about 50% Ti 50% Ni), possess shape memory and super-elastic
properties. Nitinol is largely used in the manufacturing of vascular stent, for example [144].

Alloying elements not only modify the bulk properties of titanium, but also the surface
ones. This affect adsorption of proteins. Higher Ni content, from 49.5% to 50.5%, in TiNi
alloy results in lower albumin adsorption (from about 90 to 30 ng/cm2), while FN is quite
unaffected. Both resulted in being largely lower than on cp-Ti, twofold and almost 4 times,
respectively. Albumin adsorption was found to be proportionally related to the polar
component of surface energy, and Ni can reduce it. Fibronectin is more affected by other
factors, such as surface charge [145]. Regarding albumin, different results were obtained
by Clarke at al. [144] by modifying the composition of the oxide layer on TiNi alloy. They
obtained higher adsorption with higher Ni and lower O content in the oxide, regardless
of contact angle and roughness. According to Bai studies with binary alloy of Ti with Cr,
Al, or Ni oxide layer composition has a larger control on protein adsorption than the bulk
ones [146]. In addition, FIB was found to be adsorbed less on Nitinol than on cp-Ti [147].
In both cases, it adsorbs with a “side-on” orientation. FN was found to adsorb in similar
manner on cp-Ti also when Zr is introduced into TiNi alloy [148].

Niobium is another very common alloying element for titanium. Nb lowers the
Young’s modulus of titanium, getting closer to the bone value [149]. β-alloys Ti-Nb-Zr and
Ti-Zr showed very little differences in BSA adsorption with cp-Ti and Ti64, but a slight
increase can be observed thanks to higher Zr content [150]. The oxide layer drives interac-
tions with proteins also for this kind of alloys. In fact, introduction of boron ions causes
a reduction of oxide thickness and hydroxide groups, hindering adsorption of proteins
from FBS. This is also detrimental for MG63 human osteosarcoma cells proliferation [151].
Niobium is a beneficial element for proteins also when it is introduced into more complex
alloys. The Ti-Zr-Pd-Si-Nb alloy showed enhanced adsorption of BSA and FN with respect
to the Nb-free alloy thanks to improved hydrophilicity [152]. The importance of non-polar
component in the adsorption of FN was highlighted by Herranz-Diez et al. [153]. They
observed that very different Ti-based materials, namely cp-Ti, Ti64, and Ti25Nb21Hf, ad-
sorbed very similar amount of fibronectin, despite various contact angels. Analyzing the
components of SFE, they notice different values in the total SFE and polar component, cp-Ti
showed the lowest ones. Instead, no variations were found in the dispersive components.

Several metallic ions are well known for being able to stimulate different biological re-
sponses, particularly in the field of bioactive glasses. As an example, Ca2+ favors osteoblast
proliferation and differentiation, Zn2+ possess anti-bacterial and anti-inflammatory proper-
ties, and Mg2+ increase bone cell adhesion and new bone formation [154]. Thus, surface
treatments of titanium materials have been developed over past years in order to introduce
different ions, in particular within the oxide layer [8]. Presence of ions in the surface results
in changes of biomaterials physio-chemical properties and, obviously, this affects protein
adsorption. According to several authors, enhancement of protein adsorption is due to
increased surface charge of ion-doped titanium materials [31,155] or the bridging effect
of divalent ions [155]. Some of the most common methods to produce ion-containing
titanium surfaces are hydrothermal treatments [155–158], which allows to obtain at the
same time a nanostructured surface and ionic doping. Higher adsorption of albumin was
found on treated cp-Ti with Mg2+ or Ca2+ ions with respect to Na+. Additionally, increased
adsorption was obtained by increasing ions concentration [155]. Magnesium bridging
effect towards protein was confirmed in other studies [157] and treated titanium turned
out to be bioactive, inducing hydroxyapatite precipitation, and promoting osteoblast at-
tachment and spreading [159]. Anyway, cell adhesion can be depressed by too high Mg
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concentration in the TiO2 layer due to much higher content of BSA, which reduces cell focal
adhesion [160]. Similar results were obtained by lithium ions [31]. Treated surfaces showed
super-hydrophilicity, ascribed to increase in surface energy, charge, or OH groups due to
Li+. Maximum adsorption of different proteins was found at different lithium concentra-
tion, such as FN and BSA. Therefore, it is possible to selectively regulate proteins uptake
on the surface and, consequently cellular response. Besides increased protein adsorption,
ion presence in a biomaterial is beneficial due to eventual ions release. Co-implantation
of Mg and Zn and their release as ions improve adhesion, proliferation, and motility of
human gingival fibroblasts [161]. Bridging effect with proteins was confirmed also for
trivalent ions such as Fe3+ [162], with benefits both in vitro and in vivo. Calcium ions
showed further improved protein adsorption, also with respect to other divalent ions
such as Mg2+ and Sr2+ [155,156,163]. Thanks to specific Ca-binding site on some proteins,
such as laminin, osteopontin, which is a major non-collagenous bone protein [156], and
BSA [163], they adsorb in higher amount on Ca-containing surfaces. Protein adsorption
and, more important regarding implants, osteointegration were enhanced also by doping
of titanium materials with phosphate ions on TNT [164] or on hydrothermal treated cp-
Ti [158]. Growth of TNTs on Ti-Zr-Sn-Mo-Nb alloy resulted into sparse nanotubes due
to alloying elements. Spacing between TNTs increased both protein adsorption and rat
primary osteoblasts adhesion, proliferation, and activity [165].

All the doping treatments result also in morphological modification of the surface,
which may also have a strong effect on protein adsorption. In fewer cases, mainly in the case
of doping with monovalent ions such as Na+ [166], researchers found that morphology had
a stronger effect than surface chemistry. Monovalent ions do not possess bridging capability
towards proteins. Still, many more studies showed how ions presence in titanium-based bio-
materials improved biological properties beyond surface nanostructurations [157,163,164].

3.4. Grain Size and Crystalline Phase

Among the factors that influence surface properties such as wettability and surface
energy, grain size, and crystalline form of the oxide layer on titanium surface play a
major role. It is known that ultrafine-(UG) and nano-grain (NG) metallic surfaces show
beneficial behavior with respect to coarse-grain structure. On 301LN stainless steel, grain
size of a few nanometers was able to improve BSA adsorption and murine pre-osteoblast
cells response [167]. Similar findings, along with improved mechanical properties were
obtained on stainless steel 316L [168]. The effect of grain size on protein adsorption has
been investigated by several studies, including several types of titanium-based materials
such as cp-Ti [169,170], Ti64 [171], and titanium alloy [172,173]. Literature about the
effect of nanocrystallization on protein adsorption is not in good agreement. Still, it is
important to keep in mind that different results may arise from very different factors,
such as surface chemistry, protein concentration in solution, and adsorption conditions.
NGs on titanium were mainly obtained by surface mechanical attrition treatment (SMAT)
or severe plastic deformation (SPD). The former treatment consists of bombarding the
material surface with hardened steel balls [169,172]. The latter is obtained by mechanical
stresses such as hydrostatic extrusion [170], sliding friction treatment [171], or high-pressure
torsion [173]. All authors assessed that both treatments result in an increased volume of
grain boundaries (GBs). They are highly defective sites that contributes to increase the
surface energy and the hydrophilicity of titanium-based materials. Usually this resulted in
augmented protein adsorption. Bahl et al. [169] applied SMAT to cp-Ti, obtaining nano-
grains on the surface. Contrary to other studies, nanocrystallization obtained by SMAT
decreases BSA adsorption due to changes in electronic and physicochemical properties of
the oxide. Still, this is beneficial for attachment and proliferation of human MSCs (hMSCs)
and also improved material hemocompatibility thanks to a reduced platelets attachment
and corrosion resistance. Corrosion of metallic implants can be enhanced by proteins in
solution [174]. Contrary to the adsorption behavior observed by Bahl, Kubacka et al. [170]
observed an increase in BSA adsorption on cp-Ti after nanocrystallization through SPD.
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They found that adsorption from FBS results in increase of BSA uptake and in reduction
of FN. GBs are regions where atoms are prone to be charged, resulting in increase of the
acid-base component of the surface energy that is related to adsorption through electrostatic
interactions. Thus, authors claimed that in this way non-specific protein adsorption, as BSA,
is enhanced. Anyway, higher FN adsorption from FBS, along with VN was obtained on
nano-grained Ti64 and Ti-Nb-Mo-Sn-Zr alloys. Huo et al. [171] ascribed enhanced protein
adsorption on treated Ti64 to the smaller contact angle of NG surface with respect to coarse-
grain and to higher surface energy. Thanks to a greater amount of RGD-containing proteins,
these surfaces develop a suitable microenvironment for osteoblasts. β-alloy Ti-Nb-Mo-Sn-
Zr subjected to SMAT treatment was found to adsorb twofold more FN and VN than the
untreated surfaces [172]. Interestingly, the authors claimed that enhanced cell behavior on
these surfaces is also related to proteins being adsorbed in a more active state with respect
to coarse-grain surface. RGD groups are better exposed for cell attachment. Similar results
were also obtained on Ti-Ni alloy subjected to high-pressure torsion [173]. VN adsorption
increased more than BSA. Furthermore, Ni release was found to be hindered after SPD.

Along with grain size, the crystalline phase of titanium surface oxide layer also plays
a fundamental role in determining protein–surface interactions. Different titania phases,
such as amorphous, rutile, and anatase, and their orientation change surface properties and
protein adsorption. TiO2 phase is easily controlled through heat treatment: By increasing
the treating temperature, amorphous titania is transformed into anatase at first and then to
rutile, at about 600 ◦C [175]. The effect of different crystalline phases of titanium on protein
adsorption has been investigated largely on TNT substrates [126,175–177]. Native oxide on
flat cp-Ti was turned from amorphous to mainly anatase by annealing, showing almost no
differences in the adsorption of BSA and FIB [126]. Nevertheless, the crystalline phase has
different effects when adsorption from different proteins is investigated. Gong et al. [176]
and Li et al. [177] agreed on the fact that anatase showed the lowest adsorption of COL I
and FN compared with amorphous titania and rutile, as possible to see in Figure 7. The
latter has the highest adsorption capability. On the other hand, adsorption of BSA or FBS
were increased by higher annealing temperature [175].

Figure 7. Adsorption of different proteins on Titania Nanotube (TNT) substrates with different
crystalline phase: AM, amorphous; AN, pure anatase; AN/R, mainly anatase with rutile presence; R,
pure rutile. Statistical difference by ANOVA: **ρ < 0.01 and *ρ < 0.05. Reprinted with permission
from ref. [177]. Copyright 2019, King Abdulaziz City for Science and Technology.

Phase transformation highly affect the number of hydroxyl groups on the surface:
Anatase has fewer OH groups than amorphous TiO2 and rutile has the highest number of
all [175]. OH groups are fundamental to drive protein–surface interactions, in particular,
basic OH groups can promote protein adsorption, and amorphous titania as more of them
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with respect to anatase [178]. Furthermore, anatase phase is more negatively charged
than non-crystalline oxide or rutile, thus less proteins are adsorbed due to electrostatic
repulsion [177]. Raffaini and Ganazzoli [179], through molecular modelling, observed that,
among titanium oxide polymorphs, anatase provided the highest interaction energy for
both BSA and FN. After initial contact, where the adsorption is driven by dipolar and
dispersive interactions, both proteins tend to spread on the surface, in order to maximize
amino acid residues interacting with the surface. BSA was found to do that on both anatase
and rutile, while FN was more compact onto anatase. Higher crystallization obtained
by heat treatment was beneficial for protein adsorption also on hydrothermally grown
rutile nanoneedles [180]. Beside crystalline phase, also orientation of crystals may affect
how proteins arrange on the surface. Molecular dynamic (MD) study allows to investigate
protein adsorption by changing crystal’s Miller indexes. Myoglobin adsorbs on rutile (1 1 0)
or (0 0 1) faces with different orientation [181]. Due to electrostatic repulsion, the HEME
group is away from the oxygen rich (1 1 0) rutile face, while it is closer to the (0 0 1) one.
Keller et al. [182] proved the effect of anatase orientation on conformation of adsorbed
fibrinogen. Low SFE facets, such as the {1 0 0} family, behave as hydrophobic surfaces,
favoring protein–protein interactions and formation of FIB networks. (1 0 1) and (1 1 0)
crystals have higher hydrophilicity, the latter due to higher surface polarity, and favor
adsorption of proteins in a globular-like shape. Globular conformation of FIB may reduce
the inflammatory response to a foreign body since it is more similar to its native state.

3.5. Surface Activation

UV-light or plasm activations are very well reported to be a way of improve biological
activity of biomaterials surfaces [183,184]. Increase of surface activity is achieved by a three-
step mechanism: Removal of hydrocarbon contaminants; induced surface hydrophilicity;
change of the surface charge from negative to positive. Medical devices would probably
be stored for a very long time before usage, up to 5 years [185], therefore removal of
atmospheric contaminants is a priority. This will be discussed deeply later in Section 4.1.

Protein adsorption on cp-Ti, in particular of BSA and FN was found to be strictly
correlated to hydrocarbon level [186]. When contaminants are removed by UV, Ti4+ sites
are exposed, increasing interaction with both protein and cell (Figure 8a).

Figure 8. Schematic representation of UV effects on protein adsorption and cell attachment: (a) Removal
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of hydrocarbon contamination results in increased protein adsorption and osteoblast adhesion and
spreading, adapted from ref. [186]; (b) effect of number and type of UV-generated OH groups on
protein conformation and subsequent mesenchymal stem cell (MSC) proliferation, adapted with
permission from ref. [187]. Copyright 2017 The Royals Society of Chemistry.

Hydrophilicity and positive surface charge of UV-activated surface arise from the
same physiochemical modifications of TiO2 layer, formation of oxygen vacancies, and
terminal OH groups. Exposure to UV-light promotes an electron from the valence band to
the conduction band. This causes a reduction of Ti4+ to Ti3+ and, as a consequence, oxygen
vacancies are formed [183,188]. Other than increasing positive surface charge, Ti3+ are favor-
able sites for water dissociation, leading to generation of terminal OH groups [187]. Positive
surface charge is also promoted by the basic behavior of UV-generated OH groups [189].
On titania nanoparticles, it was proven that basic hydroxyls can form hydrogen bonds with
-NH3

+ groups on proteins [178]. Electrostatic nature of protein adsorption enhancement
was confirmed by Hori et al. [188]. They observed that more BSA adsorbed onto UV-
activated surface from solution at pH 7 but a smaller increase was found at pH 3, compared
with untreated Ti. At pH 7, both BSA and Ti are negatively charged. Thus, UV-generated
positive charges can attract albumin molecules. At pH 3, BSA is below its IEP, as untreated
Ti. Therefore, UV-activation is not as effective. Conformation of proteins is also affected by
surface UV-activation, in particular by the terminal OH groups. Yu and coworkers [187] ob-
served an increase of α-helix and a decrease of β-sheet contents in albumin, with respect to
adsorption on an untreated surface. They discussed that these conformational changes can
be related to increased osteogenic differentiation of MSCs(Figure 8b). Remarkably, while
cell adhesion and proliferation on UV treated surfaces are increased, bacteria colonization
of surface was hindered [190,191].

Different plasma system can be used in order to obtain activation of the surface: Dif-
ferent kinds of glow discharge plasma, such as atmospheric (APGD) [192], radio frequency
(RFGD) [193], vacuum [194]; nonthermal atmospheric pressure plasma (NTAPP) [184]; or
argon atmospheric pressure dielectric barrier discharge (APDBD) [195]. As well as UV
treatments, plasma can increase protein adsorption thanks to the removal of hydrocarbon
contamination [184] but, unlike UV, surface charge become more negative [184,193]. Specifi-
cally, employing NTAPP creates -COOH, -OH, and NH2 groups on the surface [39]. Oxygen-
containing groups can generate reactive oxygen species during plasma treatments [184].
NTAPP treatments were found to have analogous effect to UV surface activation in terms
of reduction of Ti surface negative charge and adsorption of BSA [196]. To the authors best
knowledge, plasma effect was mostly investigated on fibronectin adsorption. Noticeably,
FN adsorption was selectively increased in case of single protein solution [39,193] and
when mixed to other proteins such as BSA [197] or even from plasma serum [194,198].
FN, as an adhesive protein, is beneficial for cell attachment and spreading per se. On
plasma-treated Ti, negative plasma-induced charges affect FN conformation, promoting a
more bioactive configuration of the protein on the surface. Integrin-binding sites on FN,
namely the tripeptide sequence RGD, are more exposed due to conformational changes
of the proteins. Thus, interactions with α5β1 integrin on cells are promoted, increasing
osteoblast spreading and differentiation [39,193]. Controversy, Santos et al. [199] observed
that low-pressure glow discharge plasma did not affect the total amount of adsorbed HSA,
IgG, or LAM, nor the adsorption isotherms, when single protein solutions were used.
Instead, plasma treatments affected the layer composition of proteins adsorbed from a
mixture of the three of them. Adsorption of HSA and LAM were selectively increased and
decreased, respectively, while IgG was not changed.

UV photoactivation and plasma treatments are effective ways to promote protein
adsorption and surface properties in general. Since surface morphology is not modified,
these techniques can provide useful information on adsorption mechanisms, by isolating
the effect of surface charges and functional groups. Despite not being addressed as the main
adsorption driving force, electrostatic interactions have been proved to play an important
role, in particular regarding selective adsorption of proteins and their biological activity.
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4. External Parameters Affecting Protein Adsorption on Titanium Surfaces
4.1. Aging and Storage: Contamination of Titanium Surfaces

Biological properties of titanium need to be preserved even through the long-lasting
storage of the biomedical devices, up to five years. Implants and dental screw are usu-
ally enclosed in a sterile gas-permeable packaging, which keeps the contents sterile but
allows contamination of the surfaces by the carbonaceous organic impurities in the atmo-
sphere [185,200]. Very recent molecular dynamic studies performed by Wu et al. [201]
demonstrated that carbon contaminants expose C-H bonds, thus greatly reducing sur-
face polarity and dipole–dipole interactions with proteins. Protein adsorption drastically
decreases after four-week storage when titanium is placed in sealed container [202]. Propor-
tional correlation between increased WCA and reduced protein adsorption was observed.
The same authors observed that inclusion of divalent ions like Ca2+ within Ti surface
through chemical treatments may hinder depression of bio-properties due to aging [203].
After four weeks, BSA adsorption, and rat BMCs attachment resulted in being higher with
respect to untreated surface. Therefore, it is necessary to limit surface contamination of
implants during their shelf-life. As described in the previous paragraph, plasma treatments
are an effective way to remove carbon contaminants form titanium surface. Despite being
very efficient in removal of carbon contaminants, UV and plasma might be time-consuming
processes and require delicate equipment. Miki et al. [204] found that simple cleaning of
titanium devices with electrolytic reducing ionic water, which has high OH− concentration,
led to similar results in protein adsorption compared with UV. Bone contact is also much
higher than the control surfaces. This process can be easily performed in a generic dentistry
facility, for example. In the past 10 years, great efforts have been made by researchers to
find a suitable storage method. It shall maintain intact the biological properties of a newly
manufactured Ti surface and it needs to withstand sterilization. Storage in wet conditions
seems to be the most promising way [205,206]. Choi and co-workers observed that soaking
in distilled water may retain properties of titanium surface after UV and plasma activation
for periods up to eight weeks [206]. UV treatment and wet storage on SLA-modified Ti sur-
face allow to obtain the best results, in terms of protein adsorption and murine osteoblast
cells adhesion. Interestingly, storage in water is not only suitable for avoiding carbon
contamination, but also it is capable of maintaining the more positive surface charge of
the UV-treated titanium [200]. Protein adsorption and cell adhesion can be even increased
upon storage by using ion-containing solution [205]. Ca-containing solution can benefit
from the protein bridging effects of adsorbed ions and the cellular affinity for these ions.
Vacuum storage proved to retain biological activity of alkali-heat treated titanium eve
after one year [185]. Wilhelmi et al. [50] confirmed, through time of flight secondary ions
mass spectroscopy (Tof-SIMS) analysis, that the maximum adsorption of BSA on cp-Ti is
obtained for solution at pH 5.2, and decrease with increasing pH values. This confirm that
protein–protein latera interactions play a major role in adsorption mechanisms.

4.2. Influence of the Solution: pH, Temperature and Ions

As discussed in paragraph 2.4, the parameters of the protein solution have a major
role in determining various aspect of protein adsorption, such as amount of the protein
adsorbed, surface–protein interactions, and adsorption kinetic. The pH value determines
charge distribution on both the surface and protein [20]. As a consequence, protein–surface
interactions may vary to a great extent by changing pH. This fact also reflects to loosely
bound proteins. At pH close to the IEP of a protein, repulsive interactions between BSA
molecules are at the lowest, therefore the loosely bound portion of proteins adsorbed is
increased [207]. The highest adsorption was observed near the IEP of the BSA, as it is
possible to see in Figure 9 [208]. The mechanisms that can explain the pH effect on protein
adsorption on Ti was proposed by Imamura et al. [209]. At pH around 4, that is below the
IEP of Ti, acidic residues in the proteins, with COO- groups, are attracted by OH+ groups
on surface. Above pH = 5, the functional groups on the Ti surface turn negatively charged
and can interact with -NH2

+/-NH=NH2
+ groups of the amino acids. They also observed
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that thickness of the adsorbed protein layer may vary by changing pH. Similar behavior
was observed also for titania.

Figure 9. BSA adsorption on TiO2 thin film at different pH values: 3.55 (�), 4.60 (•), 5.60 (N), and
7.51 (H). Reprinted with permission from ref. [208]. Copyright 2009 Elsevier B.V.

Still, due to the high adsorption even under adverse electrostatic condition, namely at
pH 3.55 and 7.51, the authors claimed that the main driving force for albumin adsorption
on titania is hydrophobic interaction. LYS adsorption was also observed to be strongly
dependent on pH [210]: When titania is positively charged, at pH lower than 5, almost no
adsorption was observed due to electrostatic repulsion, as expected, because at this pH
value, LYS is positively charged. In this study, correlation between protein uptake and
temperature was also discussed. Increased temperatures lead to higher amount of adsorbed
proteins. Combined effect of pH and temperature was studied by Kopac et al. [44]. By
fitting adsorption isotherms with Langmuir or Freundlich curves, they observed that the
highest adsorption of BSA onto titania can be obtained at 40 ◦C and pH 4. These data show
that adsorption from different solution may results in very different protein layer on the
surface of biomaterials.

Ions dissolved within the protein solution compete with protein for interacting with
the surface and hinder or elicit protein adsorption. Phosphate ions can easily adsorb
on titanium surfaces [56] and they alter BSA adsorption kinetic and conformation on
TiO2 [211]. Positive mono- and divalent ions are electrostatically attracted by the negative
charges on titanium, subsequently mediating the interaction between the surface and
proteins. Monovalent ions, such as K+ and Na+, do not influence to a great extend protein
adsorption [59] since once their single positive charge is attracted by the surface, they have
no more for proteins to be attracted. On the other hand, divalent ions, Ca2+ and Mg2+ in
particular have a bridging effect toward proteins thanks to spare positive charges after
interaction with titanium [212,213]. Kohavi et al. [59] observed that electrostatic interactions
may play a major role than surface wettability on protein adsorption. Adsorption of HSA
and FN was enhanced by prewetting Ti64 surfaces, with solutions containing divalent ions
or not. Wetted surface were hydrophilic, and non-wetted ones were hydrophobic. After
being dried, surfaces turned hydrophobic again, and adsorption was still enhanced on the
samples that were wetted with Ca2+ containing solutions. The interplay between pH and
ions dissolved in determining the electrostatic interactions between proteins and surfaces
was well described by Hori et al. [188]. Around physiological pH, when both titanium and
albumin are negatively charged, divalent ions are effective in increasing protein adsorption.
At pH 3, below the IEP of surface and protein both, ions did not alter amount of adsorbed
BSA. In the same study, it was also found that anions, as Cl-, can mask UV-generated
positive charges and annihilate the beneficial effect of UV treatments. The fact that ions
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co-adsorption can reduce benefits of positive surface potential on the adsorption of proteins
was recently confirmed [214].

After all these considerations, it is possible to state that attention must be paid to
the solution parameters, in particular when discussing protein adsorption and comparing
results from different studies.

4.3. Protein Concentration in Solution

Human plasma and biological fluids in general contain proteins in a very high con-
centration. The amount of proteins in human plasma is in the range of 60–80 mg/mL [215].
It is not trivial to reproduce this high concentration in laboratory experiment, mainly due
to the high cost of proteins and their availability for purchase. Thus, researchers inves-
tigating protein adsorption used to lower protein concentration in solution, from some
mg/mL [216] down to small fraction of the biological one [145], for example BSA was
employed in concentration ranging from 0.4 to 4 mg/mL while its biological concentration
is reported to be as high as 33–52 mg/mL [217]. As pointed out by Hemmersam and
co-workers [218], adsorption of proteins from low concentrated solution has a stronger
dependence from the substrate than what happens using higher protein concentrations.
Using quartz crystal microbalance (QCM) analysis, they found that adsorption of FIB from
0.03 mg/mL solution to Au-, Ti-, or Ta-sensors showed larger differences, both in layer
structure and protein amount, than in the case where 1 mg/mL solution was used. In the
former case, FIB molecules had time to spread on the surface and to interact with it using
both αC and D domains, adhering more strongly. In the latter case, adsorption rate is too
fast for this to happen. Strong denaturation of proteins adsorbed from low concentrated
solution was observed also for FN on Ti64 [219]. Protein unfolding is also hindered by
surface hydrophilicity obtained through UV activation. Reducing the amount of proteins
used during an experiment, paying the price of be further away from real physiological
conditions, may be necessary to appreciate the influence of the material features on adsorp-
tion mechanisms. Beneficial effect on protein adsorption obtained by Argon plasma or UV
treatments of pure titanium turns insignificant when adsorption was carried out using 10%
FBS solution instead of 2% one [220]. Researchers need to bear in mind that surface effects
observed using solution with a very low content of proteins can be reduced, different, or,
in the worst case, annihilated in case of the real, biological fluids. This fact applies also for
properties and characteristics of the protein adsorbed layers.

5. Protein Co-Adsorption and Competition for the Surface

Human plasma contains about 3020 distinct proteins [221]. As for protein concentra-
tion, it is nearly impossible to replicate this enormous complexity on a lab scale. In addition,
it would be extremely complex to understand adsorption mechanisms and the specific
role of the biomaterial surface in it. Thus, most of researchers conduct their experiments
using a single protein solution, as shown previously. Unfortunately, it is not possible to
predict the adsorption of proteins from complex mixture just knowing how it happens
from the single protein solutions. Researchers tried to expand knowledge of the protein
adsorption on titanium-based biomaterials by mostly using binary protein mixture or
subsequent adsorption.

Adsorption of BSA on cp-Ti was found to be enhanced when obtained from BSA-LYS
containing solutions [222,223]. BSA—LYS+ agglomerates can form in solution and adsorb
on the surface, thus increasing the total mass of adsorbed proteins (Figure 10). Relative
amounts of adsorbed proteins are influenced both by solution composition and pH, as
possible to see in Figure 10a,b. Interestingly, residual enzymatic activity of LYS is not
much influenced on protein content in solution [222]. BSA, due to its larger mass, cannot
be displaced by LYS in case of sequential adsorption, thus limiting LYS amount on the
surface [223].
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Figure 10. Adsorption on cp-Ti from BSA-LYS mixture: Relative amounts of adsorbed proteins form mixtures with different
ratios (BSA: LYS 100:0, 75:25, 50:50, 25:75, 0:100) at different pH, 4.5 (a), 7.0 (b) (amount is expressed as percentage of
adsorbed protein from a pure solution); LYS enzymatic activity, relative to pure LYS solution, in mixture with BSA and after
adsorption from same mixture (c). Adapted with permission from ref. [222]. Copyright 2016 Elsevier B.V.

Physiochemical characteristics of surfaces have a strong role in determining protein
competition for the surface. Hydrophilic titanium surfaces, such as SLA-treated substrates,
have been found to promote FN adsorption during competition with albumin, even when a
biological BSA:FN ratio of about 100:1 is maintained in the solution [224]. The first protein
to adsorb on the surface can inhibit sequential adsorption of other proteins [225], but higher
affinity with the surface can result in protein displacement and substitution [225,226].
Felgueiras et al. [226] showed that FN and COL I can block sequential albumin adsorption
on Ti64 due to their larger mass, and that they are able to displace albumin when adsorbed
as second proteins. Interaction between FN and COL I are dependent on the kind of
the surface. As in the case of LYS, albumin can form complexes with COL I in solution
resulting in higher number of proteins adsorbed with respect to the single protein solutions.
Contrary to these results, BSA was found to be able to displace larger proteins such as FIB
or FN on TiO2 surfaces [227] due to higher affinity for the surface. On a pre-existing BSA
layer, FIB and FN forms a layer on the albumin instead of displacing it.

Being quite simple, binary protein solutions are still not very much representative of
actual biological fluids. Some researchers moved further on in complexity of systems by in-
vestigating through proteomic analysis the exact composition of protein layers adsorbed on
several titanium surfaces from real and whole biological fluids such as plasma [221,228,229]
or saliva [230–232]. Among the thousands of proteins present in human plasma, the most
adsorbed was FN, followed by albumin, alipoprotein, and fibrinogen [221]. From saliva,
which contains about 750 different proteins, less than half of them were found on tita-
nium [232], mainly amylase and lysozyme [230]. The effect of surface modification on the
protein pellicle composition was also evaluated. In case of adsorption from saliva, very low
specificity was observed for different titanium surfaces, smooth, SLA-treated, and SLA-
treated+stored in ionic solution [231]. On the contrary, differences were observed between
smooth and SLA surfaces by using human serum [229]. One hundred and eighty-one and
162 proteins were identified on smooth and blasted/acid-etched surfaces, respectively.
Proteins adsorbed onto smooth Ti are involved in a higher number of biological pathways,
such as clotting, cytokines-mediated inflammation response, integrin signaling, and glycol-
ysis, the latter being absent on SLA-treated titanium. SLA treatments were also found to
affect the proteome on Ti-Zr alloy, from both plasma and saliva [233]. Adsorption from
saliva resulted in 389 common adsorbed proteins, 40 adsorbed uniquely on the machined
samples, and 14 on the SLA treated ones. The proteome from blood plasma was much
more similar with only three unique proteins, on both machined and SLA surfaces, and
145 common proteins. Even though UV activation of the surface has been reported to
improve adsorption of proteins [188], proteomic analyses found that light treatment on
cp-Ti, hydrothermally coated with nano-structured TiO2, depress proteins adsorption from
plasma [228]. Much lower content of FIB, immunoglobulins, and other proteins were found
on pre-activated surfaces. Authors addressed this decrease to a mutual combination of
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surface properties: Roughness, charge, intrinsic, and photo-induced wettability. Reduction
of inflammation-promoting proteins such as immunoglobulins and FIB may be benefi-
cial for osseointegration. Even if adsorption from complex biological fluids can be more
significant than adsorption from a single protein solution for understanding the fate of
biomaterials, this might not be still enough. Jager et al. [234] studied the composition of the
protein layer formed onto explanted hip implants. They found that proteome formed onto
a titanium implants is different with respect of the one that forms from plasma. Among the
2802 unique proteins founded on the implant, cell-free hemoglobin was the most abundant,
almost two-fold albumin. Most of them were of intracellular origin and, interestingly,
fibronectin was absent.

Adsorption from single protein solution can be useful for a preliminary understand-
ing of how the different surface features may interact with biological fluids after being
implanted. Anyhow, it is evident that this is not sufficient and it is quite necessary to test
protein-biomaterials interactions using complex solutions.

6. Methods for Investigating Protein Adsorption on Titanium-Based Materials

During the past years, researchers have developed and optimized a huge number
of experimental techniques in order to overcome the challenges of investigating adsorp-
tion of proteins on surfaces with very different features. Characterization techniques for
proteins adsorption, and biomolecules adsorption in general, are extensively reviewed
elsewhere [235,236]. Here, a brief overview is reported of the techniques used in literature
specifically for characterizing adsorption on titanium-based biomaterials. Different aspects
of proteins adsorption need to be targeted by characterization techniques, for instance
protein quantification, conformation of the adsorbed proteins, protein–surface interactions,
and protein type recognition. Experimental techniques will be described according to
the information that they can provide about the protein adsorption phenomenon, their
advantages, and drawbacks in the characterization of biomaterials, as summarized in
Table 2.

One of the first issue when studying protein adsorption is to quantify the molecules
adsorbed onto the surface. Two main strategies are at the disposal of researchers to perform
a direct quantification of the adsorbed protein: Unlabeled proteins and labeled proteins.
In the latter case, proteins can be labeled with iodine isotope 125I [144,145] or with fluo-
rophores, as rhodamines [74,100]. The use of fluorescent markers allows also to image
the protein layer. Quantification of proteins can be achieved with label-free techniques.
Bicinchoninic acid assay (BCA) is one of the most employed analytical assay for the quan-
tification of proteins [98,101], alongside the Bradford method [224]. With these techniques,
adsorbed protein can be determined by removing the proteins form the material surface
or by measuring the remaining concentration in the uptake solution. Underestimation of
the adsorbed proteins may occur if proteins are not completely detached from the surface.
Protein concentration in solution can be evaluated thanks to the Lambert-Beer law, using
a wavelength of 280 nm [81,117] Other techniques may be adapted from biochemistry
in order to quantify and recognize adsorbed proteins. In some studies, the use of gold-
labeled [131] or fluorescent-marked antibodies [107] is reported, which allows to target
specific proteins and quantify or even image them. With these methods, it is also possible to
search specific proteins within mixture. ELISA is another suitable and widespread method
to evaluate the amount of very specific proteins adsorbed ono the surface [104,128,129,152].
Determination of the specific composition of the protein layer formed onto a surface can
be performed using different methods: Gel electrophoresis is commonly used in various
forms, such as Western blot or sodium dodecyl sulphate–polyacrylamide gel electrophore-
sis (SDS-PAGE) [130,162,199,230], to separate and recognize different proteins; liquid
chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is
another largely used method to identify proteins within a complex layer [90,221,231]. Con-
ventional techniques for surface chemical analysis in material science are also valuable
for evaluating presence of protein on a surface. XPS [75,123] and Tof-SIMS [50,128,223]
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can detect elements or functional groups characteristic of proteins and also identify spe-
cific proteins. Furthermore, XPS can also be employed for investigating protein–surface
interactions [114,148]. X-ray wavelength dispersion spectroscopy (WSD) was also reported
as effective for detect adsorbed proteins in a large concentration range, from ng/cm2 to
µg/cm2 [76,147]. Imaging and qualitative detection of proteins onto a surface can be also
performed by atomic forces microscopy (AFM) [58,110,143]. It is possible to image single
proteins or agglomerates on the surface [58] or, thanks to appropriate tip modifications, it
is also possible to measure the interaction forces between the proteins and surfaces [82].
Distribution of proteins onto a surface can be imaged thanks to the use of confocal laser
scanning microscopy (CLSM) coupled with use of fluorescent-labeled proteins [95,100].
Qualitative evaluation of protein adsorption can be performed directly visualizing the
adsorbed layer by transmission electron microscopy (TEM) [180]. Zeta potential mea-
surements is usually applied for nanoparticles or particles in suspension [196], but it is
also possible to obtain titration curves on bulky samples [54]. IEP shift and curve shapes
can provide information on the surface coverage and protein conformation. Real-time
monitoring of adsorption process can be obtained by QCM. With this technique, proteins
adsorbed onto the surface can be weighted [112]. Different QCM set ups allow to collet
further information: QCM with dissipation (QCM-D) allows to measure the dissipation
of energy in the adsorbed layer, thus providing information about the flexibility and the
water content of the adsorbed layer [67,126,227]; QCM can be coupled with electrochemical
and impedance measurements (EQCI) [66]. Mechanisms of protein adsorption are very
complex to be characterized. The family of spectroscopic techniques comprehend several
powerful methods, which allows to investigate protein secondary structure, layer thickness,
and chemical environment of certain amino acidic residues. Protein conformation, in terms
of α-helix, β-sheet, and random coils content, can be determined by Fourier transform
infrared (FTIR) spectroscopy, in particular in Attenuated Total Reflection (ATR), thanks to
deconvolution of Amide I band [113,216]. Amide I and II band intensity can also provide
quantitative information about adsorbed proteins [88,123]. Raman spectroscopy is a tech-
nique mostly applied for studying adsorption on nanoparticles [36,237], which was also
reported to be used, with 2D-correlation analysis, for adsorption on bulk materials [71].
The evolution of the adsorbing layer can be monitored in situ by spectroscopic ellipsometry
by measuring the thickness of the layer, according to the variation of the ellipsometric
angles ∆ and Ψ [86,208,209]. Some amino acids are intrinsically fluorescent, tryptophan
and tyrosine in particular, and their emission is sensitive to the chemical environment
around them. By choosing a suitable ∆λ, synchronous fluorescent spectroscopy (SFS) can
be applied to monitor the conformation of proteins around such residues [113–115]. The
electrochemical behavior at the protein–surface interface can provide information about
the evolution of the layer and protein–surface interactions. This information can be ob-
tained by electrochemical impedance spectroscopy (EIS) performed in protein-containing
solutions [57,61,169,212]. Information about the denaturation of proteins after adsorption
can be obtained by exploiting circular dichroism (CD) analysis [187].
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Table 2. Characterization techniques commonly used for protein investigation on titanium-based surface. The output about protein adsorption, the kind of substrates that can be analyzed,
the possibility of in situ (without protein detachment) and real-time measurement, and main advantages and drawbacks are reported.

Technique Output Substrate In Situ/Real Time Advantages Drawbacks References

Labeled proteins

125I-labeling Quantification Any Yes/no Direct quantification
Change of protein

properties, handling
issues

[144,145]

Fluorescent labeling Quantification and
imaging Any Yes/no

Direct quantification,
competitive
adsorption
evaluation

Change of protein
properties, expensive

reagents
[74,80,100,116]

UV-vis spectroscopy

BCA Quantification Any No/no Low cost, large range
of concentrations

Protein detachment
needed [98,101,114,115]

Bradford assay Quantification Any No/no Low time consume
Protein detachment
needed, sensible to

surfactant
[88,155,224]

Spectrophotometry
(λ = 280 nm) Quantification Any No/no No reactant needed

Protein detachment
needed, inaccurate

with complex
samples

[81,117]

Labeled antibodies
Quantification,

protein recognition
and imaging

Any Yes/no Targeting of specific
proteins

Time consuming,
specific reagents [94,107,131,173]

ELISA Quantification and
protein recognition Any Yes/no High specificity Time consuming,

specific reagents [104,128,129,152]

Gel electrophoresis

Western blot Quantification and
protein recognition Any No/no No toxic chemicals Sample preparation,

poor band separation [102,130]

SDS-PAGE Quantification and
protein recognition Any No/no

High sensitivity,
small samples

needed

Poor band resolution,
toxic chemicals [109,230]

LC-EIS-MS/MS Proteomic analysis Any No/no High specificity and
sensitivity High costs [229,233,234]
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Table 2. Cont.

Technique Output Substrate In Situ/Real Time Advantages Drawbacks References

XPS
Quantification,
protein-surface

interaction
Any Yes/no

High sensitivity,
simultaneous

evaluation of surface
chemistry, depth

profiling

No absolute
quantification,
complex data

analysis

[110,114,133,212]

Tof-SIMS Quantification,
protein recognition Any Yes/no

High sensitivity,
possible orientation
and conformation

analysis, depth
profiling

No absolute
quantification,
complex data

analysis

[50,128,223]

WSD Quantification Any Yes/no
Sensitive to a wide

range of protein
surface concentration

Thorough calibration
needed [76,147]

AFM Imaging, adhesion
forces, conformation Flat substrates Yes/no High resolution,

customizable tip
Low throughput,
time consuming [58,82,110,143]

CLSM Imaging, relative
quantification Any Yes/no

High resolution, 3D
distribution into
surface features

Expensive reagents [95,100]

TEM Imaging, thickness
measurement Any Yes/no Direct visualization

of protein layer
Complex sample

preparation [180]

Zeta potential
Adsorption

evaluation, protein
conformation

Powder or planar
samples Yes/no Simple measurement

No protein
recognition,
preliminary

information needed

[54,78,228]

QCM

Quantification,
viscoelastic

properties of layer,
changes in

conformation

Sputtered sensors Yes/Yes

High sensitivity, real
time measurement,

possibility to change
the uptake solution

Co-adsorbed solvent
weighted. Mass

calculation affected
by energy dissipation

[67,112,226,227,238]

FTIR (ATR)
Secondary structure,

relative
quantification

Planar samples Yes/no Very specific protein
band

Not highly sensitive,
data deconvolution

needed
[113,114,216]
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Table 2. Cont.

Technique Output Substrate In Situ/Real Time Advantages Drawbacks References

Raman spectroscopy
Secondary structure,

relative
quantification

Any Yes/no Very specific protein
band

Not highly sensitive,
complex data
interpretation

[71]

SE Layer thickness
measurement Flat surfaces Yes/yes

High sensitivity, low
cost, fast

measurement

Difficult optical
modeling of rough

and structured
surfaces

[86,208,209]

SFS Protein conformation Any Yes/no
Sensitive, high

selectivity towards
specific amino acids

Possible instrument
artifacts [113–115]

EIS
Layer evolution,
protein-surface

interactions
Planar samples Yes/yes

High sensitivity,
possible to study

adsorption in
different condition

Complex modelling
and data

interpretation
[57,61,169,212]

CD Protein conformation Planar samples Yes/no Specific bands for
secondary structures

Band deconvolution
needed [187]
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7. Key Concepts

Protein adsorption is a fundamental step in the interaction of implantable biomaterials,
such as titanium and titanium alloys, with the biological environment. The positive or
negative outcome of tissue integration of an implant depends on the interplay between
the body and the implant surface. How cells and bacteria adhere, proliferate, and compete
is strongly dictated by the protein layer that forms on the device surface within the first
minutes after implantation. The understanding of these phenomena is necessary to develop
always better implants and to reduce possible adverse reactions. Thus, in past years,
great efforts have been put to gain knowledge about the aspects that regulate proteins
adsorption on titanium. A large variety of different surface–protein combinations have
been investigated, including different type of titanium, titanium oxide, and titanium alloys,
several kinds of surface treatments aimed to improve Ti osseointegration and a wide range
of proteins in a simpler or more complex environment. Due to the enormous variability
and complexity of the protein adsorption processes, a unique and fully agreed explanation
of adsorption on titanium was not found in literature, some aspects being clearer than
others. Impact of surface properties, such as roughness, morphology, chemistry, surface
energy, wettability, and charge, need further investigation. The main effects of titanium
surface features are summarized in Table 3.

Increased surface roughness in the micro scale seems to be capable of increasing the
adsorption due to a greater number of active sites and features such as pores, nanotubes,
or pits can accommodate proteins. On the other hand, no clear effect was found for
nano-roughness. In this case, topography effect is mediated by other properties, such
as charge or wettability. Electrostatic attraction may increase protein adsorption, while
repulsion seems not enough to completely avoid protein binding with the surface. The role
of wettability in adsorption is the most controverse. As a rule of thumb, proteins prefer
to adsorb on hydrophobic surfaces, since water is more easily displaced from the surface
and hydrophobic interactions between ammino acid residue and surface can be strong. In
fact, this has been reported in some cases for adsorption on titanium surfaces. On the other
hand, hydrophilic surfaces usually present more OH groups, higher surface charge, and
SFE. These factors can promote surface–protein interactions, making adsorption favorable
also on wettable surfaces. Furthermore, wettability can enhance solution-surface contact
by turning it from a Cassie-Baxter to a Wenzel regime. These factors are able to promote
protein adsorption against the generally accepted rule of thumb. The ongoing research on
development of new and more bioactive surfaces had introduced more factors that can
influence protein adsorption: The presence of ions within the oxide layer or of metals as
alloying elements, the control over grain size, and surface activation treatments. All these
features strongly change surface properties, namely wettability, hydroxylation, charge, SFE,
roughness, making it less trivial to discriminate what features influence proteins adsorption
and how. Conformation and orientation of adsorbed proteins are also heavily affected by
surface properties in a non-unique way. Aspect ratio of surface features can change how
proteins accommodate on the surface, higher hydroxylation may promote denaturation
and spreading of certain proteins, while in other cases, OH groups increase wettability
consequently reducing protein–surface interactions.

Besides, the poor standardization and use of testing protocols among researchers led to
different conclusions about protein adsorption. The wide variety of protein concentrations,
solution composition, and experimental methods make it very difficult to compare different
works and to state if a system is an effective representation of the real adsorption process
as occurring in vivo, within the human body. The complexity level of the system used
can completely change how proteins interact with a surface, and scaling up from a simple
single protein solution seems not to be an effective way to understand how materials
behave when put in contact with biological fluids.
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Table 3. Effect of titanium surface properties on protein adsorption (amount of adsorbed proteins, protein conformation on surface, and mechanism of protein–surface interaction) and
impact of each feature on adsorption. ≈: no clear impact; ↑: mild impact; ↑↑: high impact; n.r.: effect not reported.

Surface Characteristic Impact on Protein Adsorption Conformation Mechanism Examples

Microroughness ↑ n.r. Higher interaction area, physical
adsorption

SLA surfaces adsorb fourfold more of albumin, fibronectin,
fibrinogen and immunoglobulin vs. untreated surface

because of roughness.
Laser patterning increases adsorption of FIB.

Nanoroughness ≈ ↑
Dependent on other characteristics.

Aspect ratio of nanofeatures can
influence protein conformation.

BSA aggregates into nanopores larger than its hydrodynamic
radius with a strong interaction with the surface, while FN is

too large.
BSA/FIB adsorb as multilayer with stronger protein-protein

interaction on nano-rough surfaces

Hydroxylation ↑↑ ↑↑
According to the specific adsorbed

proteins, OH can promote or hinder
interaction with the surface

BSA adorbs through hydrogen bonding and proton transfer
with interaction with OH surface groups.

FIB adsorbs through positive charged αC domains.
Rutile adsorbs more COL, FN and BSA than anatase or

amorphous titania due to higher OH density

SFE ↑↑ n.r. High surface energy, in particular the
polar component, increases adsorption

Ti adsorbs larger amount of plasma proteins vs. other metals
with lower SFE, but TiO2 adsorbs less proteins and in a

weaker manner than other oxides with higher SFE.
Ti adsorbs less basal lamina and salivary proteins than

polymers for dentistry.
Sandblasting with SiC induces higher SFE and preferential

adsorption of FN.
Laser patterning induces higher adsorption of FN by

increasing the polar component of SFE.
Nanograined surfaces have higher volumes of grain

boundaries, which increase the SFE and adsorption of FN and
VN

Charge ↑↑ ↑
Can promote or limit protein adsorption,
depending on charge of both surface and

proteins

BSA is adsorbed in a lower amount on negatively charged
surfaces while it is the opposite for histone that is positively

charged.
UV-generated positive surface can adsorb more BSA at pH 7,

when the protein is negatively charged.

Chemistry (alloying metals, ions) ↑ n.r. Increase protein adsorption, divalent
ions in particular

TiNi alloys results in lower BSA (dependent on Ni content),
FIB, and FN adsorption vs. cp-Ti.

Ion-doped Ti has increased surface charge and protein
adsorption because of bridging effect of divalent ions or

specific chemical bonds (Ag)
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Today, knowledge about protein adsorption on actual implant surface is also limited by
the fact that it is not trivial to find characterization techniques that can provide information
about adsorption mechanisms on real surfaces. In the literature, a lot of techniques have
been used to investigate protein adsorption on titanium materials (see Table 2), but some
of them may not be appliable on a bulky and surface treated titanium sample because
they need specific characteristics, such as surface flatness, planar specimen or surfaces
need to be grown on the instrument sensors. These kinds of model surfaces may not be
representative of the surface of a real implant.

8. Conclusions

In conclusion, in the past 15 years, great efforts have been put into building deeper
knowledge of how proteins and titanium-based biomaterials interact. Many different
aspects of the complex adsorption phenomenon have been investigated by using a wide
range of different surfaces, tailoring specific characteristics and exploiting adsorption envi-
ronments ranging from a simple single protein solution to actual human biological fluids or
even in human body. However, no generally accepted adsorption mechanisms have been
found, with researchers sometimes being in disagreement about how surface properties or
surface treatments affect protein adsorption. This can be ascribed to the absence of stan-
dardized and commonly used experimental protocols: protein concentration, adsorption
condition and eventual rising methodology, all may alter the formation and evolution of
the protein layer on materials surfaces. It is desirable that, in future, protein adsorption will
be investigated through more common and shared methodology, obtaining comparable
results. Furthermore, the researchers shall both study simple model systems and mimic, as
close as possible, the physiological condition, as in case of protein concentration. This may
be not trivial, but it allows comprehension of both very detailed aspects of the adsorption
mechanisms and how actual implant surfaces will behave when employed as biomateri-
als. In parallel, further efforts have to be spent into development or optimization of the
characterization techniques that can be applied on a wide range of materials in terms of
sample shape and surface characteristics, mainly surface roughness. This is necessary for a
correct evaluation of adsorption properties of biomaterials that may be actually employed
as implants. Being extremely sensitive to surface features, protein–surface interactions may
not be reproduced in an effective way on model surfaces.

In any case, according to the literature reviewed here, surface modifications that
enhance adsorption of proteins, in particular adhesive ones such as fibronectin and vit-
ronectin, are generally the same, which are able to increase cell proliferation and to promote
osteoblast differentiation and in vivo bone integration. Deeper and better comprehension
of protein adsorption will allow also a more efficient design of biomaterial surfaces, chasing
the perfect implant.

Twenty years have passed since Imamura and co-workers described protein adsorp-
tion on solid surfaces as “a common but very complicated phenomenon” [239], and in this
time, thousands of papers addressing this issue have been published. Nevertheless, protein
adsorption is such a complex matter that a fully and comprehensive explanation of it is
still missing. Research groups need to put further efforts to enlighten hidden aspects of
protein adsorption and to put an end to the “quest for a universal mechanism” [240].
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