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Abstract: Climate analyses at a local scale are an essential tool in the field of sustainable development.
The evolution of reanalysis datasets and their greater reliability contribute to overcoming the scarcity
of observed data in the southern areas of the world. The purpose of this study is to compute
the reference monthly values and ranges of maximum and minimum temperatures for the eight
main inhabited villages of North Horr Sub-County, in northern Kenya. The official ten-day dataset
derived from the Kenyan Meteorological Department (KMD), the monthly datasets derived from
the ERA-Interim reanalysis (ERA), the Observational-Reanalysis Hybrid (ORH) and the Climate
Limited Area Mode driven by HadG-EM2-ES (HAD) are assessed on a local scale using the most
common statistical indices to determine which is more reliable in representing monthly maximum
and minimum temperatures. Overall, ORH datasets showed lower biases and errors in representing
local temperatures. Through an innovative methodology, a new set of monthly mean temperature
values and ranges derived from ORH datasets are calculated for each location in the study area,
in order to guarantee to locals an historical benchmark to compare present observations. The findings
of this research provide insights for environmental risk management, supporting local populations
in reducing their vulnerability.

Keywords: dataset validation; local climate; reanalysis datasets; natural hazard; baseline temperature;
climate; reanalysis estimates

1. Introduction

Several studies have classified Africa as the most vulnerable continent to the impacts of
climate change, due to its dependence on agricultural activities as well as its poor financial,
technical and institutional resilience capacities [1–4]. Local sustainable development in
Africa is heavily threatened by the impacts that climate change has on livelihood activities,
ecosystem services and water supply [5]. Among African countries, Kenya is one of the
most vulnerable to climate change. According to the Notre Dame Global Adaptation
Initiative index, which measures the current level of vulnerability to climate disruption for
182 countries, Kenya was ranked as the 38th most vulnerable country in the world to the
effect of climate change and the 23rd least ready to face future impacts in 2020 [6]. Changes
in rainfall patterns and increasing temperatures are expected to generate prolonged periods
of drought and more intense floods in the country [7], causing huge economic losses,
especially for the pastoralist communities in the north of the country [8]. Most of the rural
communities in the northern regions live under conditions of poverty and extreme weather
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events will increasingly threaten the area [9]. Therefore, monitoring, forecasting and early
warning systems are the best strategies to mitigate negative socio-economic impacts and
strengthen the resilience of the communities [10,11].

The present investigation is based on the principles of the One Health approach.
This multidisciplinary approach aims to achieve global health, addressing the needs of the
most vulnerable populations and increasing their resilience on the basis of the intimate
relationship between human health, animal health and environment conditions [12]. In this
context, historical weather observations are essential, since they allow the examination
of long-term climate trends and the comparison of past patterns with present and future
values, in order to have a broader view of what is happening at the local scale. However,
the weather observation network in arid and semi-arid lands (ASALs) has a poor spatial
distribution. The majority of the land-based meteorological stations are located in the south
and in the coastal areas of the country, which are the territories that attract most of the
tourist flows [13]. Furthermore, due to the scarce investment in technological renovation
of the infrastructures, the national meteorological network lacks modern facilities for
data analysis, which are needed to adequately represent past and present local climate
trends [14,15]. These observation deficiencies do not allow the proper interpretation and
prediction of local extreme weather events and consequently prevent the mitigation of
related risks [16].

With the progress of technologies and the increasing research effort, different sources
have been produced over recent decades to fill these data gaps, such as remote sensing,
climate models and reanalysis [17]. Recent studies have tried to assess the reliability of
different reanalysis datasets in Kenya and, more generally, in East Africa [18–21]. However,
all of these studies approached the issue with a regional rather than a local perspective.

The present study analyzes the reliability of different maximum and minimum temper-
ature datasets derived from temperature reanalysis to assess which is the most appropriate
to represent the local climate. In North Horr Sub-County, situated in Marsabit County in
northern Kenya, there is only one land-based meteorological station, which was installed
in North Horr village in 2019. Due to the lack of historical observations in the sub-county,
an area within a 250 km radius from North Horr has been defined and the land-based
meteorological stations located inside the area have been selected in order to maximize
the spatial coverage and the local representativeness. Specifically, these land-based mete-
orological stations are situated in Lodwar, Moyale and Marsabit. The climatic products
were evaluated against the historical observations recorded by the Lodwar, Marsabit and
Moyale land-based meteorological stations using a direct, point-to-pixel validation based
on a statistical indices approach [22].

As proposed by [23], the closest grid point to each land-based meteorological station
has been selected for each dataset, regardless of the position of the station inside the grid
box and of the spatial resolution of the datasets. Although the resolution of the datasets
is known to have an influence on the validation results [24,25], the use of this approach
is supported by the low topographic complexity of the area [22,26] and by the need to
assess the datasets’ performances in their original format, i.e., original resolutions. Thus,
the evaluation involves the datasets’ ability, as available for the end users, to appreciate
the local peculiarities, that is, how the selected product will be used for future local-scale
research on the area. Five performance indicators were considered in order to assess
the goodness of the models [23,27,28]. In addition, Taylor diagrams were calculated in
order to display the statistical agreement between the models’ data and the observations.
The datasets which provided the highest scores were chosen for the calculation of the
reference TMAX and TMIN.

The novelty of this study consists in the creation of an innovative methodology for
the calculation of reference TMAX and TMIN values and temperature ranges. The reference
values and temperature ranges obtained can provide a benchmark to strengthen the warn-
ing and response systems against extreme weather events. This methodology can support
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local populations in developing adaptation strategies and increasing their resilience against
climatic anomalies.

Section 2 describes the geographic features in the study area, the dataset used, and the
methodology adopted. The results are presented and discussed in Section 3, whereas
conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Study Area

North Horr Sub-County is located within Marsabit County, in northern Kenya. In this
area, the main populated villages, as reported in Figure 1 as “main locations”, are Balesa,
Dukana, El-Gade, El-Hadi, Gas, Kalacha, Malabot and North Horr. The region is mainly
arid and represents ASAL. Exceptions are represented by the areas around Mt. Marsabit and
Mt. Kulal. The geomorphological configuration of the territory is mainly characterized by
extensive plains with an altitude varying from 300–900 m.a.s.l. The rainfall is variable and
the evaporation rate exceeds ten times the rainfall amount, whereas the temperature ranges
from 15 ◦C to 26 ◦C and the mean annual temperature is about 20.5 ◦C [29]. The temperature
is mostly influenced by the altitude and its oscillation throughout the year is linked to the
rainy seasons. Generally, in Kenya, there are two rainy seasons, with a high peak during
the months of March to May, and between October and December. The bimodal rainfall
pattern is mainly influenced by the migration of the Inter-Tropical Convergence Zone and
occasionally by the El Niño Southern Oscillation and the Indian Ocean Dipole, which can
lead to extreme events such as floods and droughts [30–32].

Figure 1. Map of the study area: North Horr Sub-County is highlighted along with the main reference points. Within the
250 km radius from the reference point of North Horr, three land-based meteorological stations are identified (Lodwar,
Marsabit and Moyale). Main locations refer to the main inhabited villages located in the study area. Adapted from: [22].

2.2. Historical Temperature Series

Three land-based meteorological stations, located outside the study area but within a
radius of 250 km from North Horr village, allowed us to overcome the lack of historical
observations that characterizes the territory [22]. They are located in Lodwar, Marsabit
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and Moyale. Moreover, an automatic weather station has been active in North Horr since
March 2019, within the framework of the One Health international cooperation project
carried out in the sub-county. The characteristics of the land-based meteorological and
automatic stations are summarized in Table 1.

Table 1. Schematic summary of the land-based meteorological stations’ characteristics.

Station District Latitude Longitude Altitude

Lodwar Turkana 3.1◦ 35.6◦ 523 m
Marsabit Marsabit 2.3◦ 37.9◦ 1345 m
Moyale Lodwar 3.53◦ 39.1◦ 1097 m

North Horr North Horr 3.3◦ 37.1◦ 361 m

Monthly maximum and minimum temperature observations recorded by Lodwar,
Marsabit and Moyale land-based meteorological stations provided by the Kenyan Mete-
orological Department were used to evaluate the performance of each model assessed.
Considering the stations range of activity, the period 1983–2014 was chosen to optimize the
temporal coverage.

Finally, TMAX and TMIN observations recorded between March 2019 and June 2020 by
the land-based automatic weather station located in North Horr were used for the valida-
tion of the results.

Regarding the temporal resolution, monthly TMAX and TMIN were considered suitable
for the purpose of this study; temperatures recorded at shorter periodic intervals were
converted into monthly observations.

As can be seen from Figure 2, the maximum and minimum temperatures recorded by
the Lodwar station are significantly higher than those of Marsabit and Moyale. The reason
for this difference derives from the different altitudes at which the stations are located.
Lodwar station is located at 500 m, while those of Marsabit and Moyale are higher. However,
the cold season in the region is experienced from June–August and the hot season is
January–March.

Figure 2. Monthly boxplots of the maximum and minimum temperature observations recorded by the land-based meteoro-
logical stations of Lodwar, Marsabit and Moyale in the period of 1983–2014.

2.3. Reanalysis Product Description

Four different climatic products were evaluated for the purpose of this study, as shown
in Figure 3.
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Figure 3. Comparison of the different resolutions of the gridded dataset. The ten-day dataset from the Kenyan Meteorologi-
cal Department (KMD) has the highest resolution (0.0375◦) followed by the Climate Limited Area Model (CCLM) driven
by HadGEM2-ES (HAD), with a spatial resolution of 0.1◦, the ERA-Interim Reanalysis (ERA), with a spatial resolution of
0.125◦ and then by the Observation Reanalysis Hybrid (ORH), with the broader spatial resolution (0.25◦).

The temperature datasets assessed were:

• The ten-day dataset from the Kenyan Meteorological Department (referred to as
KMD), with a resolution of 0.0375◦ [24], available at: http://kmddl.meteo.go.ke:
8081/SOURCES/.KMD/ (accessed on 16 November 2020);

• Era-Interim reanalysis (referred as ERA), with a spatial resolution of 0.125◦ [33],
available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-
interim (accessed on 16 November 2020);

• Climate Limited Area Model (CCLM) driven by HadGEM2-ES (referred to as HAD),
with a spatial resolution of 0.1◦ [34], available at: https://climate4impact.eu/impactportal/
data/esgfsearch.jsp (accessed on 16 November 2020);

• Observational Reanalysis Hybrid (referred as ORH), with a spatial resolution of
0.25◦ [35], available at: https://hydrology.princeton.edu/getdata.php?dataid=6 (ac-
cessed on 20 March 2021)

According to [27,35,36], Observational Reanalysis Hybrid (ORH) should be the pre-
ferred data source to be used for climate change studies in East Africa. ORH is a global [35]
and regional (Northern/West/East Africa) [28] three-hourly, daily and monthly meteo-
rological dataset developed through a spatial downscaling of the National Centers for
Environmental Prediction and the National Center for Atmospheric Research reanalysis,
with a spatial resolution of 0.25◦. The spatial downscaling includes elevation changes
and is evaluated against ground stations, allowing the omission of random errors. More-
over, ORH is corrected for temporal inhomogeneity and biases [28]. Another source of
climate information is the Regional Climatic Models derived from the Global Climatic
Model through the dynamical downscaling method [37]. Recently, within the Coordinated
Regional Downscaling Experiment community, different regional climatic models were
developed in the African domain, with high spatial resolution and availablility in different
temporal domains. According to a recent study [21], the Climate Limited Area Model
driven by HadGEM2-ES (HAD) with a resolution of 0.1◦ is suitable for climate change
studies in East Africa and was considered for this analysis. In addition, ERA-Interim
(ERA) maximum and minimum temperature datasets with a spatial resolution of 0.125◦

were assessed. ERA has been issued for the period of 1979–2016 and combines weather
observations and short-term forecasts initialized from previous analysis; it integrates daily
surface air temperature observations and it is probably the most comprehensive reanalysis

http://kmddl.meteo.go.ke:8081/SOURCES/.KMD/
http://kmddl.meteo.go.ke:8081/SOURCES/.KMD/
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim
https://climate4impact.eu/impactportal/data/esgfsearch.jsp
https://climate4impact.eu/impactportal/data/esgfsearch.jsp
https://hydrology.princeton.edu/getdata.php?dataid=6
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existing currently [33]. Finally, the last dataset considered is the ten-day dataset from
the Kenyan Meteorological Department (KMD), which has a spatial resolution of 0.0375◦,
and covers the period 1983–2014. The KMD is a high-resolution, spatially and temporally
complete gridded historical temperature dataset produced by the International Research
Institute for Climate and Society (IRI), the Earth Institute at Columbia University [24].

2.4. Methodology

The study followed five steps (Figure 4):

1. Dataset performance assessment through the comparison between the historical
observations of the land-based meteorological stations of Lodwar, Marsabit and
Moyale and the dataset point values;

2. Evaluation of systematic errors in TMAX and TMIN seasonal representation of the
chosen datasets at the land-based meteorological station level;

3. Calculation and validation of the monthly ranges of TMAX and TMIN for Lodwar,
Marsabit and Moyale;

4. Calculation of the monthly reference values and ranges of TMAX and TMIN for all the
eight reference points;

5. Validation of the results through the comparison between monthly TMAX and TMIN
ranges and the observations recorded by the North Horr automatic land-based
weather station.

Figure 4. Methodological scheme. ORH, ERA, KMD and HAD refer to the reanalysis datasets used
for the comparisons with the observed data.

The five methodological steps are described in detail below.

2.4.1. Dataset Performance Comparison

Point-to-pixel comparison is a commonly used method to compare ground observa-
tions with other data products, such as reanalysis temperature datasets [26]. This method
has been implemented in the analysis to test the accuracy of each selected product in
representing North Horr Sub-County local temperatures. Since the historical observations
were available as monthly values, the temperature values from the datasets were firstly
aggregated into monthly values. Therefore, KMD, ERA, ORH and HAD datasets were
evaluated against the TMAX and TMIN observations recorded by the land-based meteo-
rological stations of Lodwar, Marsabit and Moyale in the selected period of 1983–2014.
Five statistical indices have been computed: the Bias, the mean absolute error (MAE),
the mean squared error (MSE), the root mean squared error (RMSE) and the correlation
coefficient (CC) [27,28,38]. On top of the above statistical indices, a Taylor diagram has been
computed to display the statistical agreement between the datasets and the land-based
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meteorological station data. The diagram shows the agreement through the CC and the
standard deviation (σ).

2.4.2. Systematic Error Evaluation at Land-Based Station Level

After establishing which datasets showed the best fit for the study area, the analysis
of the ability to represent seasonal temperatures was carried out for each land-based
meteorological station. Seasonal TMAX and TMIN boxplots were created to compare the
differences between the observations and the dataset values. The analysis of the boxplots
aimed to assess the distribution of the temperature values and to determine the presence
of seasonal systematic errors in the reanalysis. Moreover, the comparison between the
boxplots allowed us to choose the most appropriate position index e to calculate the
monthly reference temperatures.

2.4.3. Reference Values and Range Computation and Validation at Land-Based Station Level

Monthly reference values were computed for both TMAX and TMIN timeseries by aver-
aging the monthly temperature for the entire period considered (1983–2014). Temperature
ranges were calculated with an amplitude of 2 degrees Celsius centered on the climatolog-
ical monthly mean values. The amplitude of the ranges is determined by the difference
between the 5th and 95th percentile of the ORH monthly distribution of TMAX and TMIN.
Thereby, the ranges managed to contain most of the historical observations and to exclude
the events of extreme heat or cold.

As a first level of verification, the monthly ranges were compared against historical
maximum and minimum temperature observations recorded by Lodwar and Moyale land-
based meteorological stations, to assess the number of observations falling within the
ranges and the number of outliers outside of the intervals.

2.4.4. Range Computation at Reference Point Level

Since the temperature ranges and reference values computed for Lodwar and Moyale
locations showed good performances, the climatological reference values were calculated
for all the reference locations (Balesa, Dukana, El-Hadi, El-Gade, Gas, Kalacha, Malabot,
North Horr) using the same criteria.

2.4.5. Result Validation for North Horr

As a final test, North Horr temperature ranges were compared against the TMAX
and TMIN observations collected from the automatic weather station located in North
Horr for the period from March 2019 to June 2020. Daily temperature observations were
converted into monthly measurements and subsequently evaluated in relation to the
monthly thresholds.

3. Results and Discussion
3.1. Dataset Performance Comparison

In this section, the comparison between climate products and historical TMAX and
TMIN observations is presented. Five different indices were computed: RMSE, MSE, MAE,
bias and CC, as shown in Table 2.

Despite small exceptions, all products showed a tendency to overestimate tempera-
tures, as suggested by positive values of the bias. Referring to MSE and RMSE indices,
ORH and KMD showed better results. Indeed, ERA and HAD showed higher RMSE,
MSE and biases compared to ORH and KMD datasets in almost every station. KMD showed
higher CC results compared to other TMAX datasets; differently mixed results were found
for TMIN CCs. Overall, the KMD dataset showed better performances in representing
maximum temperature, whereas the ORH dataset fit better for minimum temeperature.
Furthermore, Taylor diagrams pictured in Figure 5 present the degree of the statistical
agreement between the datasets and the recorded historical observations.
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Table 2. Maximum temperature (TMAX) and the minimum temperature (TMIN) dataset evaluation, based on statistical
indices (bias, mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE) and correlation
coefficient (CC)) computed against the observed historical series selected from the land-based meteorological stations of
Lodwar, Marsabit and Moyale for the period 1983–2014. The last four columns present the overall performaces, given by
the mean of the performance indices computed for the three stations. Values in bold correspond to the best value of the
index for each station.

Lodwar Marsabit Moyale Overall Performances

KMD ERA ORH HAD KMD ERA ORH HAD KMD ERA ORH HAD KMD ERA ORH HAD

TMAX

Bias −2.34 −2.46 0.28 −0.88 1.82 5.94 4.56 4.1 0.92 1.31 0.7 1.38 0.13 1.60 1.85 1.53
MAE 2.38 2.49 0.92 1.28 1.82 5.94 4.56 4.1 1.06 1.32 1.01 1.46 1.75 3.25 2.16 2.28
MSE 7.44 9.03 1.61 2.47 4.35 37.33 22.02 18.57 1.75 2.61 1.61 3.37 4.51 16.32 8.41 8.14
RMSE 2.73 3.01 1.27 1.57 2.09 6.11 4.69 4.31 1.32 1.62 1.27 1.84 2.05 3.58 2.41 2.57
CC 0.74 0.71 0.65 0.65 0.79 0.57 0.66 0.55 0.95 0.83 0.92 0.86 0.83 0.70 0.74 0.69

TMIN

Bias 1.01 −1.12 −0.17 1.92 0.88 4.71 2.44 2.72 2.74 0.57 −0.24 −1 1.54 1.39 0.68 1.21
MAE 1.23 1.7 0.88 2.11 1.15 4.71 2.45 2.72 2.74 0.61 0.64 1.13 1.71 2.34 1.32 1.99
MSE 2.52 3.72 1.33 5.6 1.83 23.55 6.97 8.06 7.74 0.53 0.71 1.9 4.03 9.27 3.00 5.19
RMSE 1.59 1.93 1.15 2.37 1.35 4.85 2.64 2.84 2.78 0.73 0.84 1.38 1.91 2.50 1.54 2.20
CC 0.41 0.23 0.54 0.23 0.57 0.48 0.62 0.74 0.91 0.92 0.74 0.62 0.63 0.54 0.64 0.53

Figure 5. Taylor diagrams showing the agreement between the observed historical series and the temperature dataset for the
selected land-based meteorological stations for the period 1983–2014. The standard deviation of each series is proportional
to the distance from the origin of the diagram. The correlation coefficient (in Table 2) between each series and the observed
historical series is expressed by the azimuthal angle. Points closer to the historical series’ marker (white point), with similar
standard deviation and higher CC, correspond to the best-fit dataset.
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According to the Taylor diagrams, on average, KMD and ORH showed a lower
standard deviation and higher CC (as has already been presented in Table 2) in representing
TMAX and Lodwar TMIN values, whereas HAD showed a higher CC and lower standard
deviation in representing Marsabit TMIN, and ERA showed better results in representing
Moyale TMIN.

Considering the overall validation results presented in Table 2 and the Taylor dia-
grams, ORH is the most accurate product in representing local TMIN, whereas KMD yields a
better performance in describing local TMAX. Despite the broader resolution, ORH showed
significantly lower biases and errors in most of the validation stations. One reason behind
these results could be the low topographic complexity of the area. According to [26],
temperature reanalysis with high resolution is fundamental in a context with complex
geomorphologic features, but not particularly beneficial in plain areas. The better per-
formances of the KMD in representing Marsabit temperatures support this hypothesis,
as Marsabit is located on a hilltop. In this case, the higher-resolution grid may have resulted
in better performances. Since KMD and ORH presented the best results in representing lo-
cal temperatures, we evaluated which of these two datasets best approximated the seasonal
distribution of maximum and minimum temperature, in order to decide which datasets to
use in calculating the monthly reference values.

3.2. Systematic Error Evaluation at Land-Based Station Level

In this section, the ability of the ORH and KMD datasets to depict seasonal distribu-
tions of the temperature data is assessed.

Seasonal TMAX and TMIN boxplots were created in order to further compare the
differences between observations and the datasets. Figure 6 shows the comparison between
seasonal observed data and seasonal data from KMD and ORH reanalysis.

Figure 6. Seasonal boxplot of the observations, the KMD and the ORH TMIN and TMAX datasets for the selected land-based
meteorological stations for the period 1983–2014. Next to the boxplots are the seasonal temperature density distributions.

ORH showed poor results in representing both TMAX and TMIN in Marsabit, overesti-
mating both maximum and minimum temperatures and confirming the high bias values
reported in Table 2. Conversely, ORH showed good results in representing all seasons’
TMAX both for Lodwar and Moyale. However, it tended to underestimate Lodwar TMIN
during fall, spring and summer and Moyale TMIN during fall, spring and winter, and to
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overestimate the winter temperature in Lodwar. The density distribution is represented
next to the box graph for each season; several seasons appear to have normal distributions,
whereas others have bimodal or not centered/symmetric distributions.

On the other side, in Figure 6, it can be seen that the KMD tends to systematically
overestimate both maximum and minimum temperatures.

Given the results described by the seasonal boxplots, it emerged that the temperature
data from ORH reanalysis, with the exception of Marsabit, fit better than data from KMD
to describe the seasonal pattern of the observations recorded by the land-based stations.
Indeed, ORH seasonal boxplots did not show a tendency to systematically overestimate or
underestimate temperatures recorded by both Lodwar and Moyale land-based meteorolog-
ical stations. These results are in line with [27,35,36], whose outcomes underline that ORH
is the most accurate data source for TMAX and TMIN at monthly resolutions compared to
other climatic products in East Africa.

Therefore, monthly mean reference values for each location were calculate as the
monthly mean value of TMAX and TMIN data derived from the ORH reanalysis.

3.3. Reference Values and Range Computation and Validation at Land-Based Station Level

TMAX and TMIN reference values have been calculated for the stations of Lodwar,
Marsabit and Moyale, by averaging the monthly and seasonal TMAX and TMIN data deriving
from the ORH reanalysis (results are reported in Appendix A). Afterwards, climatological
ranges were calculated with an amplitude of 2 degrees centered on the climatological
monthly mean values for for both Lodwar and Moyale locations (see Figure 7). The ranges
have been computed with an amplitude of 2 ◦C. Marsabit temperature ranges were not
computed, since ORH failed in representing both TMAX and TMIN observation recorded
by the relevant land-based station. Due to this overestimation, Marsabit monthly ranges
would not have been representative of the observed temperature.

Figure 7. Climatological ranges (gray bands) with an amplitude of 2 ◦C centered on the monthly mean of the ORH
temperature dataset for the selected land-based meteorological stations in the period 1983–2014 (Lodwar and Moyale).
Each blue dot represents one monthly observation. Red dashed lines represent the upper and lower limits of the ranges.
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As shown in Figure 7, maximum and minimum ranges computed for Lodwar and
Moyale showed good results, as they are able to contain from 80 to 95% of the historical
observations. The percentage of values not falling within the limits of the ranges refers to
those extreme climatic events characterized by a heavy tail distribution and which differ
significantly from the average [39].

3.4. Calculation of Seasonal/Monthly Temperature Ranges for the Reference Points

The monthly/seasonal TMAX and TMIN ranges were calculated for the eight reference
points, as shown in Tables 3 and 4.

Table 3. Monthly and seasonal 2 ◦C TMAX ranges centered on the climatological mean and computed for all the eight
reference points located in North Horr Sub-County. Values are expressed in ◦C.

Balesa Dukana El-Gade El-Hadi Gas Kalacha Malabot North Horr

Jan 36–38 36.8–38.8 35.1–37.1 35.6–37.6 34.7–36.7 35–37 36.3–38.3 36.1–38.1
Feb 36.6–38.6 37.4–39.4 35.8–37.8 36.2–38.2 35.5–37.5 35.6–37.6 36.9–38.9 36.8–38.8
Mar 36.2–38.2 36.8–38.8 35.4–37.4 35.6–37.6 35.3–37.5 35.4–37.4 36.7–38.7 36.4–38.4
Apr 34.9–36.9 35.6–37.6 34.1–36.1 34.3–36.3 33.9–35.9 34–36 35.4–37.4 35.1–37.1
May 34.3–36.3 34.9–36.9 33.4–35.4 33.5–35.5 33.3–35.3 33.4–35.4 34.8–36.8 34.5–36.5
June 34–36 34.7–36.7 33.2–35.2 33.3–35.5 32.9–34.9 33.1–35.1 34.4–36.4 34.2–36.2
July 33.2–35.2 33.9–35.9 32.4–34.4 32.6–34.6 32.1–34.1 32.3–34.3 33.6–35.6 33.3–35.3
Aug 33.7–35.7 34.3–36.3 32.8–34.8 33–35 32.5–34.5 32.8–34.8 34–36 33.7–35.7
Sep 34.7–36.7 35.4–37.4 34–36 34.1–36.1 33.7–35.7 33.9–35.9 35.2–37.2 34.9–36.9
Oct 34.6–36.6 35.2–37.2 33.8–35.8 33.9–35.9 33.6–35.6 33.9–35.9 35.1–37.1 34.8–36.8
Nov 34.2–36.2 35.1–37.1 33.2–35.2 33.8–35.8 32.7–34.7 32.9–34.9 34.2–36.2 34.1–36.1
Dec 34.8–36.8 35.6–37.6 33.5–35.5 34.3–36.3 33.3–35.3 33.2–35.2 34.8–36.8 34.8–36.8

Winter 35.8–37.8 36.6–38.6 34.8–36.8 35.4–37.4 34.5–36.5 34.6–36.6 36–38 35.9–37.9
Spring 35.1–37.1 35.8–37.8 34.3–36.3 34.5–36.5 34.2–36.2 34.3–36.1 35.6–37.6 35.3–37.3

Summer 33.6–35.6 34.3–36.3 32.8–34.8 33–35 32.5–34.5 32.7–34.7 34–36 33.7–35.7
Autumn 34.5–36.5 35.2–37.2 33.7–35.7 33.9–35.9 33.3–35.3 33.6–35.6 34.8–36.8 34.6–36.6

Table 4. Monthly and seasonal 2 ◦C TMIN ranges centered on the climatological mean and computed for all the eight
reference points located in North Horr Sub-County. Values are expressed in ◦C.

Balesa Dukana El-Gade El-Hadi Gas Kalacha Malabot North Horr

Jan 22.3–24.3 21.6–23.6 22.3–24.3 21.5–23.5 22.4–24.4 22.7–24.7 23.3–25.2 22.8–24.8
Feb 23.5–25.5 22.8–24.8 23.6–25.6 22.5–24.5 23.5–25.5 23.8–25.8 24.4–26.4 24.1–26.1
Mar 25.3–27.3 24.5–26.5 25.5–27.5 23.9–25.9 25.1–27.1 25.7–27.7 25.9–27.9 26–28
Apr 25.5–27.5 24.7–26.7 25.8–27.8 24.2–26.2 25.6–27.6 26.3–28.3 26.2–28.2 26.3–28.3
May 25.2–27.2 24.4–26.4 25.2–27.2 23.7–25.7 25.4–27.4 25.4–27.4 25.9–27.9 26–28
June 23.8–25.8 23.3–25.3 23.8–25.8 22.8–24.8 24.3–26.3 24–26 24.8–26.8 24.6–26.6
July 23.2–25.2 22.6–24.6 23.1–25.1 22.2–24.2 23.2–25.2 23.2–25.2 24–25 23.9–25.9
Aug 23.7–25.7 23.1–25.1 23.8–25.8 22.8–24.8 23.7–25.7 23.8–25.8 24.6–26.6 24.6–26.6
Sep 24.2–26.2 23.8–25.8 24.2–26.2 23.1–25.1 24.3–26.3 24.4–26.4 25.1–27.1 24.9–26.9
Oct 24.9–26.9 24–26 25.1–27.1 23.4–25.4 25.1–27.1 25.3–27.3 25.7–27.7 26–28
Nov 23.7–25.7 22.9–24.9 23.8–25.8 22.5–24.5 23.8–25.8 24.2–26.2 24.7–26.7 24.5–26.5
Dec 22.7–24.7 21.9–23.9 23–25 21.5–23.5 22.8–24.8 23.2–25.2 23.9–25.9 23.4–25.4

Winter 22.8–24.8 22.1–24.1 23–25 21.8–23.8 22.9–24.9 23.2–25.2 23.9–25.9 23.4–25.4
Spring 25.3–27.3 24.5–26.5 25.5–27.5 23.9–25.9 25.4–27.4 25.8–27.8 26–28 26.1–28.1

Summer 23.6–25.6 23–25 23.6–25.6 22.6–24.6 23.7–25.7 23.7–25.7 24.5–26.5 24.3–26.3
Autumn 24.3–26.3 23.6–25.6 24.4–26.4 23–25 24.4–26.4 24.6–26.6 25.2–27.2 25.1–27.1

A visual representation of the maximum and minimum seasonal temperature values
at a local scale is given by the isotherm maps presented in Figures 8 and 9. The annual
TMAX and TMIN distributions for each reference point based on monthly ORH temperature
timeseries are shown in Figure 10.
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Figure 8. ORH isotherm maps representing seasonal mean TMAX values at the local scale for North Horr Sub-County,
for winter (January, February, March), spring (April, May, June), summer (July, August, September) and autumn (October,
November, December) seasons. White dots represent the location of the reference points.

Figure 9. ORH isotherm maps representing seasonal mean TMIN values at the local scale for North Horr Sub-County,
for winter (January, February, March), spring (April, May, June), summer (July, August, September) and autumn (October,
November, December) seasons. White dots represent the location of the reference points.
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Figure 10. Annual TMAX and TMIN distribution for each reference points based on monthly ORH temperature timeseries.

3.5. Result Validation for North Horr

The lack of land-based meteorological stations in the territory may represent a lim-
itation for the reliability of the results of this study. This issue is overcome through the
observations recorded by the North Horr land-based automatic weather station, providing
local evidence of the adequacy of the results. Despite the recent installation, the observa-
tions recorded by the North Horr land-based automatic weather station represent a unique
opportunity for the validation of our methodology at a local scale. Observations that were
collected and tested refer to the period between March 2019 and June 2020. In particular,
since the station is used to measure the maximum and minimum temperature on a daily
basis, the daily data were averaged on a monthly basis and then compared with time
intervals, as shown in Figure 11.

Figure 11. Temperature ranges (gray bands) with an amplitude of 2 degrees centered on the climatological monthly mean
values for the selected land-based meteorological station in North Horr for the period 03/19–06/20. Each dot represents
one observation. Red dashed lines represent the upper and lower limits of the ranges.

Even though the number of observations is small, the visualization of temperature
ranges confirms that the majority of the records are contained within the temperature
boundaries. However, in May, both minimum and maximum temperature observations
were above the upper limit of the climatological range. The upper limit is likewise passed
in March, April, May and July (TMAX) and in May and June (TMIN). Moreover, in October,
monthly average temperature values were below the lower limit, both for TMIN and TMAX,
and in February and April, observations were observed below the lower limit, respectively,
of the TMAX and TMIN ranges. Overall, the climatological temperature ranges for both
TMAX and TMIN were able to contain nearly 70% of the observations.
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4. Conclusions

The availability of reliable historical climatic datasets is key to understanding and
predicting extreme weather events and consequently reducing the vulnerability in African
countries, especially in ASAL regions. Similar to many other East African countries,
Kenya lacks historical land-based meteorological observations. This study identifies which
maximum and minimum temperature datasets are able to fill the data gap in North Horr
Sub-County. Four different climatic products are chosen and validated against historical
TMAX and TMIN observations recorded by the land-based meteorological stations of Lodwar,
Marsabit and Moyale. The comparison between ERA, HAD, KMD and ORH datasets
highlights that ORH TMAX and TMIN datasets are able to better represent local temperatures
and to successfully describe the seasonal patterns.

To strengthen the response systems against extreme weather events, temperature
reference values and climatological temperature ranges were computed using ORH data
for the eight main villages located in the study area (Balesa, Dukana, El-Gade, El-Hadi,
Gas, Kalacha, Malabot and North Horr). Temperature reference values were calculated by
averaging monthly and seasonal TMAX and TMIN data derived from the ORH reanalysis
and climatological ranges were calculated with an amplitude of 2 degrees centered on
the monthly temperature reference values. Monthly temperature ranges were compared
against (i) the observations recorded by the Lodwar and Moyale land-based meteorolog-
ical stations and then against (ii) the North Horr land-based automatic weather station
observations recorded in the period of 03/2019–06/2020. Lodwar and Moyale temperature
ranges contain the majority of the records (80–95%), demonstrating the ability to adapt to
the local context and to represent temperatures. Differently, despite the small number of
observations, temperature ranges computed for North Horr contain roughly 70% of both
TMAX and TMIN values recorded from March 2019 to June 2020. The high performances
obtained by the temperature ranges in the validation process confirm the adequacy of this
methodology’s application at a regional level.

High-resolution temperature data are urgently needed to understand climatic trends
in East African countries. This study provides a solution to the scarcity of observed data in
North Horr Sub-County, by identifying monthly maximum and minimum temperature
ranges. Anomalous temperature values can be detected through the comparison between
current observations and the temperature ranges, strengthening the local population’s
ability to cope with forthcoming extreme events.

Future research should test and validate the methodology proposed here in other
locations. Moreover, the same methodology should be retested after more observations
from the North Horr land-based automatic weather station are provided.
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Appendix A

Table A1. Comparison of monthly/seasonal mean value of maximum temperature (values are
expressed in ◦C) obtained from the historical time series and the ORH dataset for the three land-
based meteorological stations (Lodwar, Marsabit and Moyale).

Lodwar Marsabit Moyale

Historical ORH Historical ORH Historical ORH

January 36.1 36.8 25.3 30.3 31.0 31.3
February 37.2 37.7 26.7 31.2 31.9 31.9

March 36.9 37.4 26.6 31.2 30.6 31.4
April 36.0 36.4 25.3 29.8 27.4 28.5
May 35.3 35.5 24.9 29.1 25.8 26.6
June 34.5 34.9 24.0 28.7 24.9 25.9
July 33.7 33.9 23.5 28.0 24.0 25.3

August 34.2 34.4 24.1 28.4 24.9 26.0
September 35.4 35.9 25.3 29.7 26.8 27.5

October 35.9 35.5 25.4 29.8 26.8 27.4
November 35.2 35.0 24.0 28.3 27.1 27.8
December 35.5 36.0 23.9 29.2 29.1 29.3
Autumn 36.3 36.8 25.3 30.2 30.7 30.8
Winter 36.1 36.4 25.6 30.1 28.0 28.8
Spring 34.2 34.4 23.9 28.4 24.6 25.8

Summer 35.5 35.5 24.9 29.3 26.9 27.6

Table A2. Comparison of monthly/seasonal mean value of minimum temperature (values are
expressed in ◦C) obtained from the historical time series and the ORH dataset for the three land-
based meteorological stations (Lodwar, Marsabit and Moyale).

Lodwar Marsabit Moyale

Historical ORH Historical ORH Historical ORH

January 22.2 22.8 16.5 17.9 18.6 18.0
February 22.7 23.7 16.8 18.6 19.6 18.9

March 24.2 24.5 17.1 19.4 19.9 19.4
April 24.8 24.6 17.1 19.6 19.2 18.9
May 25.1 24.5 16.7 19.0 18.5 18.3
June 24.8 24.1 15.2 17.9 17.2 17.6
July 24.3 23.7 14.2 17.2 16.6 16.8

August 24.5 23.9 14.1 17.3 16.8 16.9
September 25.0 24.1 14.6 17.9 17.5 17.4

October 25.3 24.5 15.9 18.9 18.2 17.8
November 23.9 23.6 16.5 18.6 18.0 17.5
December 22.3 23.0 16.5 18.2 18.0 17.7
Autumn 22.4 23.1 16.6 18.2 18.7 18.2
Winter 24.7 24.5 17.0 19.3 19.2 18.8
Spring 24.5 23.9 14.5 17.5 16.9 17.1

Summer 24.7 24.1 15.7 18.5 17.9 17.6

https://hydrology.princeton.edu/getdata.php?dataid=6
https://hydrology.princeton.edu/getdata.php?dataid=6
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