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Lowest order stabilization free Virtual Element
Method for the Poisson equation

Stefano Berrone, Andrea Borio, Francesca Marcon *

Abstract

We introduce and analyse the first order Enlarged Enhancement
Virtual Element Method (E?VEM) for the Poisson problem. The
method has the interesting property of allowing the definition of bi-
linear forms that do not require a stabilization term. We provide a
proof of well-posedness and optimal order a priori error estimates. Nu-
merical tests on convex and non-convex polygonal meshes confirm the
theoretical convergence rates.

1 Introduction

In recent years, the study of polygonal methods for solving partial differ-
ential equations has received a huge attention. The main reason for this
great interest relies in the flexibility of polygonal meshes to discretize do-
mains with high geometrical complexity. A large number of families of
polygonal /polyhedral methods has been developed, among them we can list
Discontinuous Galerkin Methods [26], 37, [33], Polygonal Finite Elements
(PFEM) [41], Mimetic Finite Difference Methods (MFD) [8, 22, [42], Hybrid
High Order Methods (HHO) [27, 28], 29], Gradient Discretisation Methods
[311130], CutFEM [24], other methods that help in circumventing geometrical
complexities are Extended FEMs (XFEM) [35], Generalised FEMs (GFEM)
[38, 40, 39] as well as Ficticious Domain Methods [32] 5], Immersed Bound-
ary Methods [36], PDE-constrained Optimization Methods [I8], 17, [19] and
many others. One of the most recent developments in this field is the family
of the Virtual Element Methods (VEM). These methods were first intro-
duced in primal conforming form in [6] and were later on applied to most of
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tuto Nazionale di Alta Matematica (INdAM). The authors kindly acknowledge partial
financial support by INAAM-GNCS Projects 2020, by the Italian Ministry of Educa-
tion, University and Research (MIUR) through the “Dipartimenti di Eccellenza” Pro-
gramme (2018-2022) — Department of Mathematical Sciences “G. L. Lagrange”, Po-
litecnico di Torino (CUP:E11G18000350001) and through the PRIN 2017 project (No.
201744KLJL_004).



the relevant problems of interest in applications, such as advection-diffusion-
reaction equations [7, 13], 15], elastic and inelastic problems [9], plate bend-
ing problems [23], parabolic and hyperbolic problems [44], 43], simulations
in fractured media |14, 12| [11].

Standard VEM discrete bilinear forms are the sum of a singular part
maintaining consistency on polynomials and a stabilizing form enforcing
coercivity. In the literature, the stabilization term has been extensively
studied, for instance in [10], and remains a somehow arbitrarily chosen com-
ponent of the method with several possible effects on the stability and con-
ditioning of the method. Moreover, the stabilization term causes issues in
many theoretical contexts. The first one that we mention is the derivation
of a posteriori error estimates [25] [I5], where the stabilization term is always
at the right-hand side when bounding the error in terms of the error esti-
mator, both from above and from below. Moreover, the isotropic nature of
the stabilization term becomes an issue when devising SUPG stabilizations
[13l [16], or in the derivation of anisotropic a posteriori error estimates [3].
Finally, other contexts in which the stabilization may induce problems are
multigrid analysis [4] and complex non-linear problems [34].

In this work, we introduce a new family of VEM, that we call Enlarged
Enhancement Virtual Element Methods (E?VEM), designed to avoid the
need of the stabilization term. The method is based on the use of higher
order polynomial projections in the discrete bilinear form with respect to
the standard one [7] and on a modification of the VEM space to allow the
computation of such projections. In particular, we extend the enhancement
property that is used in the definition of the VEM space ([1], [7]). Indeed,
the name of the method comes from this enlarged enhancement property.
The degree of polynomial enrichment is chosen locally on each polygon, such
that the discrete bilinear form is continuous and coercive, and depends on
the number of vertices of the polygon. The resulting discrete functional
space has the same set of degrees of freedom of the one defined in [7].

The proof of well-posedness is quite elaborate, thus in this paper we
choose to deal only with the lowest order formulation and, for the sake
of simplicity, we focus on the two dimensional Poisson’s problem with ho-
mogenous Dirichlet boundary conditions, the extension to general boundary
conditions being analogous to what is done for classical VEM.

The outline of the paper is as follows. In section [2| we state our model
problem. In section [3] we introduce the approximation functional spaces and
projection operators and we state the discrete problem. Section [4] contains
the discussion about the well-posedness of the discrete problem under suit-
able sufficient conditions on the local projections. In section [5] we prove
optimal order H! and L? a priori error estimates. Section |§| contains some
numerical results assessing the rates of convergence of the method.

Throughout the work, we denote by (-, -),, the standard L? scalar product
defined on a generic w C R?, by v% the trace operator, that restricts on the



boundary dw an element of a space defined over w C R?. Inside the proofs,
we decide to use a single character C for constants, independent of the mesh
size, that appear in the inequalities, which means that we suppose to take
at each step the maximum of the constants involved.

2 Model Problem

Let Q C R? be a bounded open set. We are interested in solving the following
problem:

—AU = f in Q,
¢ .

=0 on 0f2.
Defining a: H} () x H}(Q2) — R such that,
a (U W) := (VU VW), YU,W €H(Q), (2)

then, given f € L2(Q), the variational formulation of is given by: find
U € H}(2) such that,

a(U,W)=(f,W)q YW €Hy(Q) . (3)

3 Discrete formulation

In order to define the discrete form of (3)), we denote by M;, a conforming
polygonal tessellation of 2 and by F a generic polygon of Mj. We denote
by #M,, the number of polygons of /\/l n and by A the maximum diameter of

all the polygons in My,. Let {xz} 5 be the N, vertices of E, £ the set of
its edges and n® = (ng, n;) the outward—pomtmg unit normal vector to the
edge e of E. We assume that My, satifies the standard mesh assumptions

for VEM (see for instance [10} 21]), i.e. 3k > 0 such that

1. for all £ € M,, FE is star-shaped with respect to a ball of radius
p > khg, where hg is the diameter of F;

2. for all edges e C OF, |e| > khp.

Notice that the above conditions imply that, denoting by N}E/ the number
of vertices of F, it holds

aNvy

max

>0:VE € My, N, <NY . (4)

For any given E € My, let P, (E) be the space of polynomials of degree k
defined on E. Let H1V,E : HY(E) — P1(F) be the H (E)-orthogonal operator,
defined up to a constant by the orthogonality condition: Vu € H'(E),

(V (I gu — ), Vp) , =0 Vp € P(E). (5)



In order to define HYE uniquely, we choose any continuous and linear pro-
jection operator Pg : H!(E) — Py(E), whose continuity constant in H!-norm
is independent of hg, and we impose Yu € H!(E),

Po(IY pu — u) = 0. (6)

Remark 1. A suitable choice for Py is the integral mean on the boundary
of E, i.e.

Po(u) := |61E| /VaE(u) ds YuecHY(E).
oF

Notice that this is a common choice, see for instance [7].

For any given £ € My, let [ € N be given, as detailed in the next section.
Let ENEI be the set of functions v € H!(E) satisfying

(v,p)p = (Y go,p) , Vp € Pia(E) . (7)
We define the Enlarged Enhancement Virtual Space of order 1 as
Vi ={v € ENT : Av € Py (E), +°(v) €Pi(e) Ve € Ep, v e CYIE)}.

We define as degrees of freedom of this space the values of functions at the
vertices of E (see [6, [7]).

Moreover, let £ € N#Mn be a vector and denote by £(FE) the element
corresponding to the polygon E, we define the global discrete space as

Vieg={ve HL(Q) : vE € VlEJ, where | = £(E)}.

Note that v € V, , is a continuous function that is a polynomial of degree 1
on each edge of the mesh.
To define our discrete bilinear form, let II? .V : VE, — [P;(E)]* be

the L?(E)-projection operator of the gradient of functions in the Enlarged
Enhancement VEM Space, defined, Vu € Vfl, by the orthogonality condition

(HREVu,p)E = (Vu,p)p Vpe€ [Py(E)]? . (8)

Remark 2. The above projection is computable given the degrees of freedom
of u € Vfl, applying the Gauss-Green formula and exploiting .

Let af: VlEl X Vfl — R be defined as
af (u,v) = (HREVU, H?,EVU)E Yu,v € Vfl,

and a, : VI,E X V1,£ — R as

ay, (u,v) := Z af (u,v) Vu,v e Vie- 9)
EeMy



We can state the discrete problem as: find u € Vie such that

ay, (u,v) = Z (f, HS’E’L))E Yo eV, (10)
EeMy

where, VE € M, H87E: Vfl — R is the L2(E)-projection, defined by

1
Hg,E’U ::@(U71)E \V//UEVIE,K

The above projection is computable exploiting .

4 Well-posedness

This section is devoted to prove the well-posedness of the discrete problem
stated by , under suitable sufficient conditions on £. The main result is
given by Theorem [I] that induces the existence of an equivalent norm on
V) ¢» which implies the well-posedness of .

Theorem 1. Let E € My, u € Vfl and l € N such that
(I+1)(1+2)> Ny —1, (11)

then
) ;Vu =0 = Vu, =0. (12)

We omit in the following the proof of the case of triangles (Ng =
and [ = 0), indeed this case can be led back to classical results. Then, for
technical reasons, the proof of Theorem |1{in the case N}E/ > 3 is split into
two results, described in Section [£.1] and in Section [£:2] respectively. The
proof relies on an auxiliary inf-sup condition that is proved by constructing
a suitable Fortin operator, whose existence is guaranteed under condition

().

4.1 Auxiliary inf-sup condition

In this section, after some auxiliary results, we prove through Proposition
that is satisfied if the auxiliary inf-sup condition holds true.

Lemma 1. Let u € V{%, with I > 1. Then
) pVu=0 = IIY pu € Py(E) .

Proof. Applying , we have

H?EVU =0 = (Vu,p)p =0 Vpe []P’Z(E)]Q,



that implies
(Vu,Vp)p =0 Vp e Pi(E), (13)

thanks of the relation VP, (E) C VP (E) C [P/(E))>.
Given and (f)),
(VI gu, Vp) , =0 Vp € P1(E) = VIIY pu =0
— IIY pu € Py(E).

Lemma 2. Let u € Vfl. If HREVu =0, then (@) can be rewritten as
(w,p)p =Po(u)-(1,p)p Vp € Pria(E), (14)
where P is the projection operator chosen in Section [3
Proof. Applying Lemma [1| and @,
HREVU =0 = HXEU =Py (u).

Then, provides . O

We now need to introduce some notations and definitions. First, we
denote by Tg the triangulation of E obtained linking each vertex of E to
the centre of the ball with respect to which F is star-shaped, denoted by z¢.
Let us define the set of internal edges of the triangulation 7g as Zg,,. For
anyi=1,... ,N}J/, let 7; € Tg be the triangle whose vertices are x;, z;4+1 and
xc. We denote by e; the edge ToT, € Zg,, and by n® the outward-pointing
unit normal vector to the edge e; of 7;.

Definition 1. Let HY-(E) be the broken Sobolev space
Hy(E) = ) H (7).
T€TE

Let uw € HY-(E), we define Ve; € Tg, the jump function ., : HL(E) —

L2(e;) such that
[, s= " () = ()

Moreowver, [[u]}I(g denotes the vector containing the jumps of u on each e; €
E

Is,. We endow HL(E) with the following seminorm and morm : Yu €
H-(E),

Ng
2
’u‘%{%,(E) = Z ”VUH?LQ(T)F + Z H[[u]]ez L2(e,') ? (15)
TETE =1
lullfi gy = lulfn e + > lullfsy - (16)

T€TRE



Definition 2. Let us define V.C HL(E) given by
V= {v e H(E) : Ve; € T¢,, [v]., € L>(e:) }-

Then Yv € V, we define its seminorm and its norm:

2 2 2
ol = ;E 190l e + | B0z, | )’
oIy == [off + > Il 5
T€TE
where
HMIEE Lo(Te,) = ie{giﬁg}‘}ﬂvﬂei Lec(ed) |

Remark 3. Let us observe that

PUEN* C | P VI
T€TE

Hence, we can use ||'Hm2 as a norm for [Py(E))?. Notice that, since [P;(E)]* C
(OB, =0, Vp € [Py(E)]*

[[p]]IfE ‘LOO (IgE )

Definition 3. Let Q(OF) be the vector space

Q(OE) :={q: q € Pi(e) Ve € Eg,q € C°(OE),Py(q) =0} . (17)

Let {¢; ;\/:‘14 € Q(OF) be the set of basis functions of Q(OFE) defined such
that

1 ifi=j
pi(xi)=1<¢; :Polp;) =0 ifi=j+1, Vj=1,....Ny -1
0 otherwise

Definition 4. Let Ro(E) be the vector space, lifting of Q(OF) on E, given
by:

Ro(E) i= {1 € Pi(r) ¥r € T, 172(a) € QOE), alwc) =0} . (18)
We note that Ro(E) C HY-(E) N C°(E). Hence, we use the norm ||||H%E)

Ny
defined in as a norm for Ro(E). Notice that H[[cj]]e =0 and
i=1

i HL2(51)

Vi e [V]*, Vi € Ro(E). We can consider as a basis of Ro(E) the set of
v_

functions {rj}jyfl e Ro(E):

VB (r)) =i, ¥j=1,...,N} —1. (19)

7



Now, we can introduce the bilinear form b which is crucial for Proposition

m
Definition 5. Let b : Ro(E) x [V]* = R, such that VG € Ro(E), Vv € [V]?
b(g,v) = / gv - n’F dz. (20)
O0FE

Applying the divergence theorem, we can rewrite the form b:

b(gv) = /

T€TE T

Ny
[Vgv+qV-v] dA — Z/’yei(q) [v],, -ndz.  (21)
=1

In order to prove the continuity of b, we have to present a preliminary
result.

Lemma 3. Let § € Ro(E), we have that 3C > 0, independent of hg, such
that

Vv
NE

D a@) <C Y IVallan- (22)
=1 TETE

Proof. By Holder inequality, we have

Ng
> alwi) < \/NY
=1

Moreover, we can apply the property 3C > 0 such that

V@) + P@i) < C [Vl (23)

which comes from the equivalence of norms on finite dimensional vector
spaces. Finally, recalling the mesh assumption we prove . Notice
that the constant C' of does not depend on hp by a standard scaling
argument. O

The following lemma proves the continuity of the bilinear form b.

Lemma 4. Let b be given by . Then b is a bilinear form and, for hg
sufficiently small,

3C > 0:8(6,v) < Clalluy [0l ¥a € Ro(E), Vv e V]2



Proof. Let § € Ro(E) and v € [V]* be given. Starting from and
applying the triangular inequality, we have

Ny
bav) < | > / Vgv+qV-v] dA|+|> / ¥ (g) [l - midz| . (24)
=17

€T’

Let us consider separately the two terms involved in the inequality.
The first part can be analysed applying the properties,

Vo € VI, IV - llian < 2[V0llf a0

Vg€ RQ(E), Y Il + 1Vl gy < V2N lallsgm)

T€TE

and the mesh assumption , as follows

> [(Vav+aV o da < 3 Vel ol +
T€ETE T T€TE

+ 3 Ml IV - vlla

T€TE

< 3 IVl (Follg sy + 190l ) +
TE R

+ Z HQHLz(T) (H'UH[]}(T)]? + \/§||Vv||[L2(T)]4>

T€TE

<Cc> (HUH[L%T)F + Hv”H[L"’(T)l“) x

TETE

% (IVallagr) + 1)

< Claluyy - (Iwlpsye + 190l ) -

T€TE

Moreover, let us consider the second term of , computing exactly
the term ||76i(q)]\L2( ¢;) and applying the properties

NY NY,
voe VP 3l s, < V2NE D IRD e
=1 =1
NY )
2
>0k iz, < Ot ol [l e, @



we have

Z / ) lol., eldx<§j|wez Mues
WL/
SE_;\/Z

‘ [[U]]ez

(€i)

|q(z:)] H [[v]]ez' [L2(e;)]?

Ny
- (1) 27

ol o) 13089

< Chg H [[”]]Ig

< Chg | [l

where we apply Lemma [3|in the last step.
Finally, substituting into , we obtain

5(2,9)] < Clldhuyey | D (I0lgamp + 190Nz ) + b ||z,

TETE

< Cmax(1,hp) @l gy 0l p2

‘Lw(IgE)

O]

The following proposition is the first step towards the proof of Theorem
o

Proposition 1. Let u € VEZ and NV > 3, let b the continuous bilinear form
defined by . If 38 > 0, mdependent of hg, such that

b
VG € Ro(E), sup (7, )
pe[P(E))? ” ||

>p HQHHT(E ) (26)

then holds true.
Proof. Given ,

H?EVU =0 = (Vu,p)y =0 Vp € [P(E)]*.
Applying Gauss-Green formula, the previous relation becomes
(Vu,p)p = (*yaE(u) , D - naE)8E —(u,V-p)p=0 Vpe []P’Z(E)]2 )
Since V - p € P;_1(E) we apply and we obtain

(’yaE(u) D naE)aE —Po(u)-(1,V-p)y =0 ¥p e [P(E)?.

10



Then we can apply the divergence theorem and find the relation
(+7# ()= Po(w) . p-n?") =0 Wpe [B(E). (27)
We have ¢ = 79 (u) — Pg (u) € Q(OF) (Q(OE) defined in ) Let ¢ €
Ro(E) be the lifting of ¢ (Ro(E) defined in (18))), then the relation is
b(@.p) =0 Vp € [Bi(E)]*.

Then, since b is a continuous bilinear form, implies ¢ = 0. Finally, since
u € VE, then u = Pg (u). O

4.2 Proof of the inf-sup condition

In this section we show that holds with 8 independent of hg. The
proof relies on the technique known as Fortin trick [20], that consists in the
following two classical results.

Proposition 2 ([20, Proposition 5.4.2]). Assume that there exists an oper-
ator Iy : [V]? = [Pi(E))* that satisfies

b(q,lIgv —v) =0 Vg € Ro(E)

and assume that there exists a constant Cr; > 0, independent of hg, such
that
2
”HE’UH[V]Q < Cn ||vH[V]2 Yo e [V]7.

Assume moreover that In > 0, independent of hg such that

in sup =
I€RQ(E) yev? HQHH%.(E) ||U||[V]2

(28)

Then the discrete inf-sup condition (@) 1s satisfied, with B = %

Remark 4. The inf-sup constant B in has to be independent of the
mesh size in order to guarantee that the constant in , tnvolved in the
coercivity of the bilinear form of , 1s independent of the mesh size.

Remark 5. The operator Ilg defined in the following is such that the con-
stant Cpy depends on NV and on the constant of continuity of Pg, both are

max

bounded independently of hg by assumption.

Proposition 3 ([20, Proposition 5.4.4]). Let 111, 1Ty € L([V]?, [Bi(E)]?) be
such that 3cq,co > 0,

Mol < erlolly Vo e V%, (29a)
b(g,Tyv — v) =0 VY € Ro(E), Vv € [V]?, (29b)
T (I =) o2 < e2 vl Vo € VI (29¢)

Then, the operator g := Iy (I — I11) + 11y satisfies the hyphotesis of Propo-
sition [3.

11



Following the above results, we have to prove (28) and to show the

existence of two operators I, Ils satisfying (29a)), 129b: and (29¢). In the
following proposition we achieve the first task.

Proposition 4. Let b: Ro(E) x [V]* = R be defined by (20). Then, for
hg sufficiently small, the inf-sup condition holds true.

Proof. Let § € Ro(E) be given. Recall that V§ € [V]*. Notice that, since
Vq € U Po(T),

T€TE

2
12— (ITall2 q
HVqH[V]2 = ||qu[L2(E)]2 + Hﬂvq]]z‘g‘E LOO(IEE) .

Since [|Vq|fe =0 <= Vg=0 <= g =0, we deduce that, Vg € Ro(E),
IV@lljy2) is a norm on Rg(E). The same holds for [|Vql|yspy2. Then,

by equivalence of norms on a finite dimensional space and standard scaling
arguments, we have

3C > 00 V4l oy = C 19y - (30)

Moreover, using , we get

b(7.Va) = | V4l x5, 2—2 / 2 [val,, (31)

and, since [Vq],. - n® € Py(e;) Ve; € Zg, and g(zc) = 0, we get

le]

[ @, n = (v, ) [ 54 = (v, -n) 5.

Then, using Lemma and [n%|=1Vi=1,...,NJ,

NV
E
Ze
2
\%
NE

Loo (IgE) Z Cj(-%)

i=1

> [r@wa. < Vi, |,

eEIgE

= hTE H [[vq]]ng

e H[[vqﬂfsE ‘Loo(IgE) IVl a2

)

Then, from we get,

40.90) = 19l (Ve - Che 1940,

12



Finally, the term in the parentheses can be bounded from below exploiting

, as follows:

IVallg )2 — Che H[[VQHIEE

> — q .
]Lw%) > C.(1— hp) | Vally

Choosing v* = Vg, we obtain the thesis Vhg < hg, for any hg < 1. 0

Now, let us focus on the operator II; of Proposition This is a best-
approximation operator satisfying the Poincaré-type inequality . In or-
der to prove it, let us consider the following lemma.

Lemma 5. Let P: HL(E) — Py(E) C H(E), such that Yv € HY-(E),

1
Pv:= /vdA.
|E|
E

Then 3C >0 : Yv € HY(E),
[v = Pl gy < Clolgyg) (32)
where C' depends on hg.
Proof. By contradiction, suppose
VC >0, weHHE): |v-— Po|p) > C |U\H17(E) .
Then, it is possible to define a sequence wy € H%—(E) such that, Vk € N,
|wy, — Pwk||L2(E) >k |wk’H%_(E) [Jwi, — Pwk”L?(E) =1,

which means that
1
wkluyp) < = [wrlnye) = 0- (33)
If we define u, = wy, — Pwy, we have, since Pwy, is constant,
|uk|H%.(E) = |wk|H%.(E) — 0. (34)

The sequence wuy, is bounded in HY-(E) by (33), and by the fact that
|ukllLgy = 1. Thus, by Banach-Alaoglu theorem, it converges weakly in

H%—(E) to a function u* up to sub-sequences, i.e.

HYE)
Uk, (aS ur.

J

Moreover, le(E) is contained in the space of functions of bounded variations
on E, thus it is compactly embedded in L2(E) (see [2, Corollary 3.49] ).

13



Then, ug; converges to a function u** strongly in L2(E), up to sub-sequences,
and by uniqueness of the limit we have v = u*. Let uj; = U, be the sub-
sequence such that
HY(E LAE
uj, i )u*, uj, D
By (34), |u*|H%_(E) = 0, thus u* is constant on E. Since [|u*[|jyp) =1 then

ut = ]E\_% This is a contradiction because we have P(u;) = P(wj —
Pw;) =0 Vk, then P(u*) should be zero by continuity and linearity of P.
U

Proposition 5. Let II; : [V]? — [P/(E)]? be the operator defined Vv € [V]?

by

ﬁf@ldA

Lv:= B

v ﬁf@gdA
E

I1; satisfies the condition (29al) and the following inequality: 3C > 0 such
that Vv € [V]?

Proof. Since v € [Py(E)]%, we have
ITollf e = Tl g 2 = (v, o) gy = (110, 0) g2
< ”HIUH[L2(E)]2 H'U”[Lz(E)]? < ”HIUH[\/]2 HUH[V}Q :

The condition (29al) is satisfied.
Since II; satisfies the hypothesis of Lemma we can apply to each
component of © — I1;9 and, by standard scaling argument, we get
Ny

v — HIUH[2L2(E)]2 < Ch HVUH[2L2(E)]4 + h]_31 Z ||[[/U]:|e,b
i=1

2
[L(e))?

Finally, applying the property , inequality is proved. ]

In the following, assuming , we prove the existence of an operator
I1 satisfying (29b]). First, we need some auxiliary results.

v_
Definition 6. Let {TZ}Z]\;El " be the basis of Ro(FE), defined in . Let us

define the set of linear operators D; : [V]> — R such that Vv € [V]

D;(v) := / (v-naE)rid:U, Vi=1,...,N} —1.

OENsupp(r;)

14



Lemma 6. If (I4+1)(I+2) > Ng —1, there exists a set of linearly independent
functions 7; € [P)(E)]* defined by

Di(m;) = 6;j Vi, j=1,...,Nj — 1. (36)

Proof. Let m; € [P;(E)]%. The relations are NY — 1 independent con-
ditions because the supports of two basis functions r;,,7;, never coincide
Vi1 # io. Then, since (I+1)(I+2) is the dimension of [B;(E)]?, the assump-
tion (I+1)(1+2) > N} —1 implies that 7; can satisfy all the conditions. [

In the following proposition we provide a definition of IIs and prove an
approximation result that is used in Proposition [7]

Proposition 6. Under the hypothesis of Theorem let us define 1l :
(V]2 = [Pi(E)]? such that Vv € [V]?

14
NY—1

HQU = Z Di(v)ﬂ'i,

i=1

where 7; satisfy .
Then Iy satisfies (29D) and the property 3C > 0: Yo € [V]?

Mol < C (145" ol + (s + D olye) . (37)
Proof. Since
Vo e [V]?, Di(Ilyv) = Di(v) Vi=1,...,N§ —1,

let us check that Iy satisfies (29b)), indeed by construction Vr; € Ro(F), i =
1,...,NY —1,Yv € [V]*

b(ri,lav — v) = /ri (Ilev — v) - n9F dx = D;(ITav — v) = 0.
oOF

Furthermore, applying Lemma 4| on the reference polygon E , we have

Di(Tv) = / (8- 1) #sdi = b7, 6) < C Fillygs iy 19l -
dENsupp(7;)
(38)
Then, we want to prove the continuity of Ilpv, i.e.

NY-1
[T o < 2 [ (o) 1

<(NE = 1) max | Dy (T ) | mae |77 2

15



N\ 72
Since 7; € [IF’Z (E)} , ||7AriHm2 < CVi=1,...,NY and applying the mesh
assumption , we have

], <o

% max A% ‘Di (ﬁ;;) ‘ '

Applying we obtain

[ < O ol mase iy i)

Finally, since r; is a piecewise linear polinomial on E we have that Vi 173 1 () <
L

C, where C depends on the continuity constant of Py, that is bounded in-
dependently of hg by assumption. It results,

[T, < Clolere- (39)

Then, since Ilyv € C(E), we have

HHTUH[QV}? = HH2'UH[2L2(E)}2 + Z HVH2UH[ZL2(T)}2 . (40)
TET

Applying and a standard scaling argument, we can analyse the second
term as follows:

2 VIl = 3 HW’H?LW = Hﬁ;’H[QW < Clioliyy
T€T Te€T

)

(41)

= (1 ol gy + 1901 g + D01,

Moreover, applying similar arguments to the term HHQUH[QLQ( B2 We have

= 5 <12

2
2 (1=2 11,112 2
< Ch <hE o1y + 19918 e + || [l ‘Lm(ng)> ‘
(42)
Applying and to , we prove (37]). O

Finally, we show that the operators II; and Il, defined above satisfy
(129¢]).

Proposition 7. Let I11, 11, € L([V])?, [Py(E)]?) be given according to Propo-
sition @ and @ respectively, then (29c) is satisfied.
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Proof. Applying , we have
My (I =) v < C ((1 + h") I = 1) vl| g oyp2 + (b + 1) [(1 = TIy) ’U‘[vP) :
Then, applying to the first term and the property

M € [Po(B)? = (I — L) ]2 = o]y
to the second one, we have, for hp sufficiently small,

4.3 Coercivity of the discrete bilinear form

In this section we prove the coercivity of the discrete problem defined by
with respect to the standard H}(£2) norm, denoted by

Vilnye) = 1VVlizaye YV € Hp(Q) -

Let

S

2
lole={ > [ eve]| ., 0] eV
W L)

We have the following result.

Proposition 8. Suppose £ satisfies VE € My,. Then, |-||, is a norm
onV,.

Proof. Let v € V, , be given. It is clear from its definition that ||v|, is a
semi-norm. Applying Theorem (1| and since v € Hé(Q), we have that

O
Lemma 7. We have that
[olle < lollggay o€ Vigo (13)
Moreover, if £(E) satisfies VYE € My, then
Jey > 0: lv]lg = e HUHHg(Q) Yo eV, (44)

where ¢, does not depend on h.
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Proof. The relation (43)) follows by the deﬁnltlon of H LE and an application
of the Cauchy—Schwarz mequahty Moreover, follows from the equiva-
lence of norms on finite dimensional spaces. By standard scaling arguments,
we see that ¢, is independent of h. O

In the following theorem, we provide a proof of the continuity and the
coercivity of the discrete bilinear form. The coercivity property follows from
Lemma [

Theorem 2. Let a; be the bilinear form defined by @ Then,
an (w,0) < wlhgyey [0y Voo € Vi g (45)
Moreover, suppose €(E) satisfies VE € My, Then,
3AC > 0, independent of h: a;, (w,w) > C Hw||H1 Vw eV, 4. (46)

Proof. Let w,v € V; 4, be given. Applying the Cauchy-Schwarz inequality
and . we get

ap (w,v) = Z (HS(E),va7H2(E),EV,U)E
EeM,

TR
EeMy

lwlie lvlle < llwllaye) HUHHé(Q)

IN

Hg(E),E

[LAE Ve H [LY(E))?

IN

Moreover, assuming that £(E) satisfies VE € My, we can apply the
lower bound in and get

ay, (0,w) = ]3> (e2)? iy, -
O

This theorem implies that the bilinear form ay, of the problem (10) sat-
isfies the hypothesis of Lax-Milgram theorem, then the problem admits a
unique solution.

5 A priori error estimates

In this section we derive error estimates for the proposed method, in H} norm
and in the standard L2 norm. Then, we recall classical results for Virtual
Element Methods concerning the interpolation error and the polynomial
projection error (see [0l [7]). For each element E € M, we denote by dof;
the operator that maps each sufficiently smooth function U on the i-th local
degree of freedom in Vie According to the definition of the degrees of
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freedom, it is true that for every U € H?(E) there exists a unique U; € Vi

such that
dim Vl,l

U= Y dofi(U)&, (47)
i=1

where &; is the related basis function, defined such that dof;(&;) = 6;; Vi =
1,...,dimV, ,. The following results hold.

Lemma 8 (6, Proposition 4.3]). Let U be a smooth enough function, then
there exists C' > 0 such that V' h, 3Ur € V, ,, defined as , the following

relation holds:
U = Ulllpzq) + 21U = Utllgyoy < Ch*|Ul,. (48)

Lemma 9 ([7, Lemma 5.1]). Let U be a smooth enough function, there exist
C1,Cy > 0 such that

[TeVU = VU] ) < C1h|Ul,, (49)

and
[0 = Ul| ) < Coh U |lggyey - (50)

Theorem 3. Let U € H2(Q)NH(Q) and f € L2(Q) be the solution and the
right-hand side of , respectively. For h sufficiently small, 3C > 0 such
that the unique solution u € V| , of problem satisfies the following error
estimate:

10 = wlliggay < Ch (101, + sy ) (51)
Proof. Let Ut be given by . Applying the triangle inequality, we have
U = ullgyq) < IU = Utllgyoy + U1 — ullgyq) - (52)

We deal with the two terms separately. The first one can be bounded ap-

plying , ie.
IU = Utllgyqy < Ch|Ul;- (53)

On the other hand, in order to deal with the second term of let us
denote by € = Uy — u. First, applying the coercivity of the bilinear form ay,
and the discrete problem , we have that 9C > 0:

Clelifyay < an (e:€) = ay (Ur,€) — ay (u,e) (54)
= ap, (ULE) - Z (f7 H8,E€)E .
EeMy
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Applying the definition of the L2 projectors and adding and subtracting
terms (H?EVU, VU), we have

ay, (g,¢) = a;, (U1 —U,e) +a, (U, e) — Z (H&Ef,s)E

EeMy,
=a,(U1—Ue)+ > (I)pVU = VU, V), + (VU,Ve)p — (I} pf. ),
EeMy
=a,(U1—Ue)+ > () pVU - VU,Ve)  + (f — 1) pf.e) -
EeMy

Let us consider the last three terms separately. The first one can be bounded

applying and , ie.
ap (Ur = U,e) < C||Ut = Ullgyqy lellayay < ChIUI, lellayq) - (55)

Applying the Cauchy-Schwarz inequality and , the second term can be
bounded as follows:

> (VU -VUVe)p < 3 VU = VU el
EeM,, EeMy, (56)

< CL{UL, o -

The last term can be bounded applying the definition of Hg’ g the Cauchy-
Schwarz inequality and , ie.

Y (F-Mefe)y= > (fe—Mge)y

EeMy EeMy
< Z 1l e = H8,E5HL2(E) < Chlfllxqy el myey -
EeMy
(57)
Finally, applying together , and into and simplifying, we
have
ey < Ch (101 + 1flliay ) - (58)
Considering together and we prove . O

Theorem 4. Let U € H2(Q)NHL(Q) and f € HY(Q) be the solution and the
right-hand side of , respectively. For h sufficiently small, 3C > 0 such
that the unique solution u € V; , of problem satisfies the following error
estimate:

10 = ullaqy < OB (101 + 1 liyey) - (59)
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Proof. Let us define the auxiliary problem: let ¥ € H2Z(Q) N H(Q) the
solution of a (V,¥) = (U —u, V), VV € H{(Q). From the definition of ¥,
we get:

3C >0: ‘\IJ‘Q < C HU - UHLQ(Q) s (60)
and

AC>0: ¥y < CIU = ullpag) - (61)

Let us denote by W the interpolant of ¥ according to . Applying the
auxiliary problem, the discrete problem and the definition of the bilinear
form a ({2)), we have

U —ullfaqy = (U~ uw,U~u)g=a(U —u,¥)
=a(U,¥—-Y7)+a(U, V1) —a(u,¥)
=a UV —-¥;)+ (f,¥)g —a(u, V)

=a (U VY —-V)+(f,¥1)g — Z (f7H87E\I’I)E +
EeM,,

+ay, (u, ¥r) —a (u,¥) £ a (u, ¥r)

=a(U—u,¥—Up)+ Z (f, 0 =100 g%r) . | +
EeMy

+ay, (u, ¥r) —a(u,¥p).

(62)

Let us consider the terms of the previous relation separately. First, applying
the Cauchy-Schwarz inequality, , and , we have, for the first

term,

a(U—u, ¥ —=¥5) <[|U = ullgyq) ¥ = ¥illgyq)
<Ch|U - UHH})(Q) ¥, < Ch|U - uHHé(Q) U - UHL2(Q)7

(63)
and, for the second one,
Z (fa \I]I - Hg,E\I[])E = Z (f - H8,Ef7 \III - H8,E\I]I)E
EeMy, EeMy
S Z Hf - Hg,EfHL?(E) H\I]I - Hg,EWIHL?(E)
EeM,
< Chlflaygy Y 191~ HgyE\PIHLQ(E)' (64)

EeMy
Applying the property

VE € My, ¥ - Hg,E‘I/IHL2(E) <|[lwr - Hng\IIHLQ(E)’
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and to (64), we obtain
SO (F U -1 p00) < Chlfliey 3 ¥ 1850 Ly

EeMy, EeMy,
< Ch|flaye) Z (”‘I’I — Uz + v - Hg,E‘I’HLz(E))
EeMy,
< Ch|fliay (A1l + 1¥liye)) - (65)
We can omit higher order terms and apply , obtaining
> (£9 -1 p¥y) , < Ch [y U = ullizq) - (66)
EeMy

Finally, we have to bound a;, (u, V1) —a (u, ¥y). Then, applying the orthog-
onality property of H? p» adding and subtracting terms, we have

a, (u,¥r) —a(u,¥7) = Y (I} zVu, V), — (Vu, V)

EeMy

= > (I)pVu—Vu, VI —II) pVI;)
EeMy

= > (I)pVu—1)pVU, VU —II) g V) +
EeM,

+ (I} VU = VU, V¥ — 11} x V) | +
+ (VU = Vu, V¥ — 11} p V) .
(67)

Notice that, applying and , we have the property VE € M, :
(VO =T V|| ) < [V =TV ) < CRITy

Therefore, applying the continuity of the projection operator and , the
first and the last term of can be bounded as

> (M) pVu -7 VU, VU, — I gV;)  + (VU = Vu, VI, — 1) 5V )
EeMy
S CRNU = ullyyo) 1U = ull gy -
(68)
Similarly, the second term is bounded as

> (VU - VU,V T ;VT;) , < Ch? Ul |U = ull 2y - (69)
EeMy,

Finally, applying ,, and to and simplifying, we obtain
IU = ulliaqy < C (RIU = ullgyqy + 1 | flugy + h21UL,)

Applying the H!-estimate (Theorem [3)) we obtain the relation . O
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6 Numerical Results

Let us consider problem on the unit square with homogeneous Dirichlet
boundary conditions and the right-hand side defined such that the exact
solution is

Uez = sin(2mx) sin(27y).

In the following, we show, in log-log scale plots, the convergence curves of
the L2 and H! errors that we measure respectively as follows,

2

2 _ \Y

L* error = Z HHLEU—Uw LBy’
EeMy

2
H! = HHO - VU,

error Z l’EVu VU L2E)

EeMy,

where u is the discrete solution of . Then, for each polygon E € M, we
choose [ such that the sufficient condition is satisfied (see Table (1] for
some choices of [).

Table 1: Sufficient ! for polygons that have up to 20 edges.

NY l

3 0
from4to7 |1
from 8 to 13 | 2
from 14 to 20 | 3

6.1 Meshes

We consider four sequences of meshes for the convergence test. The first
sequence, labeled Hexagonal, is a tesselation made by hexagons and trian-
gles, as it is shown in Figure The second sequence, shown in Figure
and labeled Octagonal, is made by octagons, squares and triangles. Then,
the third sequence, labeled Hexadecagonal, is made by hexadecagons and
concave pentagons, as it is shown in Figure Finally, the last sequence,
labeled Star Concave, is a non-convex tessellation made by octagons and
nonagons, as it is shown in Figure

In each case we start from a mesh of #.M;, polygons then we refine it, ob-
taining meshes made by 4# M, 16#M;, and 64# M}, polygons. The first
and the third sequence start with #Mj, equal to 320, the second and the
fourth with #Mj, equal to 164 and 192 respectively.
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Figure 1: Meshes

6.2 Convergence results

For the four mesh sequences, we report the trend of the L? and the H! errors
in Figure 2] and in Figure [3], respectively, decreasing the maximum diameter
of the polygons. In the legends, we report the computed convergence rates
with respect to h, denoted by a. We see that we get the expected values for
all the meshes, as obtained in and .
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