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NIR image colorization with graph-convolutional
neural networks

Diego Valsesia, Giulia Fracastoro, Enrico Magli
Politecnico di Torino, Italy

Abstract—Colorization of near-infrared (NIR) images is a
challenging problem due to the different material properties
at the infared wavelenghts, thus reducing the correlation with
visible images. In this paper, we study how graph-convolutional
neural networks allow exploiting a more powerful inductive bias
than standard CNNs, in the form of non-local self-similiarity. Its
impact is evaluated by showing how training with mean squared
error only as loss leads to poor results with a standard CNN,
while the graph-convolutional network produces significantly
sharper and more realistic colorizations.

Index Terms—NIR colorization, graph neural network

I. INTRODUCTION

Imaging in the near infrared (NIR) spectrum has found
several applications in video surveillance, and remote sensing.
The main feature offered by the NIR band is a tighter
dependence of the surface reflectance to the material, as many
dyes and pigments are transparent at infrared wavelengths.
This is a valuable property when a system is tasked with
segmenting a scene [1] or detecting objects based on material
properties. However, it also makes the scene more challenging
to understand by humans due to the lack of color references.
Colorization, i.e., the process of producing a RGB image from
a monochrome input, would allow to make NIR scenes more
interpretable. However, contrary to visible image colorization
[2], where the task is to recover the chrominance signal
from the luminance component only, NIR colorization is a
more challenging problem. NIR image colorization lacks the
low-level clues available in the luminance channel of visible
images due to the different material properties outside the
visible spectrum. The colorization task must therefore learn
higher-level semantic information in order to successfully
deduce a plausible color.

The colorization problem, including NIR colorization, is
typically tackled by exploiting generative adversarial networks
(GANs) [3]–[6] in addition to pixel-wise losses. In fact, pixel-
wise losses such as mean-squared error (MSE) or angular error
(AE), or even pseudo-perceptual metrics such as SSIM, are not
sufficient to regularize the problem so that the colorized image
sticks to the manifold of realistic RGB images [7], which is
needed to produce convincing results.

In this paper, however, we focus on a complementary issue
to the choice of loss function. We argue that the network
architecture itself can provide a valuable inductive bias, that, if
properly designed, provides an extra source of regularization.

We argue that the inductive bias provided by classic con-
volutional neural network (CNN) architectures is insufficient
to fully address the NIR colorization problem. In fact, the
highly localized receptive field of CNNs allows them to focus
more on local statistics. We propose to use graph-convolutional
neural networks to exploit non-local self-similarities and learn
more global features. In order to show that the inductive bias
due to the graph-convolution operation is effective on this
task, we focus on training with a pixel-wise MSE only. While
the classic CNN dramatically fails to provide meaningful
colorizations, the graph-convolutional neural network is able
to generate sensible results. This is a remarkable result due
to the aforementioned limitations of the MSE loss, and shows
that graph-convolution can provide a better backbone network,
paving the way to its use in future works including adversarial
training.

II. BACKGROUND ON GRAPH-CONVOLUTIONAL NEURAL
NETWORKS

In the last years, graph-convolutional neural networks have
emerged as the state-of-the-art approach when dealing with
data defined on irregular domains. The main building block
of such networks is the graph-convolutional layer. Numerous
definitions of graph convolution have been proposed. A first
class of approaches defines the graph convolution operation in
the spectral domain through the graph Fourier transform [8]–
[10]. In order to reduce the computational complexity of this
operation, fast polynomial approximations have been proposed
[9]. One of the most famous graph neural network architec-
tures, i.e, the Graph Convolutional Network (GCN) presented
in [10], employs a first order polynomial approximation. The
main drawback of such spectral approaches is that the graph
structure is supposed to be fixed and it cannot handle the
cases where the graph structure varies. In order to overcome
this issue, a second class of approaches was proposed. In this
case, the graph convolution operator is defined in the spatial
domain: the convolution is performed as a weighted local
aggregation over the neighboring nodes [11]–[18]. Thanks to
the fact that the convolution is defined at a neighborhood level,
the operation remains well defined even if the graph structure
changes. Various techniques for defining the weights employed
in the neighborhood aggregation have been proposed. Several
methods use learnable weights whose values are the same
for all the nodes of the graph [13], [16]. Instead, in other
cases the weights depend on the input features of the node.
For example, [14] computes the aggregation weights using a978-1-7281-8068-7/20/$31.00 ©2020 IEEE



Gaussian kernel, instead [15] employs a soft-max function
with learnable parameters. A more general approach, called
Edge Conditioned Convolution (ECC), is proposed by [11],
where the function that computes the aggregation weights is
defined using a multilayer perceptron (MLP). This makes the
function highly general since it does not impose a predefined
structure, but the approximation capability of the MLP allows
to learn the optimal function for a given specific task. A
more efficient version of the ECC, called Lightweight ECC, is
proposed in [19], where some approximations are introduced
in order to reduce the number of parameters and the memory
usage. In [19], the lightweight ECC has been effectively
applied in the context of image denoising. In this case, the use
of graph-convolutional layers allows to exploit both local and
non-local similarities that are present in the image by creating
a graph that connects pixels whose feature representations are
similar to each other, regardless of their spatial distance. This
approach outperforms standard CNNs, which can exploit only
local information.

III. PROPOSED METHOD

This section presents NIR-GNN, the proposed graph-
convolutional architecture for NIR image colorization. An
overview is shown in Fig. 1. At a first glance, we can
observe that the proposed architecture has a global input-
output residual connection whereby the network learns to
estimate the difference between each RGB channel of the
image and the monochromatic NIR image rather than directly
produce the RGB image.

The first block of the proposed network is a preprocessing
stage with three parallel branches that operate on multiple
scales. The multiscale features are extracted by a sequence
of three 2D convolutional layers with filters of size 3 × 3,
5× 5, and 7× 7, depending on the branch. Then, after a final
graph-convolutional layer, the features are concatenated.

The remainder of the network is composed by an HPF block
and two LPF blocks, named after an analogy with highpass
and lowpass graph filters of an unrolled proximal gradient
descent optimization method. We refer the reader to [19] for
more theoretical details on such analogy. All these blocks are
composed of an initial 3× 3 2D convolutional layer followed
by three graph-convolutional layers. A graph is constructed
as a k-nearest neighbor graph by evaluating the Euclidean
distance between the feature vectors of each pixel. To reduce
computational complexity, all the graph-convolutional layers
in a block share the same graph, which is constructed from
the output of the initial 3×3 convolutional layer. The graph is
then updated at the next block, creating a dynamic construction
that is better adapted to the evolving feature space. All layers
are interleaved by Batch Normalization operations and leaky
ReLU nonlinearities. Moreover, the LPF blocks have an input-
output skip connection to promote backpropagation, as in
ResNet architectures. Finally, a last graph-convolutional layer
projects the features back to the RGB space.

The main building block of the proposed network is the
graph-convolutional layer. Each graph-convolutional layer has

two inputs: a matrix Hl+1 ∈ RF l×N representing a feature
vector with dimension F l for each of the N pixels of the
patch, and a graph describing the connections between pixels.
In order to exploit both the local and non-local similarities of
the image, for each pixel we perform two different types of
aggregation: a local aggregation of the pixels that are spatially
close, and a non-local aggregation of pixels that are spatially
distant but have similar feature representations. A standard 3×
3 2D convolution processes the local neighborhood, while the
lightweight ECC [19] is employed to aggregate the non-local
neighbors, which are defined by the k-nearest neighbor graph.
Then, the output feature vectors Hl+1 ∈ RF l+1×N at layer l
are computed summing these two contributions as follows:
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where Hl
i is the input feature vector at pixel i, N l

i is the set
of its non-local neighbors, Hl+1,L

i is the output of the 3 × 3
local convolution for pixel i, Hl+1,NL
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is the bias. The
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This function is defined as a MLP with two layers. Due
to overparameterization issues, the last layer of the MLP
is approximated employing a stack of circulant matrices as
done in [19]. In (1), the non-local aggregation weight matrix
is approximated as

∑r
t=1 ω

j→i
t φj→i

t ψj→iT

t , where r is a
hyperparameter setting the maximum rank; this is done to
reduce the number of parameters and memory requirements
of the aggregation operation. We refer the reader to [19] for
additional details on these approximations. The scalar multi-
plier γl,j→i ∈ R is an edge attention term which depends on
the Euclidean distance between feature vectors of neighboring
nodes:

γl,j→i = exp
(
−‖Hl

i −Hl
j‖22/δ

)
,

where δ is a decay hyperparameter.

IV. EXPERIMENTAL RESULTS

This section presents some experimental results on the
dataset provided for the VCIP 2020 Grand Challenge on
NIR Image Colorization. The focus of our experiments is
to compare the images colorized by a CNN and a by the
proposed graph-convolutional neural network when trained
with a MSE loss. This is done to ensure that the experiment
evaluates the merits of the network design, rather than intro-
ducing confounding factors like adversarial training. Fairness
is ensured by using a roughly similar number of parameters
and same overall architecture, but without the non-local graph-
convolutional contribution in the standard CNN.
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Figure 1. NIR-GNN: proposed graph-convolutional architecture.

Figure 2. Colorized validation 0004. Left to right: NIR image, CNN, NIR-GNN, RGB ground truth.

Figure 3. Colorized validation 0013. Left to right: NIR image, CNN, NIR-GNN, RGB ground truth.

Figure 4. Colorized validation 0016. Left to right: NIR image, CNN, NIR-GNN, RGB ground truth.



Table I
OBJECTIVE QUALITY METRICS. VALIDATION SET.

PSNR SSIM AE
CNN 16.17 dB 0.479 0.32

NIR-GNN 16.27 dB 0.514 0.32

We trained only on the available paired NIR−RGB image
dataset, without using any external data or unpaired images.
Both networks were trained for 300000 iterations with a
learning rate exponentially decayed from 10−4 to 10−5, each
processing a batch of 10 patches of size 42× 42. The graph-
convolutional network used F = 99 features, r = 11 rank,
δ = 10 and k = 8 non-local nearest neighbors.

Figs.2,3, and 4 show a validation image, as colorized by the
standard CNN and by NIR-GNN. As expected, the MSE loss
is insufficient to provide meaningful colorization results using
the standard CNN. The image is quite blurry and the colors
have weak spatial consistency, revealing color patterns that do
not exist in the ground truth. The images generated by NIR-
GNN are significantly sharper, colors more accurately follow
the scene content, also showing good variability, consistent
with the objects in the scene. Notice how both images lack
vibrant colors: this can be attributed to the limitations of the
MSE loss.

Finally, Table I summarizes the results on objective quality
metrics, averaged over the entire validation set. Notice how
the metrics are not able to fully capture the visual quality
improvements.

V. CONCLUSIONS

We presented a neural network based on graph-
convolutional layers to tackle the NIR image colorization
problem. Our objective was to show how this constitutes
a better backbone than traditional CNNs since the graph
convolution operation enables a strong inductive bias in the
form of the exploitation of non-local self-similar features.
This enhanced prior allows the colorized images to be more
realistic, with sharper details and spatially-consistent color
distributions, even when a simple MSE is used. Future works
should consider integrating the proposed method with adver-
sarial losses to further improve the results.
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